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ABSTRACT

This thesis is concerned with family-based studies of association between ge-

netic markers and binary traits. A special point of interest in family-based

association studies is to separate the within family correlation and the genetic

effect common among all families in the study. In family-based studies of quan-

titative traits within family trait correlation is explicitly modeled in terms of

both alleles shared identical by descent and common environment. We have

extended this notion to a binary trait setting, and formulate a generalized lin-

ear mixed model based on a log-log link and gamma distributed random effects

capturing the within family correlation induced by linkage. The genetic effect

common among all families is captured in the linear predictor of the model.

We show that the model can be used to construct tests for a variety of situ-

ations; for testing association between single markers and a trait, for testing

association between multiple markers (jointly) and a trait, and for testing as-

sociation between a single marker and two diseases jointly. We have evaluated

the model in four papers and show that the power of the test is up to double

that of the gold standard for testing association in the presence of linkage -

the Family-Based Association Test (FBAT).
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Chapter 1

GENETIC PRIMER

1.1 Some Important Concepts

Humans carry genetic information in double helix strings of nucleotides called

DNA (deoxyribonucleic acid). There are four nucleotides which form com-

plementary pairs; Adenine and Cytosine, Guanine and Thymine; see Figure

1.1.1. These strings of DNA are called chromosomes. There are 46 human

chromosomes, forming 22 pairs and two sex chromosomes. If a certain loca-

tion (locus, pl. loci) on a chromosome carries information on a specific trait

then the complimentary location on the other chromosome in the pair also

carries information about the same trait.

Mitosis is the process by which a cell copies it self to form a new identical cell;

both cells contain the same set of chromosome pairs. Meiosis is the process

which in humans forms the gametes, i.e. the egg in females and the sperm in

males. A gametes only contains half a set of chromosomes and when an egg

and a sperm merge they form a new cell containing a full set of chromosomes.

During the meiosis the chromosomes in a pair recombine at random locations,

and form new chromosomes. The probability of a recombination occurring

between two loci depends on the distance between the loci, chromosome type

and sex. The recombination fraction is defined, such that a recombination

fraction of 1/2 means that the probability of recombination between two loci

is 0.5, i.e. random assortment, whilst a recombination fraction of 0 means

that the probability of recombination between two loci is zero. In conclusion,

a child will have half of its DNA from its mother and half of its DNA from

its father, but the child does not inherit whole chromosomes from its parents.

In the context of this thesis we formalize the process of meiosis and say that
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Figure 1.1.1: The DNA double helix. The picture has been obtained from
http://www.biologycorner.com.

when two individuals mate, chromosomes (perhaps recombined), or parts of

chromosomes, are transmitted from the parents to the offspring.

Most human DNA is identical for the whole population, but at some loci

different variants exist. Variants at a locus are called alleles and if there are

only two alleles in the population it is said that the locus is biallelic. One

type of biallelic locus is defined on a single nucleotide and if the rare allele has

a frequency of at least 1 % in the population, the variant is called a Single

Nucleotide Polymorphism (SNP). When more than two alleles exists we refer

to the locus as multi-allelic.

All humans carry two alleles of a given variant; one at each chromosome. We

refer to individuals carrying the same allelic variant on both chromosomes as

homozygote and individuals carrying different variants as heterozygote. The

unordered combination of alleles is called the genotype, whilst the ordered

combination is called the haplotype. By ordered we mean that the alleles at

different loci can be differentiated with respect to the chromosome on which

they are carried. Consider for example an individual homozygote at one locus

and heterozygote on another locus (both on the same chromosome), e.g. AA

and Dd. The genotype may be written without order, {AA.Dd} (our notation

- ”.” is a separator between locus genotypes), whereas the haplotypes are

ordered by chromosome, AD/Ad (our notation - ”/” is a separator between

4



haplotypes).

In genetic association studies interest lies in finding a locus involved in a disease

or trait. Such a locus is called a Disease Susceptibility (DS) locus. In order to

pinpoint the location of the DS locus, we find the genotypes of a set of variant

loci. This procedure is called genotyping and the loci we genotype are called

markers. Our hope is that at least one of the markers either is the DS locus,

or is in close proximity to the DS locus. If the marker and the DS locus are

close enough, with little (or no) recombination between them, we will see a

co-transmission of the two.

1.1.1 Identity-by-descent and inheritance vectors

When studying transmission of alleles to family members it is common to refer

to allele similarities between relatives in terms of Identity-By-State (IBS) and

Identical-By-Descent (IBD). If, e.g. two siblings share an allele IBS this means

that they both have the same allele type, but possibly from different parental

chromosomes. If the siblings share an allele IBD then they share the same

allele from the same parental chromosome. Siblings can share either 0,1 or

2 alleles IBD. Consider a family where both parents are heterozygous at a

biallelic marker; e.g. both parents have genotype Aa. Now consider a sib pair

with genotypes Aa and aa. The sibs share one a allele IBS, and we can deduce

that they have to share one a allele IBD.

Co-transmission can also be described using the inheritance vector [29]. Con-

sider a family with two offspring, and a multi- allelic scenario where the father

carries alleles a and b and the mother carries alleles c and d. There can be no

ambiguity about IBD sharing in this example. The inheritance vector in the

two offspring case is a vector with four indicators, where the 1st and the 2nd

value indicate which paternal and maternal allele offspring 1 carries, and the

3rd and the 4th value indicates which paternal and maternal alleles offspring

2 carries. For example, the first value in the vector may indicate whether the

offspring received allele a (indicator = 1) or b (indicator = 0), and the second

value may indicate whether the offspring received allele c (= 1) or d (= 0). If

the offspring carries genotypes ac and bd, respectively, the inheritance vector is

(1100). Offspring genotypes ac and ad correspond to inheritance vector (1110)

and genotypes ac and ac correspond to (1111). The inheritance vector is thus

a (2J)-vector, where J is the number of offspring in the family, containing
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full information on how the 4 parental alleles have been transmitted to the

offspring.

Generally, some inheritance vectors will contain the same amount of informa-

tion due to the symmetry in enumerating the parental alleles. In the example

with two offspring: (0011), (1100), (0110) and (1001) form a group, (0001),

(0010), (1000), (0100), (0111), (1011), (1101) and (1110) form a group, and

(0000), (0101), (1111) and (1010) form a group. The three groups of in-

heritance vectors correspond to the offspring sharing 0, 1 and 2 alleles IBD,

respectively. Thus, the information contained in pairwise IBD sharing is iden-

tical to the information contained in the inheritance vector in the two offspring

case. It can easily be shown, however, that when there are more than three

sibs, information on pairwise IBD sharing is less informative than inheritance

vectors.

The mode of transmission of the parental alleles is not always known. For ex-

ample, if the parents and offspring are all heterozygotes, all with genotype Aa

(say), then all inheritance vectors are equally likely, or equivalently the prob-

abilities of sharing 0, 1 and 2 alleles IBD are 0.25, 0.5 and 0.25, respectively.

In contrast, if both offspring are aa homozygotes (parents still heterozygote

Aa) then only one inheritance vector is possible, i.e. (0000), and 2 alleles are

shared IBD.

1.2 Linkage Disequilibrium and Linkage

The concepts of Linkage Disequilibrium (LD) and Linkage, which are key to

the subject of this work, are closely related.

Linkage is defined in the context of transmission of genetic material from par-

ents to offspring. It is defined to be the non-random co-inheritance of alleles

at two loci. In terms of recombination, linkage between loci means that the

recombination fraction is less than 0.5.

In contrast to linkage, LD is a population level concept. Two loci are said

to be in LD if their alleles are statistically dependent. Let pAD, pA and pD

be population frequencies of haplotype AD, and alleles A and D, respectively.

One measure of LD is the correlation coefficient, r = (pAD−pApD)/
√
pApapDpd.

Another measure of LD, more commonly used by geneticists is D = (pAD −

6



pApD)/Dmax, where Dmax is the maximum of pA·pd and pa·pD if (pAD−pApD) 

0, and the minimum of pD · pd and pA · pa, otherwise.

The level of LD between two markers decreases over generations with the

rate of the decay in LD being dependent on the degree of linkage [56]. That is,

linkage preserves LD in the population. Another way that LD can be preserved

is through non-random mating.
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Chapter 2

STATISTICS PRIMER

The test developed in this thesis, the Gamma Random Effects (GRE) test,

as well as many of the tests presented in Section 3, are based on likelihood

inference. We present some key concepts, starting with a general formulation

of the Generalized Linear Mixed Model (GLMM), see e.g. [42], in Section 2.1.

Not all likelihood based genetic association tests are based on a GLMM, but the

GRE test and a test for time-to-event data [67] are. These particular two tests

are based on GLMMs with a closed form likelihood solution. For the GRE,

the closed-form likelihood solution originates from a result in Conaway [15].

We describe these GLMMs briefly in Section 2.2 and more detailed in Sections

3.1.3 and 5.1. In Section 2.3 we describe two types of tests in likelihood based

analysis; the likelihood ratio test and the score test.

2.1 Generalized linear mixed models

Let Yij be a random variable taking observed value yij, i = 1, . . . , n and j =

1, . . . , Ji. Let Xij be a k-vector of predictors. The GLMM can be viewed as an

extension of the Generalized Linear Model (GLM), described in McCullagh &

Nelder [42]. The GLMM allows for dependencies among the Yij, j = 1, . . . , Ji.

The GLMM can be defined, similarly to the GLM, in steps:

1. Let µij be the conditional mean of the response Yij, E(Yij|b,β,Xij,Zi),

and let h(·) be a twice differentiable, continuous function. The condi-

tional mean can then be expressed as
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h(µij) = γij = Xijβ +Zib ,

where β are fixed effects and b are random effects. Xij and Zi are

design matrices for the fixed effects and random effects respectively. The

function h(·) maps the mean of Yij to the linear predictor γi and is called

the link function.

2. Conditional on the random effects b, the fixed effect β, and the design

matrices, Xij and Zi, Yi is a random variable following a probability,

P (Yi = yi|b,β,Xij,Zi), with mean µi and variance V , determined by

the distribution.

3. The random effects b follow a distribution P (b|θ) with parameter θ,

calibrated to have zero mean and variance D.

The observed likelihood can be formulated in terms of the conditional distri-

bution of Y = {Yij, i = 1, . . . , n and j = 1, . . . , Ji} and the distribution of the

random parameter b, integrated over b,

L(β,θ|Y ,X) =
n
i=1



b

P (Yi = yi|b,β,Xij,Zi) P (b|θ) ∂b . (2.1.1)

We maximize the likelihood in Equation (2.1.1) with respect to β and θ. The

primary interest is typically estimation or testing of β and θ is then consid-

ered to be a nuisance parameter. The values of β and θ which maximizes the

likelihood in Equation (2.1.1) are called the Maximum Likelihood (ML) esti-

mates, and are denoted β̂ and θ̂, respectively. A problem with the likelihood

in Equation (2.1.1) is that it in general it has no closed form solution and

its evaluation requires computationally intensive numerical integration. The

GRE is a special case where a closed form solution exists; see Sections 2.2 and

5.1.

Assume that the distribution of Yi, conditional on the random effect and the

fixed effect, comes from the exponential family. The exponential family is

typically expressed as

P (Yi = yi|γi, b) = c(yi, ψ) exp


S(yi)γi − a(γi)

ψ


,
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where c(·) and a(·) are some functions, S(yi) is the sufficient statistic for Yi

and ψ is a dispersion parameter. The conditional mean can be expressed in

terms of the derivative of the canonical term, a(γi),

E(Yi|γi, b) = µi = a(γi) , (2.1.2)

and the variance can be expressed in terms of the second derivative of a(γi)

Var(Yi|γi, b) = v(µi) = a(γi) .

The link function h is the inverse function of a in Equation (2.1.2). Examples

of distributions belonging to the exponential family are the Normal distribu-

tion, for continuous outcomes, and the Bernoulli distribution for binary data.

2.2 A closed form solution to the likelihood of
a generalized linear mixed model for binary
outcomes

The likelihood in Equation (2.1.1) is generally difficult to optimize; numerical

integration is necessary, except for some special GLMMs. One of these special

cases is for a binary response, Yij = 0 or 1, with the log(-log) link and log-

gamma distributed random effects, bi, with scale λ and shape α. Consider the

local independence model,

log (− log ( P (Yij = 1|bi, βj) )) = bi + βj ,

where βj are fixed effects, and i = 1, . . . , n and j = 1, . . . , Ji. Dropping the

conditioning on bi and βj we introduce the following notation:

p∗ =




p∗{∅}
p∗{1}
p∗{2}
p∗{1,2}


 =




1
P (Yi1 = 1)
P (Yi2 = 1)

P (Yi1 = 1, Yi2 = 1)


 ,

and
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p =




p11
p01
p10
p00


 =




P (Yi1 = 1, Yi2 = 1)
P (Yi1 = 0, Yi2 = 1)
P (Yi1 = 1, Yi2 = 0)
P (Yi1 = 0, Yi2 = 0)


 .

Conaway [15] shows that the joint probability of observable outcomes, p, can

be written as an equation system of p∗. We can write p = Bp∗, where

B =




0 0 0 1
0 0 1 −1
0 1 0 −1
1 −1 −1 1


 .

We may thus formulate P (Yi1 = yi1, Yi2 = yi2|bi, βj) in terms of the rows in

p = Bp∗. For a specific outcome we may write P (Yi1 = yi1, Yi2 = yi2|bi, βj) =
T∈Ψ c

yi

T P (Yij = 1,∀j ∈ T |bi, βj), where Ψ = {{∅}, {1}, {2}, {1, 2}} are the

indices of p∗ and where cyi

T is the row in B corresponding to the observed

outcome, as indexed in p. This argument can be generalized to larger sibships

as outlined in Conaway [15]. Note that the inverse of matrix B (denoted Z in

paper I and A in papers II-IV) is the Ji-factorial design matrix.

The above result allows us to consider the integration over the probabilities in

p∗, instead of p. Conaway [15] shows that,

P (Yij = 1, ∀j ∈ T |βj, λ, α) =



bi

P (Yij = 1, ∀j ∈ T |bi, βj)P (bi|λ, α)∂bi

=



bi


j∈T

exp(− exp(bi + βj))P (bi|λ, α)∂bi

=



bi

exp


− exp(bi) ·


j∈T

exp(βj)


P (bi|λ, α)∂bi

=


λ

λ +


j∈T exp(βj)

α

, (2.2.1)

where P (bi|α, λ) is the log-gamma distribution of bi. From Equation (2.2.1)

we see that a closed form solution of the likelihood can be obtained.
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2.3 The score test and the Likelihood ratio test

Based on the likelihood in Equation (2.1.1) we formulate two types of tests; the

score test and the likelihood ratio test (LRT). Assume that the parameter we

want to test is β and that θ is a nuisance parameter. The score test is based

on the derivative of the log of the likelihood with respect to the parameter of

interest, in this case β. The score test is written,

S(β) =
∂

∂β

n
i=1

logL(β, θ̂|Yi,Xi) , (2.3.1)

where θ̂ is the maximum likelihood estimate of θ, evaluated at β (fixed). The

score test in Equation (2.3.1) does not take the variability of θ̂ into account;

taking it into account requires derivation and computation of the second deriva-

tive with respect to β and θ. We test the null hypothesis that β is zero by

computing the score in Equation (2.3.1) at β = 0, S(0). The square of the

score, S(0)2, is asymptotically chi-squared with the degrees of freedom equal

to the length of vector β [42].

The likelihood ratio test compares the likelihood under the null with the like-

lihood under the alternative. The likelihood under the null is obtained by

evaluating the likelihood with β = 0 (fixed) and θ̂ (the ML estimate of θ at

β = 0). The likelihood under the alternative is obtained by evaluating the

likelihood at the ML estimates of both β and θ. We write,

LRT = −2 ·


logL(β = 0, θ̂|Y,X)− logL(β̂, θ̂|Y,X)

.

The likelihood ratio statistic is, like the score test, chi-squared with degrees of

freedom equal to the number of parameters in β [42].

The LRT test requires an extra evaluation of the likelihood at the alternative

and it requires estimation of β, which makes it more cumbersome to evaluate

than the score test. The score test requires that the derivative of the likelihood

is calculated, either numerically or exactly. Finding the derivative, numerically

or exactly, is also required in the estimation of β and is thus also required in

the LRT.
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Chapter 3

LINKAGE AND ASSOCIATION
STUDIES

Burton et al. [10] define six steps for discovering and characterizing genes in-

volved in binary and continuous traits. Genetic linkage and association studies

constitute steps four and five. The first step is finding evidence that the dis-

ease aggregates in families. The last step is to study how the DNA variation

in question affects the function of the cell.

In population-based association studies we test for association between marker

loci and disease by comparing the distribution of marker alleles in a group of

unrelated individuals with the disease versus a group of unrelated individuals

without the disease. The hope is that one, or several of the markers are either,

the DS loci, or in LD with DS loci. An increasingly common type of association

study is the Genome-Wide Association (GWA) study, see e.g. Carlson et al.

[11] and Kruglyak [28]. In the GWA study the full genome is scanned using a

dense distribution of markers. Illumina and Affymetrics are two companies

providing genotyping arrays for GWA studies. The technology is moving fast

and both manufacturers have today the technology to cover about 1 million

SNPs in ”one go”.

In family-based studies of linkage, the transmission of genes to cases is typically

compared to the expected transmission probabilities; the Mendelian transmis-

sion probabilities. Linkage analysis/testing and association analysis/testing

have historically been viewed as separate entities, both however, rely on an-

cestral recombination to define ”closeness” between DS loci and marker loci.

In association studies the population can be viewed as one big family in which

relatives are distantly related and no knowledge of specific relationships exists.
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It is however possible in family-based studies to test both association and link-

age. In family-based studies of association, cases are compared to their healthy

relatives, typically their healthy siblings. An advantage with choosing a family

member as control is that they are ethnically matched and they can also share

environment and lifestyle. A drawback is that their genetic similarity reduces

power.

Linkage between the marker and DS locus will induce a within family trait

correlation. For this reason, family-based studies (of genetic association) tests

either association and linkage jointly, or association controlling for linkage.

The null hypothesis, in the joint test of association and linkage, is that neither

linkage nor association exists between the marker and trait. The null hypoth-

esis when testing for association while controlling for linkage, is that linkage,

but not association, exists between the marker and trait. The first null hy-

pothesis is referred to as the type-I hypothesis and the latter is referred to as

the type-II hypothesis [31]. Testing the type-II hypothesis is more commonly

referred to as testing Association in the Presence of Linkage (APL).

A confounding factor which may induce false association between markers

and disease is population stratification or population admixture. Population

stratification/admixture refers to a situation where several sub-populations

with different genetic background exists in the study population, which may

be the case in ethnically mixed populations. Methods for handling population

stratification have been developed for both population-based and family-based

studies. However, family-based studies have the advantage of offering natural

matching of genetic background; siblings, for example, share the exact same

genetic background; at the expense of reduced power.

3.1 Family-Based Association and Linkage Stud-
ies

3.1.1 The conditional prospective and retrospective likeli-
hoods

Several different likelihoods have been proposed and used for the analysis of

data from family-based genetic studies. Kraft & Thomas [27] discuss likeli-

hoods which do not condition on parental marker genotypes. In contrast, the
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likelihoods presented in this section condition on parental marker genotypes.

By conditioning on the parental marker genotype we avoid having to estimate

the population allele frequencies [50].

Ascertainment of families for mapping is often based on one or several family

members having the disease. The family are thus ascertained based on trait

values and statistical analyzes need to acknowledge the sampling procedure.

Most tests of genetic association in family-based studies are for this reason

based on the retrospective likelihood. Another type of study is a cohort study

where individuals and their families are followed prospectively in time. In such

studies it is appropriate to base inference on the prospective likelihood,

Lp =
n
i=1

P (Yi = yi|Gi, gi) ,

where Yi denotes the trait vector for family i, Gi and gi denote the offspring

and parental genotypes, respectively, and where n is the number of families in

the study. The prospective likelihood has been used extensively in searching

for loci involved in quantitative traits, see e.g. Fulker et al. [20] and Sham et

al. [57].

We present the conditional (on parental genotypes) retrospective (with respect

to trait) likelihood, written,

Lr =
n
i=1

P (Gi|gi,Yi) .

We will use the fact that the retrospective likelihood can be written in terms of

the prospective probability of trait, P (Yi = yi|Gi, gi). Using Bayes Theorem,

Lr =
n
i=1

P (Yi = yi|Gi, gi)P (Gi|gi)
G∈G∗

i
P (Yi = yi|G, gi)P (G|gi)

,

where the summation in the nominator is over all offspring genotype config-

urations, consistent with the observed parental genotypes (further discussed

in Section 6). The conditional retrospective likelihood has been proposed in

the context of family-based association studies by several authors, including

Clayton [13], Shih & Whittemore [59] and Zhong & Li [67].
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3.1.2 Testing and Estimating Association and Linkage Jointly

The main topic of the present thesis is testing and estimation of APL. Many

existing family-based tests are, however, appropriate for testing association

and linkage jointly. We provide a short review of these tests with the purpose

of providing a general background of statistical methods for analyzing family-

based association and linkage studies.

Most of the early family-based studies are based on trios, i.e. studies which

collect genetic information from one affected offspring and its parents. Here

we summarize four tests which, in their original form, were designed to test

association and linkage from trios data; the Matched Genotype-based Relative

Risk (MGRR) test [52], the Genotype-based Haplotype Relative Risk (GHRR)

test [19], the Haplotype-based Haplotype Relative Risk (HHRR) test [46] and

the Transmission Disequilibrium Test (TDT) [61]. We deal with a binary trait

and a biallelic marker locus with alleles A and a. Let n be the number of

families which are in the study.

Rubenstein et al. [52] described a test based on the transmission of genotypes

from parents to offspring. Let index i denote the genotype transmitted to the

offspring and let index j denote genotype not transmitted to the offspring.

Rubenstein et al. [52] let i and j take values 1 for genotypes AA and Aa

and 2 for genotype aa. Tij denotes the number of transmitted (i) and non-

transmitted (j) genotypes. Thus,


i,j Tij = n. Rubenstein et al. [52] suggest

treating the two genotypes; the transmitted and the non-transmitted; as being

dependent (matched). The test suggested by Rubenstein et al. [52] is,

MGRR =
(T12 − T21)

2

T12 + T21

. (3.1.1)

Falk & Rubenstein [19] suggest breaking the matching and instead of looking

at the pairs of genotypes, they separate the transmitted and non-transmitted

genotypes. Falk & Rubenstein [19] propose using the test

GHRR =
(T12 − T21)

2

(2T11 + T12 + T21)(T12 + T21 + 2T22)/2n
. (3.1.2)

The difference between the MGRR and the GHRR tests lies in the variance

estimator of (T12 − T21)
2, i.e. in the denominators of the test statistics in
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Equations (3.1.1) and (3.1.2). Both test statistics are used for jointly testing

linkage and association.

It is also possible to test for association and linkage based on the transmission

of alleles, rather than genotypes. Ott [46] and Terwilliger & Ott [61] propose

a matched analysis. Let tij denote the number of pairs of alleles, where the

index i denotes the allele transmitted to the affected offspring and where index

j denotes the allele which was not transmitted. Hence,


ij tij = 2n. Ott [46]

and Terwilliger & Ott [61] proposed a test statistic similar in spirit to the test

statistic in Equation (3.1.2),

HHRR =
(t12 − t21)

2

(2t11 + t21 + t12)(t12 + t21 + 2t22)/4n
. (3.1.3)

The TDT considers non-matched alleles and is written,

TDT =
(t12 − t21)

2

(t12 + t21)
. (3.1.4)

Note the similarity between the TDT in Equation (3.1.4) and the MGRR in

Equation (3.1.1). All tests presented in this section are in their original form

χ2 distributed with one degree of freedom.

Ott [46] derived the expected value of the HHRR and the TDT. Consider a

biallelic DS locus with alleles D and d, and a marker locus with alleles A and

a. Let pAD, pAd, paD and pad denote the frequencies of haplotypes AD, Ad, aD

and ad, respectively. Let also p denote the prevalence of the DS allele, D. Let

θ denote the recombination fraction and let δ = pAdpaD−padpAD be a measure

of LD. The expected squared difference between t12 and t21 can be expressed

in terms of θ, δ and the population frequency of the DS allele, p. That is,

the expected value of the numerator of the HHRR and the TDT, (t12 − t21)
2,

equals,


δ

p
(1− 2θ)

2

. (3.1.5)

Equation (3.1.5) equals zero if and only if θ equals 0.5 or δ equals zero, i.e.

only if there is no linkage (θ = 0.5), or if there is no LD between the marker

and the DS locus (δ = 0). Alternatively, Equation (3.1.5) differs from zero

only if there is both linkage and LD between the marker and the DS locus.
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The HHRR and the TDT are thus joint tests of linkage and association. Note

that trait values are not included in the expected value in Equation (3.1.5);

they cancel out in the derivations of the transmission probabilities [46].

Many extensions of the original TDT have been proposed; for multiple affected

sibs [60], multiple markers [58, 55, 53], for general pedigrees [41], allowing for

missing parental genotypes [58], for haplotypes phase and missing parental

genotypes [13, 12], and for continuous traits [3, 49, 1, 2]. Another family of

tests of association and linkage is the (original) Family-Based Association Test

(FBAT) [50], which we describe in more detail in Section 3.1.3.

3.1.3 Testing and Estimating Association in the Presence
of linkage

In this section we describe three general lines of methodological development

for testing APL; the Variance Components Model (VCM) [20] for continuous

traits, the Family Based Association Test (FBAT) [49] for binary and contin-

uous traits, and a score test for time-to-event data [67].

We deal here with n independent nuclear families, consisting of parents and

their offspring. Let i denote family (i = 1, 2, ..., n), j denote offspring within

a family i (j = 1, 2, ..., Ji) and let gi and Gi denote parental and offspring

genotypes, respectively. Let X(Gij) denote some genotype score (possibly a

vector) of the offspring genotype, Gij. For example, in the biallelic setting with

alleles A and a, X(Gij) may be equal to the number of A alleles in genotype

Gij. The trait, Yi, of the offspring in family i, is either a vector of binary

random variables (e.g. disease status yes/no) or continuous random variables

(e.g. BMI, insulin level etc).

The Variance Components Model

The Variance Components Model (VCM) has a long history of quantifying the

relative importance of the genetic component of quantitative traits (without

genotype data), for example in twin-studies [45]. Almasy & Blangero [4] ex-

tended Variance Components methodology to asses linkage between a marker

and a quantitative trait.

Fulker et al. [20] were the first to propose the use of the VCM to analyze
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association and linkage jointly. The VCM that Fulker et al. [20] describe is

a Generalized Linear Mixed Model (GLMM) with an identity link function,

normally distributed trait and normally distributed random effects. For trait,

Yij, fixed effect, µij, and random effects, aij, sij and eij, the model is written,

Yij = µij + aij + sij + eij ,

where eij denotes a non-shared random effect, sij denotes a shared random ef-

fect, and aij denotes an additive genetic random effect, all normally distributed

with zero means and variances σ2
N , σ2

S and σ2
A, respectively. The mean of Yij,

can be written as µij = β0 + β1X(Gij), where β0 denotes a common mean and

β1 denotes an additive genetic effect. The trait vector of the offspring in family

i, Yi, is multivariate normal with mean (β0 +β1X(Gi)) and covariance matrix

Σi. Consider for simplicity of exposition a sib-pair. The model-postulated

covariance matrix is then written,

Σi =


σ2
N + σ2

S + σ2
A σ2

S + πσ2
A

σ2
S + πσ2

A σ2
N + σ2

S + σ2
A


,

where π is the expected proportion of alleles shared IBD, i.e. π = 0.5 for sib-

pairs (except monozygotic twins for which π = 1). The correlation structure

expands straightforwardly to other sibship sizes. Population stratification can

be handled by allowing β1 to be partitioned into a between-family, and a

within-family effect [20]. Fulker et al. [20] consider inference based on the

prospective likelihood (Section 3.1.1). We can test for APL using a likelihood

ratio test or a score test of β1 = 0, and estimate σA, σN and σS as nuisance

parameters (Section 2.3). Note that it is possible to test several null hypothesis

using the VCM, including linkage only and association and linkage jointly [20].

The Family-Based Association Tests

Here we describe the original FBAT statistic [50] for testing association and

linkage jointly, and the extension for testing APL [31]. Let T (Yij) be a func-

tion of the trait, for example equal to Yij − o, where o is an offset. For binary

traits, setting o = 0 makes Tij non-zero for both affected and unaffected in-

dividuals. It is shown in Lange & Laird [34] and Lange & Laird [33] that an

optimal choice of o, in terms of power, is the sample mean of the trait. For
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simplicity of notation, we will write Tij and Xij in place of T (Yij) and X(Gij),

respectively. Rabinowitz & Laird [50] propose the following score statistic for

testing association,

S =

i

Si =
n
i=1

Ji
j=1

TijXij . (3.1.6)

The product in the sum, TijXij, can be viewed as a correlation term between

offspring trait and offspring genotype. The score is a summation of these terms

for all individuals in the n families.

Rabinowitz & Laird [50] propose calculating the expected value of the family

score, Si in Equation (3.1.6), by conditioning on the sufficient statistic of the

parental genotypes, gi, and the trait, Yi. By this conditioning, Rabinowitz &

Laird [50] design a valid test for association, regardless of genetic model and

population admixture or stratification. Rabinowitz & Laird [50] present an

algorithm for finding the sufficient statistic of the parental genotypes, and for

calculating the conditional probabilities of the possible sibship genotype vector,

given the sufficient statistic for parental genotype. The Rabinowitz-Laird (RL)

algorithm, can be divided into five steps,

Step 1: Find all phased mating types, compatible with the observed marker

data: g1, ..., gk.

Step 2a: Find the minimal set of offspring genotypes consistent with phased

mating type gl (l = 1, ..., k): γ1, ..., γk. Let γ be the intersection γ1∩ ...∩
γk, i.e. the minimal set of offspring genotypes consistent with all mating

types.

Step 2b: From the genotypes in γ, construct all possible sets of offspring

genotypes (of the same size as the observed sibship). Choose those that

give the exact same set of phased mating types as the observed sibship

genotypes (as derived in Step 1): m1, ...,mh.

Step 3: Compute the probability of offspring genotype mf (f = 1, ..., h), con-

ditional on parental mating type. This will give a h× k matrix.
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Step 4: Consider only offspring genotypes where P (mf |g) (f = 1, .., h) is

proportional to P (m1|g) (where m1 is the observed vector of offspring

genotype), for all mating types g: m∗
1, ...,m

∗
h (⊂ m1, ...,mh).

Step 5: Compute the conditional probabilities for each vector m∗
1, ...,m

∗
h ,

given g: Pcond(m∗
r) (r = 1, ..., h).

We let φ = (ξ(gi),Yi), where ξ(gi) is the sufficient statistic for the parental

genotypes gi. From the RL-algorithm, we can calculate

E(Xij|φ) =
h
r=1

X(mrj)Pcond(m∗
rj) .

The expected value under the null hypotheses of Si follows straightforwardly,

E(Si|φ) =
Ji

j=1 TijE(Xij|φ).

Lake et al. [31] show that SL =
n

i=1 (Si − E(Si|φ)) is a valid test statistic

for testing association in the presence of linkage. However, the covariance of

the statistic will not be the same, so instead Lake et al. [31] propose using a

robust covariance estimator [66, 38],

ΣL =
n
i=1

(Si − E(Si|φ))(Si − E(Si|φ)) .

The robust variance estimator accounts for the co-variability among siblings,

thereby adjusting for linkage. To test for association in the presence of linkage,

they use the expected value SL and the covariance ΣL to construct a Z statistic

(or χ2 statistic), assuming approximate normality. Since the expected value of

SL is zero, the Z statistic takes the form

ZL = Σ−1
L SL .

The Lake extension of FBAT is valid under any genetic model and population

stratification / admixture [50]. It also deals with missing marker data, through

conditioning on ξ(gi).

Several extensions of the FBAT have been proposed. Notable in the context

of this thesis are the extensions which handle testing haplotypes [22] and mul-
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tivariate traits [35]. We have formulated the five steps in the RL-algorithm

such that they include haplotypes (by adding phase in several of the steps) as

well as single markers. The multivariate FBAT [35] is based on a GEE [38]

formulation of the trait specific FBAT scores, Si.

Note that the FBAT is based on assuming that the trait is fixed. The FBAT

is thus conditional on trait and is therefore, in general terms, a retrospective

test, see Section 3.1.1.

A Score Test for Time-to-Event Data

Li & Zhong [36] propose a so called frailty model [64] for survival data. The

model represents an extension of the Cox proportional hazards model [16] that

allows for random individual risks of having an event. The hazard at a specific

time point (or age) is a measure of the risk which a person, healthy up to

that time point, has of developing the disease at that time. The model allows

for right censoring, acknowledging that some individuals are not observed to

develop the disease, due to death or loss to follow up for other reasons (which

ever came first). Survival methodology is not within the scope of this thesis.

However, the GRE is an adaption of the methodology presented in Zhong &

Li [67] to binary traits. We therefore shortly outline the starting point of the

Zhong & Li [67] model, here.

For simplicity of exposition, consider families with two offspring. Let tij be

the age at which offspring j in family i develops the disease. The hazard takes

the form,

λij(tij|Zij) = λ0(tij) exp(X(Gij)β)Zij , (3.1.7)

where λ0(tij) is some unknown baseline hazard at age tij and β is a parameter

measuring the common genetic effect. The vector of random effects, Zij, is de-

fined in terms of the inheritance vector. Assuming that the mode of inheritance

is known Zhong & Li [67] write,

Zij = i,v2j−1
+ i,v2j

+ sij , (3.1.8)

where v2j−1 and v2j are the two components of the inheritance vector at-
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tributable to offspring j. The random effects, i,v2j−1
, i,v2j

and sij, are assumed

to be gamma distributed. The parameters of the gamma distributions are re-

stricted so that the sum, Zij, is gamma distributed with mean 1 and variance

1/λ. The restriction assures identifiability of the baseline hazard, λ0(t), and

has the advantage of preventing arbitrary scaling of the model in Equation

(3.1.7) [67].

Zhong & Li [67] chose the model out of mathematical convenience; the hazard

in Equation (3.1.7) and random effects formulation in Equation (3.1.8) yields

a closed form expression of the likelihood. The model is in fact similar to the

GLMM for binary traits, presented in Section 2.2. Based on the conditional

retrospective likelihood, Zhong & Li [67] propose a score test for testing asso-

ciation in the presence of linkage between a marker and time-to-event data.
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Part II

THESIS MATERIAL
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Chapter 4

AIMS OF THE THESIS

The Variance Components Model [20], described in Section 3.1.3, has been

used widely in testing for genetic association in family-based studies of quan-

titative traits; see for example [57]. The VCM includes a fixed effect, which

can be estimated to assess genotype-trait association, and it also contains

random effects which accounts for correlation in trait values between related

individuals, based on knowledge of IBD sharing and the extent to which re-

lated individuals share environmental factors. For survival data the idea of

testing for a fixed effect (genotype association) while accounting for the trait

correlations between related individuals, using a frailty model, was introduced

by Li & Zhong [36]; Section 3.1.3.

The broad aim of this thesis is to extend the methodology of Fulker et al. [20]

and Zhong & Li [67] to the binary outcome setting. The VCM is a GLMM

(Section 2.1) and the Zhong & Li model for the time-to-event data is based

on a random effects formulation. Most GLMMs for binary outcomes have a

likelihood whose evaluation requires numerical integration over the random

effect distribution. Consideration of computational simplicity and feasibility

is thus a central issue in this thesis. Specific aims:

(i) To adapt the method of Zhong & Li [67] to a simple binary trait set-

ting with single markers and no missing parental genotypes, using the

methodology of Conaway [15]. To study the validity and power of a

test, based on the ’novel’ model under a conditional retrospective like-

lihood (Section 3.1.1), for testing APL while protecting for population

stratification and admixture.

(ii) To extend the model in (i) in such a way as to derive a test of APL
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for multiple markers, which, as a result, handles families with missing

parental genotypes. To develop a haplotype-based test of APL.

(iii) To extend the model in (i) to a bivariate binary trait setting, for use in

genetic association studies of comorbidity.
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Chapter 5

THE STRUCTURE OF THE
THESIS

The tests developed in this thesis are based on a prospective GRE model for

the probability of a (binary) trait, given an observed set of offspring genotypes

and (inferred) knowledge of IBD sharing between sibs. Inferences are based

on a likelihood, which is chosen according to study design. For example,

when families are ascertained based on trait values, we use a likelihood which

conditions on trait values, relying on Bayes theorem to formulate the likelihood

in terms of prospective probabilities.

All four papers included in this thesis are based on the same general model,

under different restrictions and modifications. We begin in this Chapter by

describing the general GRE model and then proceed in Chapter 6 by describ-

ing the specific applications included in each paper. From paper I through

to paper IV the GRE tests are developed to become successively more gen-

eral. Developments for missing genotype information, multi-marker tests and

bivariate traits are described.

5.1 The Gamma Random Effects Model

We use index i to denote families, i = 1, . . . , n, and index j to denote indi-

viduals within families i, j = 1, . . . , Ji. Offspring trait values (= 0 or 1) are

denoted by Yij. In paper IV, Yij is allowed to be a a vector of trait values for

each offspring. We use Gij to denote the genotype of offspring j and gi to de-

note parental genotypes. Genotypes may be single-marker or multi-marker. In
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what follows, when denoting a vector for a family, the index j will be omitted.

For example, the vector of Yij’s for family i will be denoted Yi.

In this thesis we mainly consider cases where the region of interest is known to

be in linkage with a DS locus. Under the alternative hypothesis of association

and linkage the joint probability of trait, P (Yi = yi|Gi, gi), depends on the

observed genotypes in the sibship and on the pattern of IBD sharing. Many of

the existing methods for testing association in the presence of linkage specify

only pairwise IBD proportions, see e.g. [20, 57, 40]. The GRE is, however,

based on full specification of the pattern of IBD sharing in a family, using the

inheritance vector [29]; see Section 1.1.1. We specify the GRE working model

as,

log (− log (qij)) = log(aij · i + si ) + β0 + X(Gij) · β1 , (5.1.1)

where qij = P (Yij = 1|X(Gij),vi, i, 
s
i , β0, β1), where vi is the inheritance

vector for family i. The vector aij contains the same information as the inher-

itance vector. To simplify notation we write aij = [vi,2j−1, vi,2j−1, vi,2j, vi,2j],

where vi,k takes the value of 1 if vi,k = 0, and 0 otherwise (k = 2j − 1 or 2j).

Here i = (i1, i2, i3, i4) denotes family specific transmission effects, one for

each of the four parental alleles and aij · i is the sum of the two transmission

effects corresponding to the parental alleles transmitted to offspring j. We also

allow for a shared environmental effect within family, si . We use a flexible dis-

tribution for the transmission effects, 1, . . . 4; the gamma distribution, with

scale λ and shape α. The shared effect, si is similarly assumed to be gamma

distributed with scale δ and shape η. X(Gij) is the marker genotype Gij score

for offspring j in family i. The marker genotype score can be formulated in

several ways, but we restrict ourselves to the biallelic case and let X(Gij) take

values 0, 1 or 2 for genotypes AA, Aa and aa, respectively. Thus, the param-

eter β1 measures the additive genotype effect of marker genotype Gij, and β0

is a baseline parameter.

The model in Equation (5.1.1) is a GLMM, on the log(-log) scale, with a fixed

genetic effect capturing the population level marker association, and a random

transmission effect capturing the within family effect inherent to linkage be-

tween the marker and a DS locus. The next step in the model formulation

involves the joint probability of the traits in the sibship and integrating over

the random effects. Exactly how this is done depends on the design and on
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the marker genotype information, and whether or not the mode of inheritance

is known and we thus present these details for each paper separately.

In paper I we start to address Aim (i) in a first development of the GRE model,

based on a prospective likelihood. A LRT for single marker data is described.

The LRT ignores the information from the parental genotypes in inferring

the pattern of transmission (inheritance vector) and we do not account for

population stratification. Missing parental genotypes are not accounted for.

See Section 6.1.

In paper II we continue to address Aim (i), and develop a GRE score test for

a single marker, based on the retrospective likelihood. The score test accounts

for population stratification by conditioning the probability of offspring marker

genotypes on the parental marker genotypes. The properties of the GRE are

studied in terms of empirical power and type-I-error, using simulated data.

See Section 6.1.

In paper III we generalize the single-marker GRE score for multiple markers

(Aim (iii)). Based on the retrospective likelihood we develop a multi-marker

score which accounts for missing parental genotypes. A haplotype test, as well

as a single-marker test which, uses information from multiple markers to infer

the pattern of transmission, is studied, using simulated data. See Section 6.2

In paper IV we extend the single-marker GRE to a bivariate trait setting.

Focus is on the prospective likelihood. We describe a LRT and demonstrate

that it protects against population stratification and is valid and powerful in

testing single-marker trait association. See Section 6.3.
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Chapter 6

THE PAPERS

We consider only sib-pairs in all four papers. The methods are however directly

extendable to any family data. We noted in Section 1.1.1 that the information

in the inheritance vector collapses to information on IBD sharing when con-

sidering sib-pairs. As a consequence, we can express the likelihoods (based on

the GRE model) in terms of IBD sharing.

Note that we have adopted the notation in Section 5.1 in what follows. Devi-

ations from the notation will be described in each Section.

6.1 Papers I and II - A Powerful GRE Score Test
for a Single Trait and a single marker

In papers I and II we focus on the formulation of the transmission effects in

Equation (5.1.1). The shared environmental random effect, si is left out of the

model. We reformulate the model in Equation (5.1.1) as

log (− log (qij)) = log(aij · i) + β0 + X(Gij) · β1 . (6.1.1)

If we assume that the traits of offspring in family i are independent, conditional

on the random transmission effects and Gi, then based on the model Equation

(6.1.1) we can write the joint probability of trait in the sib pair as,

P (Yi1 = yi1, Yi2 = yi2|Gi, i) = P (Yi = yi|Gi, i)
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=
2

j=1

q
yij

ij (1− qij)
1−yij .

We want to evaluate the prospective probability of trait, given the observed

marker genotype data, P (Yi|Gi, gi) and write,

P (Yi = yi|Gi, gi) =

v∈v∗

i

P (Yi = yi|Gi,v)P (v|Gi, gi) ,

where the summation is over all possible inheritance vectors, v ∈ v∗i , given

the observed genotype data, gi and Gi. We restrict the parameters of the

random effects, λ = α/2, so that the mean of log(aij · i) is approximately

zero. Following Conaway [15] (see Equation (2.2.1) in Section 2.2) we write,

P (Yi = yi|Gi,vi) =

T∈ψ

cyi

T P (Yij = 1, ∀j ∈ T |Gi,vi)

=

T∈ψ

cyi

T



i

P (Yi = 1, ∀j ∈ T |Gij, i)P (i)∂i

=


λ

λ +


j∈T exp(β0 + β1Xij)

πλ

·

2
j=1


λ

λ + exp(β0 + β1Xij)

(1−π)λ

, (6.1.2)

where π is the proportion of alleles shared IBD in the sib-pair, i.e. 0, 0.5 or 1,

and where P (i) is the gamma distribution function of i.

6.1.1 The Application in Paper I

In paper I we studied a first version of the GRE, built on some simplifying

assumptions. It is assumed that all inheritance vectors are equally likely, i.e.

we ignore the information from the parental genotypes and set P (v|Gi, gi) =

P (v|Gi) = 1/16. We based analysis on the prospective probability of trait,

P (Yi = yi|Gi, gi) and formulate a likelihood ratio test. This will not be
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valid when families are ascertained on trait. Based on these assumptions, we

formulated the prospective likelihood,

L(β0, β1, λ) =
n
i=1

P (Yi = yi|Gi, gi)

=
n
i=1


vi∈v∗

i

1

16
P (Yi = yi|Gi,vi)

=
n
i=1


vi∈v∗

i

1

16


T∈Ψ

c
yij

T P (Yi = 1|Gi,vi) , (6.1.3)

where Gi and gi refers to single biallelic marker data from the offspring and

parents in family i, and where v∗
i refers to all (16) possible inheritance vectors.

Testing the null hypothesis of no association in the presence of linkage corre-

sponds to testing β1 = 0 in the likelihood represented in Equation (6.1.3). In

Jonasdottir et al. [26] we propose to use a likelihood ratio test,

LRT = −2


logL(β̂0, β1 = 0, λ̂)− logL(β̂0, β̂1, λ̂)

, (6.1.4)

where β̂0, β̂1 and λ̂ are maximum likelihood estimates of the GRE model pa-

rameters. The likelihood ratio test in Equation (6.1.4) is chi-squared dis-

tributed with one degree of freedom.

Using the LRT we analyze data simulated for the use of the participants at the

14th Genetic Association Workshop (GAW14). See Section 6.1.3 for results.

6.1.2 The Application in Paper II

In Jonasdottir et al. [24] we presented a score test based on the conditional

prospective likelihood. Using Bayes rule the retrospective probability of trait

can be written in terms of prospective probabilities,

L =
n
i=1

P (Yi = yi|Gi, gi)P (Gi|gi)
G∈G∗

i
P (Yi = yi|G, gi)P (G|gi)

, (6.1.5)
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where Yi refers to the trait vector in family i of a single trait. We focused on

the biallelic case; Gi and gi refers to (biallelic) genotype information in the

offspring and parents, respectively. In the single marker case the probability

P (G|gi) is simply derived by enumerating all possible offspring genotypes given

the observed parental genotypes, and the set of all such genotypes is referred

to as G∗
i .

The conditional retrospective likelihood in Equation (6.1.5) accounts for popu-

lation stratification by conditioning on parental genotypes and it accounts for

non-random ascertainment by conditioning on disease status. We derived a

score test based on this likelihood. Both Zhong & Li [67] and Jonasdottir et

al. [24] note that, in order to get consistent estimation of λ, using the con-

ditional retrospective likelihood, β0 has to be calculated from external data.

Jonasdottir et al. [24] estimate β0 by taking the log(-log) of the population

prevalence of disease and demonstrate the validity of this choice. Under the

null hypothesis β1 is zero, so an appropriate score is given by,

S =
n
i=1

∂

∂β1

log

Li(β0, 0, λ̂)



=
n
i=1


v∈v∗

i

∂
∂β1

(P (Yi = yi|Gi,v))P (v|Gi, gi)P (Gi|gi)
v∈v∗

i
P (Yi = yi|Gi,v)P (v|Gi, gi)P (Gi|gi)

−

−


G∈G∗
i


v∈v∗

i

∂
∂β1

(P (Yi = yi|G,v))P (v|G, gi)P (G|gi)
G∈G∗

i


v∈v∗

i
P (Yi = yi|G,v)P (v|G, gi)P (G|gi)


,

where β0 is equal to log(-log) of the population prevalence of the trait and λ̂

is the maximum likelihood estimate of λ. The probability P (Yi = yi|G,v) is

given by Equation (6.1.2). Using this score we tested for APL using simulated

data as well as data from the Collaborative study on the Genetics of Alcoholism

(COGA). See Section 6.1.3 for results.

6.1.3 Results

Data Simulated for the 14th Genetic Association Workshop

In paper I we analyzed simulated data from the GAW14 [21]. We analyzed

one trait in a data set containing 10 (out of 100) replicates from a specific
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Figure 6.1.1: Analysis of Region D2 in data simulated for the GAW14.
This region is simulated not to contain any DS loci. The dotted verticle line
represents the p-value of 0.05.

subset of the GAW14 simulated data. The trait was labeled Trait A and was

simulated to be associated with haplotypes in a specific region, entitled Region

D3. We analyzed 20 markers from that region (B03T30**: 48 - 67), as well as

8 markers from another region, Region D2 (B05T41**: 35 - 42), not associated

with Trait A. We compared the results of the first GRE presented in Section

6.1.1, with a GEE analysis, based on a logistic model, and a FBAT analysis,

using the optimal offset and a robust variance estimator [31].

In our analysis of SNPs in the non-associated Region D2 the GRE followed the

FBAT and the GEE test reasonably closely, see Figure 6.1.1. All tests falsely

detected marker B05T4136 as being associated with Trait A; the GEE and the

GRE with a p-value approximately 10 times smaller than the FBAT.

Analysis of the associated Region D3 shows that the GRE outperforms the

GEE and the FBAT in pinpointing certain markers (Figure 6.1.2); see for

example markers B03T3056 and B03T3059.

We note that the GRE used in paper I did not properly account for the fact

that only families with at least one affected sib had been selected, and it did

not protect against population stratification. Also the test assumed that all

inheritance vectors are equally likely which is not optimal in terms of power.

These issues are addressed in paper II.
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Figure 6.1.2: Analysis of region D3 in data simulated for the GAW14.
This region is simulated to contain a haplotype DS locus. The dotted verticle
line represents the p-value of 0.05.

Simulated Data using SIMLA

In paper II, we studied the properties of the GRE score test, presented in

Section 6.1.2, using simulated genetic family data obtained by using the SIMLA

software [6]. We ascertained families with sib pairs discordant for trait. The

DS locus, as well as the observed marker locus was assumed to be biallelic.

Let fk denote the probability of disease, the penetrance, given k (= 0, 1, or

2) DS alleles. The DS locus was assumed to have either a co-dominant effect

on disease, with f0 = 0.004, f1 = 0.008 and f2 = 0.016, or a dominant effect

on disease, with f0 = 0.004, f1 = 0.008 and f2 = 0.008. The frequency of the

DS alleles and marker alleles were assumed equal. We varied two parameters

in our simulations: (i) the disease and marker allele frequencies and (ii) the

strength of LD between the marker locus and the DS locus. We assumed

zero recombination between the marker and the DS locus, and the number of

families, in each replicate, was set to 1000.

For each scenario, defined by (i) and (ii) we calculated the GRE score and the

FBAT [50] score, for the marker locus. The GRE is calculated using log(-log) of

the simulated population prevalence for the β0 parameter. FBAT is calculated

using an optimal offset of 0.5 and using a robust variance estimator [31]. The

simulation of families and calculation of the scores was replicated 1,000 times

and the proportion of score statistics exceeding the nominal 0.05 percentile of

the chi-squared distribution (with 1 degree of freedom) was recorded.
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Figure 6.1.3: Co-dominant Model: Studying the validity and power of the
GRE and the FBAT. Number of families=1000, number of simulations=1000,
θ = 0.

Figures 6.1.3 and 6.1.4 show results for the co-dominant model and the dom-

inant model, respectively. In Figure 6.1.3 we plot the proportion of rejected

null hypotheses based on the co-dominant model for various values of LD (in

terms of the squared correlation coefficient r2), ranging from 0 to 0.27. For no

association (r2 = 0) both the GRE and FBAT tests are valid. However, for

all non-zero values of r2, the GRE is more powerful than the FBAT. We see a

similar result in Figure 6.1.4. The power is up to 50 % more powerful for the

GRE than the FBAT.

We also tried varying the recombination fraction and the number of families,

but these results were left out of the paper and are also left out here; they

show as expected that power goes down when the recombination fraction is

increased and that the power is approximately linearly related to the number

of families in the data.
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Figure 6.1.4: Dominant Model: Studying the validity and power of the GRE
and the FBAT. Number of families=1000, number of simulations=1000, θ = 0.

COGA

We analyzed data from the Collaborative Study on the Genetics of Alcoholism

(COGA) which was made available to the participants of the GAW14 [17].

The general aim of COGA is to identify and characterize genes that affect

the susceptibility to develop alcohol dependence. We focused on two clinical

measures of alcoholism; ALDX1 that is based on the DSM-III-R (Diagnostic

and Statistical Manual of the American Psychiatric Association-Revised) cri-

teria for alcohol dependence and the Feigner criteria for alcoholism, ALDX2,

based on the Diagnostic and Statistical Manual of the American Psychiatric

Association-IV criteria. ALDX1 and ALDX2 have five categories: No Info,

Pure Unaffected, Never Drank, Unaffected with some symptoms and Affected.

We dichotomized ALDX1 and ALDX2 to focus on individuals with a clear

diagnosis, and assigned the value of 1 to Affected individuals, and the value

of 0 to all others, except ”No info” which we treated as missing. As we note

in paper II, one could argue against the relevance of this dichotomization; we

simply made a pragmatic choice for illustration of the GRE. We investigated

the association between the dichotomized ALDX1 and ALDX2 with markers
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which had been highlighted in two published analyzes of the GAW14 COGA

data [68, 69].

The data consists of 143 pedigrees of varying size, in total including 1,614 indi-

viduals. As many as 136 families have four or more children. We selected one

sib pair (with at lease one affected sib) per pedigree, at random, for subsequent

analysis. A total of 304 individuals had no marker information and, overall,

22 % of the marker information was missing. Families with missing genotypes

were not selected for analysis.

The GRE scores were compared with FBAT [50] scores, for each marker, using

an optimal offset and an empirical variance estimator [31]. The p-values are

not adjusted for multiplicity. Scores with a p-value smaller than 0.01 are

considered significant.

For the GRE we obtained comparable results to the FBAT. The most notable

result was found in the analysis of the Zhu et al. [69] data, where we obtained

a strong signal at marker tsc0594280 (score = 12.305, p-value = 0.0048). One

of the more important findings in Zhu et al., marker tsc0593964, was not found

association by FBAT or the GRE.

The discrepancies between the markers found (significantly associated with

trait) in our analyzes and the markers found in the analyzes of Zhong & Zhang

[68] and Zhu et al. [69] are partly attributable to differences in methodology

and data analyzed. One major disadvantage of our analysis was that we could

not include families with missing parental genotypes. This shortcoming was

however addressed in paper III, and the COGA data were reanalyzed.
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(b) Zhong and Zhang − ALDX2
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Figure 6.1.5: Results from analysis of Zhong and Zhang [68] data using
the GRE. Each point represents a test of association between a specific marker
and ALDX1/2. The full red line represents the GRE score and the dotted blue
line represents the FBAT score. The straight horizontal line corresponds to
the nominal 5 per cent chi-squared quantile (=3.84). The distance from the
left most marker to the right most marker is approximately 13 mb. In figure
(a) markers, M1-M5 refers to rs889826, rs1559534, rs273954, rs727714 and
rs2056553, respectively. In figure (b) markers M6-M12 refers to rs1559534,
rs2059367, rs273954, rs13068, rs768055, rs2056553 and rs700273, respectively.
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(a) Zhu − first region
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(b) Zhu − second region
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Figure 6.1.6: Results from analysis of Zhu et al. [69] data using the
GRE. Each point represents a test of association between a specific marker and
the ALDX1 measure of alcoholism. The full red line represents the GRE score
and the dotted blue line represents the FBAT score. The straight horizontal
line corresponds to the nominal 5 per cent chi-squared quantile (=3.84). The
distance from the left most marker to the right most marker is approximately
11 mb in (a) and 320 kb in (b). In figure (a) markers M13- M19 refers to
tsc0331830, tsc0018712, tsc0593964, tsc0594280, tsc0042959, tsc0051325 and
tsc0505383, respectively. In figure (b) M20 and M21 refers to tsc0082737 and
tsc0109702, respectively.
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6.2 Paper III - A Multi-Marker Extension of the
GRE

One disadvantage of the GRE test presented in paper II [24] is that only infor-

mation from one marker is considered in the test. In paper III [23] we consid-

ered two ways to use information from multiple, m markers. We proposed a

GRE for testing association between disease status and m-marker haplotypes,

and a single marker GRE test which uses surrounding markers to infer the

inheritance vector. This approach naturally incorporates efficient resolution of

missing parental genotype information.

The likelihood in Equation (6.1.5) and the model in Equation (5.1.1) is modi-

fied to allow adjacent markers to give additional information to the distribution

of inheritance vectors. The test, which we refer to as the I-GRE, is a single

marker association test, although it uses multi-point information in the spec-

ification of correlation structure (linkage). For simplicity we consider nuclear

families with two offspring, genotyped for a set of m markers, which are close

enough to assume a zero recombination fraction between the markers.

The notation previously introduced in Section 5.1 needs to be adapted to the

multi-marker case. To distinguish single marker and multi-marker genotypes

we add a superscript to gi and Gi, containing the index numbers of the markers

considered. To simplify further we add the superscript all when all observable

markers are considered. The notation also needs to distinguish the unphased

genotype data from the phased genotype, or haplotype, data; the vector of

offspring haplotype pairs is denoted by Hi = {Hi1,Hi2, . . .HiJi
} and parental

haplotypes are denoted by hi = {hi1 × hi2}, where the cross sign indicates a

mating type. As with the genotypes, a superscript is added, when needed, to

index the markers considered in the haplotype.

6.2.1 Phase Uncertainty and the FAMHAP Algorithm

The denominator in Equation (6.1.5) is a sum over all genotypes G∗
i that could

have been transmitted from parent to offspring. It is simple to enumerate the

genotypes of G∗
i in the single-marker situation, but it is more complicated

when haplotypes are considered, since phase needs to be considered.

Uncertain phase in the offspring genotypes: Consider two markers and
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a nuclear family; parents with genotypes {AA.BB} and {Aa.bb}, and offspring

with genotypes {Aa.Bb} and {AA.Bb}. With help from the parental genotypes

(assuming no recombination between the two loci) we can infer the phase of

the first offspring genotype. The first offspring carries haplotypes AB and ab,

and the second one carries haplotypes AB and Ab. We can infer that the

offspring share one haplotype IBD; the AB haplotype from the first parent.

If we only consider the genotype from locus A (with alleles A and a), we can

only infer that offspring share 0 or 1 alleles IBD, with equal probability.

Uncertain phase in the parental genotypes, as well as the offspring

genotypes: Consider an example with three biallelic markers. If parents

have genotypes {AA.bb.Cc} and {AA.Bb.Cc}, and offspring have genotypes

{AA.Bb.Cc} and {AA.bb.Cc}, then the phase of the second offspring can be de-

termined unambiguously, i.e. {AbC/Abc} whereas the first offspring can carry

either {ABC/Abc} or {AbC/ABc}. The phase from the first parent can be in-

ferred unambiguously, {AbC/Abc}, whereas the genotype of the second parent

has two possible phases. That is, two possible mating types, or haplotype ex-

planations exist [8]; {AbC/Abc} × {ABC/Abc} or {AbC/Abc} × {ABc/AbC}.

Given either haplotype explanation, we can infer the phase of the first offspring

and that the offspring share no alleles IBD. If, on the other hand, we consider

only the alleles of the 2nd marker, then we can only infer that the offspring

share either one or none allele IBD.

Determining which genotypes (G∗
i ) to include in the summation:

Consider the scenario depicted in Figure 6.2.1 with two biallelic SNPs with

alleles A/a and B/b, respectively. Using the information on the child’s hap-

lotypes, both parents have phased genotype {AB/ab}. Given this knowledge,

the genotypes that could have been transmitted from the parents to an off-

spring, including the observed genotype, are {{AA.BB}, {Aa.Bb}, {aa.bb}}.

However, the transmission leading to offspring genotype {Aa.Bb} will not be

allowed in G∗
i ; the reason is that it would not have been possible to infer the

same haplotype phase of the parents and the child as from the observed data.

In summary, we allow only {ab/ab} as additional genotype in the summation in

the denominator of Equation (6.1.5), as it is the only offspring genotype that

leads to the same set of inferred phased genotypes as the actually observed

child genotype {AB/AB}. Generally, in the denominator of the likelihood in

Equation (6.1.5),

(i) we allow only such offspring genotypes that lead to the same set of possible,
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Figure 6.2.1: An example of the algorithm which determines the genotypes in
set G∗

i . See text for further description.

phased genotypes as the actually observed offspring genotypes.

(ii) we require that for each phased multi-marker genotype configuration of

the parents all possible un-phased offspring genotype configurations have

the same transmission probability.

G∗
i is thus the set of offspring genotypes that fulfill (i) and (ii), given the

parental genotypes. Note that our condition (i) is equivalent to steps 1 and

2, and that (ii) is equivalent to step 4, in the haplotype extension [22] of the

RL-algorithm [50], described in Section 3.1.3.

We have generalized the procedure described above to a systematic approach

that uses an extension of FAMHAP [8]. FAMHAP computes ML haplotype

frequency estimates and uses them to obtain, for each nuclear family, a list of

likelihood weighted haplotype explanations for the parents, together with the

possible transmission patterns to all of the offspring. In particular, these lists

contain the maximal information on IBD status that can be obtained from

the joint distribution of the m markers. The probabilities for the different

IBD values derived from the haplotype distribution can then be used in the
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calculation of the GRE test.

6.2.2 The I-GRE and H-GRE model

One aim of our work was to extend the single-marker GRE model to be able to

test for multi-marker, haplotype, association and to incorporate information

from multiple marker into the determination of inheritance patterns. Given

the phase of the parental genotypes and the inheritance vector, we may rewrite

model in Equation (6.1.1) as,

log(−log(qij)) = log(a
{K1}
ij · i) + β0 + X

{K2}
ij · β1 , (6.2.1)

where a
{K1}
ij now refers to a possibly multi-point patterns of inheritance, for

the {K1} set of markers, derived using the FAMHAP[8] algorithm described

in Section 6.2.1. That is to say, we use the information from all markers in the

inference about IBD sharing. X
{K2}
ij refers to either the single-marker genotype

score or a haplotype score for the {K2} set of markers.

In I-GRE, all (or a subset of all) markers contribute to the information in the

IBD sharing, a
{K1}
ij = a

{all}
ij , whereas the fixed effect is specified in terms of a

single-marker allelic count X
{K2}
ij = X(G

{k}
ij ), where k represents the marker

being tested (k = 1, . . . ,m). In the H-GRE, in addition to using all markers in

the specification of the IBD sharing, fixed effects are specified for phased multi-

marker haplotypes, X
{K2}
ij = X(H

{all}
ij ). For the haplotype test we compare

the haplotype of interest against all other haplotypes, i.e. we let X(Hij) count

the number of occurrences of a specific haplotype, The FBAT haplotype test,

the HBAT, also tests one haplotype versus all other haplotypes. Comparisons

of H-GRE versus HBAT are therefore meaningful.

6.2.3 The Multi-Marker Likelihood and Score

Consider the prospective probability of the trait, given the observed m marker

genotypes, P (Yi = yi|Gi, gi). For the observed genotypes, given haplotype fre-

quency estimates from FAMHAP [8], we can infer the possible sets of parental

haplotype configurations and their corresponding probabilities. Let h denote a

specific parental haplotype configuration and let h∗
i denote the set of possible

parental haplotype configurations, given the observed, m marker genotypes.
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For simplicity of exposition we drop the superscripts identifying the markers

tested. We write,

P (Yi = yi|Gi, gi) =

h∈h∗

i

P (Yi = yi|Gi, gi,h) · P (h|Gi, gi)

=

h∈h∗

i

P (h|Gi, gi) ·




v∈v∗
i

P (Yi = yi|Gi,v) · P (v|Gi,h)


 ,

and

∂

∂β1
P (Yi = yi|Gi, gi)

=

h∈h∗

i

P (h|Gi, gi) ·


v∈vi

∂

∂β1
(P (Yi = yi|Gi,v)) · P (v|Gi,h)


,

were P (Yi = yi|Gi,v) =


T∈Ψ c
yij

T P (Yij = 1, ∀j ∈ T |Gi,vi), with P (Yij =

1, ∀j ∈ T |Gi,vi) derived from the model in Equation (6.2.1), leading to the

same form as the probability in Equation (6.1.2), the only difference being

the form of the genotype score (Xij in Equation (6.1.2)). We continue by

formulating a score test in the same way as for the original GRE leading to a

1 degree of freedom chi-squared test.

6.2.4 Results

Simulated data

We generated data containing one DS locus and three biallelic marker loci.

Let pD denote the frequency of the DS allele D and let f0, f1 and f2 denote

the probabilities (the penetrance) of being affected when carrying 0, 1 or 2

D alleles. In the data generation we have varied pD = {0.1, 0.2, 0.3} and we

have considered two penetrance scenarios; a co-dominant disease model with

f0 = 0.004, f1 = 0.008 and f2 = 0.016, and a dominant disease model with

f0 = 0.004 and f1 = f2 = 0.008. Families with one affected and one unaffected

sibling were ascertained. The DS locus was treated as unobserved and we

generated three biallelic markers, all with alleles denoted 1 and 2, completely

linked to the DS locus. We have generated data sets of nuclear families under

a single-marker model (I) and under a haplotype model (II):
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(I) Single-Marker Model: Marker 2 was set to have the strongest LD with the

DS locus. We set the frequency of allele 1 (at Marker 2) equal to pD and

considered r2 values of {0, 0.01, 0.05, 0.27} between Marker 2 and the DS

locus. The distribution of markers 1 and 3 was set up so that the r2

between the markers and the DS locus is zero, which ensures that the

markers are maximally informative for the inheritance vectors.

(II) Haplotype Model: Haplotype 111 was set to have an increased risk of dis-

ease, mimicking a cis-acting effect. Only four other alleles were allowed;

112, 121 and 211 (the 111 haplotypes). We define r2 in terms of the

dichotomized distribution of haplotype 111 versus 111 against the alleles

at the DS locus, and let r2 take the same values as under model (I). This

haplotype model is chosen to mimic the situation of a haplotype block

that has not been subject to historical recombination events.

We simulated (100 or 1000) data sets and calculate the proportion exceeding

the nominal 0.05 percentile of the chi-squared distribution (in this case 3.84).

We let this proportion estimate power when the data has been simulated under

r2 > 0, and type-I-error when r2 = 0.

We use the I-GRE to analyze the data simulated under model (I) and compare

the power and Type-I-error of the I-GRE with the original GRE, and with the

FBAT. The FBAT analysis was performed using an optimal offset of 0.5 and an

empirical variance estimator [31]. Results from simulation of the co-dominant

disease model can be found in Table 6.2.1 and results from for the dominant

disease model can be found in Table 6.2.2. As in the similar simulation study

in paper I (Figures 6.1.3 and 6.1.4), the I-GRE outperforms FBAT for all

scenarios r2 > 0. The increase is found to be even more pronounced, at

pD = 0.1 and r2 = 0.05, where the power of the GRE compared to the FBAT

is doubled (Table 6.2.1). We find, however, no consistent evidence of I-GRE

being an improvement over the original GRE. We failed to see an improvement

of power of the I-GRE compared to the GRE, even after increasing the number

of replicates to 1000 (marked by ∗ in Table 6.2.1). See Table 6.2.1 for more

results. The results in Table 6.2.2 suggest that the power of the I-GRE is

well maintained even under misspecification of the genotype score X(·). This

is also supported by the results for the single-marker GRE, see Figure 6.1.4.

However, the type-I-errors of the I-GRE under the dominant model, presented

in Table 6.2.2, also possibly suggest that the type-I-error of the I-GRE (and

the GRE) is too small.
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pD r2 FBAT GRE I-GRE

0.1 0 0.061∗ 0.049∗ 0.044∗

0.1 0.01 0.07 0.09 0.09
0.1 0.05 0.17 0.36 0.34
0.1 0.27 0.833∗ 0.888∗ 0.882∗

0.2 0 0.065∗ 0.045∗ 0.040
0.2 0.01 0.125∗ 0.145∗ 0.156∗

0.2 0.05 0.44 0.66 0.63
0.2 0.27 0.963∗ 0.968∗ 0.964∗

0.3 0 0.055∗ 0.057∗ 0.038∗

0.3 0.01 0.11 0.17 0.16
0.3 0.05 0.42 0.67 0.71
0.3 0.27 0.98 0.99 0.99

Table 6.2.1: Empirical power and type-I-error estimates for data sim-
ulated under model I. The penetrance values are 0.004/0.0/0.016 for 0/1/2
copies of the DS locus allele. (∗) indicates that 1000 replicates have been used,
all other simulation results based on 100 replicates.

pD r2 FBAT GRE I-GRE

0.1 0 0.050∗ 0.051∗ 0.038∗

0.1 0.05 0.20 0.33 0.34

0.2 0 0.039∗ 0.032∗ 0.029∗

0.2 0.05 0.24 0.61 0.65

0.3 0. 0.048∗ 0.041∗ 0.041∗

0.3 0.05 0.18 0.71 0.70

Table 6.2.2: Empirical power and type-I-error estimates for data simu-
lated under model I. The penetrance values are 0.004/0.008/0.008 for 0/1/2
copies of the DS locus allele. (∗) indicates that 1000 replicates have been used,
all other simulation results based on 100 replicates.

Only the co-dominant disease model was used in the simulation under the

haplotype model (II). We analyzed the data with the H-GRE and the HBAT

using an optimal offset of 0.5 and an empirical variance estimator. The H-GRE
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pD r2 HBAT H-GRE

0.1 0 0.04 0.04
0.1 0.01 0.08 0.14
0.1 0.05 0.36 0.41
0.1 0.27 0.84 0.98

0.2 0 0.05 0.02
0.2 0.01 0.09 0.13
0.2 0.05 0.32 0.62
0.2 0.27 0.98 0.98

0.3 0 0.02 0.04
0.3 0.01 0.11 0.19
0.3 0.05 0.40 0.61
0.3 0.27 0.96 0.99

Table 6.2.3: Empirical power and type-I-error estimates for data sim-
ulated under model II. All simulation results based on 100 replicates.

is consistently more powerful than the HBAT; up to two times as powerful

(pD = 0.2 and r2 = 0.05). See Table 6.2.3 for more results.

COGA data

We reanalyzed the GAW14 COGA data analyzed in paper II [24] using the I-

GRE, this time including families with missing parental genotypes. The same

markers were analyzed as in the original analysis, and one marker at each side

of the tested marker was used to increase information about allele sharing and

missing parental genotypes. We chose not to test the markers at the end of

the regions, since they have only one adjacent marker. We also excluded two

markers which were too far apart to assume zero recombination; an assumption

in the formulation of the I-GRE is that no recombination occurs between the

markers included in the analysis. This assumption is also made in the HBAT

[22] test.

In Zhong & Zhang [68] association to age-at-onset of ALDX1 and ALDX2 is

tested using the Zhong & Li score test [67] presented in Section 3.1.3. We were

not able to replicate any of the results from Zhong & Zhang [68]; see Figure
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6.2.2. A plausible reason for this inconsistency is the difference in choice of

phenotype in our analysis and in the analysis of Zhong & Zhang [68].

In Zhu et al. [69] FBAT was used to test the association between a di-

chotomized ALDX1 and markers in large families. We were able to replicate

the major finding in Zhu et al. [69]; tsc0593964 is associated with ALDX1 in

both the FBAT (χ2 = 9.56, p-value = 0.0020) and in the I-GRE (χ2 = 9.74,

p-value = 0.0018) test, compared with the p-value of 0.00328 in Zhu et al.

[69]. The GRE test in Jonasdottir et al. [24] found the neighboring marker

tsc0594280 significantly associated, not tsc0593964; see Figure 6.1.6. The I-

GRE test of marker tsc0229629, not tested by Zhu et al. [69], is also highly

significant (χ2 = 10.06 p-value = 0.0015). This result was not duplicated by

FBAT. See Figure 6.2.3.
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(a) Zhong and Zhang − ALDX1
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(b) Zhong and Zhang − ALDX2
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Figure 6.2.2: Results from analysis of Zhong and Zhang [68] data
using the I-GRE. Each point represents a test of association between a
specific marker and ALDX1/2. The full red line represents the GRE score
and the dotted blue line represents the FBAT score. The straight horizontal
line corresponds to the nominal 5 per cent chi-squared quantile (=3.84). The
distance from the left most marker to the right most marker is approximately
13 mb. In figure (a) markers, M1-M5 refers to rs889826, rs1559534, rs273954,
rs727714 and rs2056553, respectively. In figure (b) markers M6-M12 refers to
rs1559534, rs2059367, rs273954, rs13068, rs768055, rs2056553 and rs700273,
respectively.
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(a) Zhu − first region
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(b) Zhu − second region
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Figure 6.2.3: Results from analysis of Zhu et al. [69] data using the I-
GRE. Each point represents a test of association between a specific marker and
the ALDX1 measure of alcoholism. The full red line represents the GRE score
and the dotted blue line represents the FBAT score. The straight horizontal
line corresponds to the nominal 5 per cent chi-squared quantile (=3.84). The
distance from the left most marker to the right most marker is approximately
11 mb in (a) and 320 kb in (b). In figure (a) markers M13- M19 refers to
tsc0331830, tsc0018712, tsc0593964, tsc0594280, tsc0042959, tsc0051325 and
tsc0505383, respectively. In figure (b) M20 and M21 refers to tsc0082737 and
tsc0109702, respectively.
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6.3 Paper IV - A Bivariate GRE Test

Paper IV is concerned with correlated traits. One example of correlated traits

is blond hair and blue eyes. A somewhat less trivial example is depression

and social phobia; depression is more common among individuals with social

phobia than among those without social phobia [54, 51, 39].

In Jonasdottir et al. [25] we use the term co-morbidity to describe correlated

traits sharing genetic and/or environmental pathways. Consider two diseases

with a (partial) common genetic pathway. In Figure 6.3.1 (a) one DS locus has

a direct causal effect on both diseases. In Figure 6.3.1 (b) the two diseases are

causally affected by two different DS loci in close proximity to each other in

terms of Linkage Disequilibrium. Given this model, the degree of correlation

will depend on the allele frequencies of the DS loci, penetrance values and the

degree of linkage and LD between the DS loci [25].

Three reasons can be identified for using a multivariate model instead of sep-

arate univariate models for each disease,

1. If the diseases share genetic background, then multivariate association

testing [32] has increased power compared to the corresponding univari-

ate tests

2. when ascertainment is on disease, univariate tests may not be valid in

the presence of co-morbidity [51]

3. if a marker is associated and linked with multiple diseases, multivariate

modeling might help in understanding functionality.

In Jonasdottir et al. [25] we focus on the scenario in Figure 6.3.1 (a) and

extend the GRE to a test for association between two correlated traits and

one marker. We will briefly address the scenario in Figure 6.3.1 (b) in the

discussion.

6.3.1 The Bivariate extension of the GRE

In extension to the notation introduced in Section 5.1 we need to introduce

notation referring to two traits. We denote disease status for offspring j in
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Figure 6.3.1: Two scenarios of genetically co-morbid diseases: In sce-
nario (a) one DS locus, marker D, affects both diseases, Y1 and Y2. In scenario
(b) separate DS loci, D1 and D2, affect the diseases, Y1 and Y2. Scenario (a)
is a special case of scenario (b), where the distance between the two DS loci,
D1 and D2, is zero. The marker, M is the marker tested and is assumed to be
in LD with the DS loci.

family i by Yijk, where the index k (= 1 or 2) is used to refer to the two

diseases.

In Jonasdottir et al. [24] and Jonasdottir et al. [23] it was noted that ex-

ternal data was needed to estimate the baseline parameter β0. This problem

may become even more complicated in a two disease scenario. We have there-

fore chosen to focus on the prospective scenario, with analysis based on the

prospective likelihood. In papers I-III the shared environmental effect, si , is

removed. In paper IV we deal with both random transmission effects and

shared environmental random effects.

The tests in papers II and III were based on the retrospective likelihood where

population stratification was accounted for by conditioning the probability of

offspring marker genotypes on parental marker genotypes. Baksh et al. [5]

show that it is possible to control for population stratification in the prospec-

tive setting by allowing for mating type specific baseline parameters. In the

biallelic case with genotypes denoted 0, 1, 2, there are 6 mating types; 0x0,

0x1, 0x2, 1x1, 1x2 and 2x2. Let β
{g}
0k denote mating type specific baseline

parameters, for disease k and mating type g. In the specific bivariate, biallelic,

setting considered here, there are 12 baseline parameters (6 per disease). We

write,
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log (− log qijk) = log(aij · i + si ) + β
{gi}
0k + X(Gij)β1k , (6.3.1)

where qijk = P (Yijk = 1|Gij, gi,vi, i). Given the mating-types, the marker

genotypes and the random effects, the offspring trait values are independent.

Following the line of derivation as in paper I-III we obtain,

P (Yi11 = yi11, Yi12 = yi12, Yi21 = yi21, Yi22 = yi22|Gi,vi) =


{T1,T2}∈Ψ

cyi

T1,T2
·


δ

δ +
2

k=1


j∈Tk

exp(β
{gi}
0k + β1kXj)

η

·


λ

λ +
2

k=1


j∈Tk

exp(β
{gi}
0k + β1kXj)

πα

·
2

k=1


j∈Tk


λ

λ + exp(β
{gi}
0k + β1kXj)

(1−π)α

, (6.3.2)

where T1 and T2 are the same sets of indices T ∈ ψ (one per disease) as de-

scribed in Section 2.2. The constants can be obtained by taking the croenecker

product of two matrices, B (Section 2.2). The constants, for the sib pair case,

are presented in Table 6.3.1. The first row of Equation (6.3.2) corresponds to

the family specific shared effect and rows 2 and 3 correspond to the transmis-

sion specific effects, where π is proportion of alleles shared IBD; 0, 0.5 or 1 in

the present sib pair case.

We wish to test parameters β11 and β12. In this context δ, η, λ, α and the

baseline parameters are nuisance parameters and we denote them with Φ. The

prospective likelihood is written,

L(β11, β12, Φ̂) =
n
i=1

P (Yi1 = yi1,Yi2 = yi2|Gi, gi) .

We test the null hypothesis that both β11 and β12 are zero, versus that at least

one is non-zero, by using a LRT. Two null hypotheses are considered; the type-

I-hypothesis no association or linkage and the type-II-hypothesis association in

the presence of linkage. The alternative hypothesis is association and linkage.

Under the null, we estimate values of the nuisance parameters, Φ̂, assuming

that β11 and β12 are zero. Under the alternative, we estimate β11 and β12, as

well as the nuisance parameters. The LRT is written,
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Affection status Constants c
yi
T1,T2

for Indexes Ψ: T1 row 1; T2, row 2

. . . . 1 1 1 1 2 2 2 2 1,2 1,2 1,2 1,2
Sib 1 Sib 2 . 1 2 1,2 . 1 2 1,2 . 1 2 1,2 . 1 2 1,2

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1

0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 1

0 1 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1

1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1

1 0 0 1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 1

1 0 1 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 1

1 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 -1 1 1 -1

0 0 1 1 0 0 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1

0 0 0 1 0 0 1 -1 0 0 -1 1 0 0 -1 1 0 0 1 -1

0 0 1 0 0 1 0 -1 0 -1 0 1 0 -1 0 1 0 1 0 -1

0 0 0 0 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

Table 6.3.1: The constants and the indexes needed in the summation
in probability of trait, given the observed offspring and parental
genotypes.

LRT = −2 ·


logL(0, 0, Φ̂)− logL(β̂11, β̂12, Φ̂)

,

which, under the null, is a chi-squared distributed with 2 degrees of freedom.

6.3.2 Properties of the bivariate GRE

We study the properties of the test under two scenarios: (i) population strat-

ification and, (ii) linkage.

(1) Accounting for population stratification:

For the purpose of studying the properties of the GRE under population

stratification we simplify the model in Equation (6.3.1) and remove the

transmission effects (i) from the model. The test will thus be a joint

test of association and linkage. We set the shape and scale parameters

of the shared random effect equal, δ = η, so as to set the mean of log(∗i )

to zero. We have the following simplified form from Equation (6.3.2),
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P (Yi1 = yi1,Yi2 = yi2|Gi, gi)

=


{T1,T2}∈Ψ

cyi

T1,T2
·


δ

δ +
2

k=1


j∈Tk

exp(β
{gi}
0k + β1kXj)

δ

. (6.3.3)

(2) Accounting for linkage:

To study the properties of the bivariate GRE as a test of association in

the presence of linkage we again simplify the model in Equation (6.3.1)

by removing the shared environmental effect si . We set λ = α/2, so as

to set the mean of log(aij · i) to zero.

P (Yi1 = yi1,Yi2 = yi2|Gi, gi)

=


vi∈v∗
i





{T1,T2}∈Ψ

cyi

T1,T2
·


λ

λ +
2

k=1


j∈Tk

exp(β
{gi}
0k + β1kXj)

πλ

·

2
k=1


j∈Tk


λ

λ +


j∈Tk
exp(β

{gi}
0k + β1kXj)

(1−π)λ


P (vi|Gi, gi) . (6.3.4)

Note that the GRE without mating-type specific baselines is obtained by as-

suming that, for disease k, all β
{g}
0k are equal, thus only requiring estimation of

2 baseline parameters. We evaluate the test under both scenarios, including

and excluding the mating type specific baseline parameters. In summary, we

use four types of test:

(A) GRE for testing association and linkage (Equation (6.3.3)) with mating-

type specific baseline parameters.

(B) GRE for testing association and linkage (Equation (6.3.3)) without mating-

type specific baseline parameters.

(C) GRE for testing APL (Equation (6.3.4)) with mating-type specific base-

line parameters.

(D) GRE for testing APL (Equation (6.3.4)) without mating-type specific

baseline parameters.
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6.3.3 Results

Population stratification and power

Population stratification: We simulated two population subgroups, assum-

ing that they have different DS allele frequencies and different penetrance val-

ues. The DS allele frequency in population 1 and 2 are denoted by p1 and p2,

respectively. We set p2 = 1−p1 and let p1 take values 0.9, 0.8, 0.7, 0.6 and 0.5.

In population 2 we set the prevalence of the diseases to 1 minus the prevalences

in population 1. Note that although we impose a severe difference between the

prevalences of disease, the degree of population stratification is determined by

the difference in allele frequencies between the populations (p1 and p2). That

is, we simulate scenarios going from severe population stratification (p1 = 0.9,

p2 = 0.1) to no population stratification (p1 = 0.5, p2 = 0.5).

No population stratification: The DS locus is assumed bi-allelic, with equal

frequencies of the alleles (= 0.5). The DS locus is set to act additively on the

probability of disease; the penetrance of disease 1 is 0.04 · (1, 1 + γ, 1 + 2γ) for

0, 1 and 2 a alleles, where γ take values 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1. The

penetrance of disease 2 is 0.08 · (1, 1 + γ, 1 + 2γ), where the same values of γ

are used.

The simulation scenarios are repeated 100 times and for or each replicated

data set, we calculate the (A) and (B) GRE tests. The rejection rates (the

proportion exceeding the nominal chi-squared quantile with 2 degrees of free-

dom, 5.99) recorded for each scenario. In null scenarios, the rejection rate is

a measure of validity (type-I-error), and in alternative scenarios, the rejection

rate is a measure of power.

With the mating type specific baseline effects the GRE remains valid through

different levels of population stratification, ranging from mild to severe; see

Table 6.3.2. Omitting the mating type specific baseline parameters leads to

an increasing level of bias as the level of stratification increases, in terms of

p1 versus p2 (Table 6.3.2). However, accounting for population stratification

where there is none decreases the power of the test and the difference in power

is consistent over all levels of association; see Table 6.3.3. The difference in

power, between the test without mating-type specific baselines and the test

with mating-type specific baselines, is at most twofold; Table 6.3.3.
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Population stratification, under H0:

p1/p2 With Without

0.5/0.5 0.05 0.02
0.6/0.4 0.04 0.33
0.7/0.3 0.02 0.73
0.8/0.2 0.03 0.93
0.9/0.1 0.03 1.00

Table 6.3.2: Validity of the GRE association test ((A) and (B)) under
population stratification: GRE results based on 100 replicates, with (see
(A) in main text) and without (see (B) in main text) mating type specific
baseline effects. p1 and p2 refers to the A allele frequencies in population 1
and 2, respectively. The a allele frequency is 1 minus the A allele frequency. In
population 1, the penetrance is 0.04 for disease 1 and 0.08 for disease 2. The
penetrance in population 2 is 1 minus the penetrance in population 1. The
disease and markers are not associated.

No population stratification, under H1:

γ With Without

0 0.04 0.03
0.1 0.11 0.20
0.2 0.36 0.50
0.3 0.49 0.77
0.4 0.65 0.96
0.5 0.85 0.99
1.0 1.00 1.00

Table 6.3.3: Power of the GRE association test ((A) and (B)): GRE
results based on 100 replicates, with (see (A) in main text) and without (see
(B) in main text) mating type specific baseline effects. p1 and p2 refers to the
A allele frequencies in population 1 and 2, respectively. The a allele frequency
is 1 minus the A allele frequency. The penetrance for disease 1 is 0.04/(0.04 +
γ)/(0.04+2γ) for 0/1/2 A alleles. The penetrance for disease 2 is 0.08/(0.08+
γ)/(0.08 + 2γ) for 0/1/2 A alleles.
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Figure 6.3.2: The GAW15 simulated disease scenario. The gene (locus
C) affects both anti-CCP and the hazard of Rheumatoid Arthritis (RA), which
in turn affects the age-at-onset of RA. The ascertainment is then on RA status.

Testing association in the presence of linkage

To evaluate the GRE APL test (C) and (D) we analyze data simulated to

mimic a Rheumatoid Arthritis (RA) study, supplied to participants at the

15th Genetic Association Workshop (GAW15) [43]. We focus on one of the

simulated DS loci which was simulated to have a strong effect on the risk of

RA; locus C on chromosome 6. Locus C is was simulated to be in complete LD

(D’ = 1) with another simulated DS locus, the HLA-DRB1 locus. HLA-DRB1

has a direct effect on anti-CCP (a diagnostic marker for RA). Thus, locus C

is a common genetic marker for both RA risk and anti-CCP level.

A complicating feature of the data is that only sib pairs, where both are affected

with RA, are ascertained. We have defined age-at-onset for RA and anti-CCP

as the two traits of interest. The simulation model is graphically represented

in Figure 6.3.2. Since families are ascertained on trait, estimation of genetic

effects based on fitting the prospective GRE will be biased, although testing

based on the GRE model will be valid [51].

Age-at-onset of RA and anti-CCP are observed to be correlated within indi-

viduals (r = −0.15, CI: [-0.18,-0.11]). We investigate the power of the bivari-

ate GRE test using this example of co-morbidity. We dichotomize anti-CCP

(low/high), based on a cut-off of 150, and age-at-onset (young/old) based on a

cut-off at age 30. In the simulated data 72.5 % of the subjects are older than

30 and 49.4 % have an anti-CCP level higher than 150. A published estimate

64



of the mean anti-CCP level in the population is 20 [18].

Each of the 100 simulated GAW15 replicates had 1500 sib pairs. We selected

the first 400 from each replicate for analysis. We base our analysis on six

marker loci (SNPs 150-155) from the linkage SNP data [43]. Locus C is located

in the middle of this region, between SNPs 152 and 153. The GRE APL tests

(C) and (D) were carried out for each replicate and the rejection rates on the

nominal 5.99 level (chi-squared with 2 degrees of freedom) were recorded. We

also calculate the level of LD (in terms of r2) between the markers tested and

markers 152 and 153, which flank locus.

The distance between the studied markers and locus C is small, which means

that the region is tightly linked. Locus 152 and locus 153 are strongly as-

sociated with both age-at-onset and anti-CCP, see Table 6.3.4. From Table

6.3.4 we see that the power is high for the markers close to the true DS locus;

markers 152 to 155. The other markers (150 and 151) are far from locus C

and are not in LD with either marker 152 or marker 153 (all r2 values are less

than 0.05). The GRE results for these markers is close to the nominal 0.05

level, as should be expected. See Table 6.3.4 for more results.

We have also computed bivariate FBAT [35] scores for markers 150-155, using

an optimal offset and a robust variance estimator. These results show that

the power of the GRE score is higher than the power of the FBAT score on

the markers close to to the DS locus (markers 152-155). It has however been

noted that a comparison between the GRE LRT (based on the prospective

likelihood) and the retrospective FBAT, is unfair. The results are therefor not

presented here or in the paper.
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r2 Distance GRE
SNP 152 153 to C With Without

155 0.010 0.100 287.555 0.62 0.63
154 0.380 0.588 366.290 1.00 1.00
153 0.222 - 14.817 1.00 1.00
152 - 0.222 -37.499 1.00 0.99
151 0.004 0.001 -948.504 0.10 0.06
150 0.020 0.003 -1390.619 0.06 0.06

Table 6.3.4: Power of the GRE APL test ((C) and (D)): GRE results,
with and without mating-type specific baselines. In this table we present
results from an empirical power study, based on data from 100 simulated data
sets. For each simulated data set, we use the GRE APL bivariate test (anti-
CCP and age-at-onset of RA) and marker SNPs 155 to SNP 150. A disease
susceptibility locus (C) is located between SNPs 152 and 153. Columns 2 and
3 present the pair wise LD, as measured by the squared correlation coefficient
(r2), between each SNP and SNP 152 and153, respectively. Column 4 lists the
distances, in kilo base-pairs (kb), to locus C.
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Chapter 7

Discussion

7.1 On Some Properties of the GRE

In this thesis we have presented statistical methods for testing genetic associ-

ation in family-based studies. We have focused on testing association in the

presence of linkage, but have also used an adaption of the GRE to test asso-

ciation and linkage jointly (paper IV). Both prospective (paper I and IV) and

retrospective scenarios (paper II and III) have been considered and we have

dealt with multiple markers (paper III), missing parental genotypes (paper

III) and bivariate, comorbid, diseases (paper IV). We have used two differ-

ent methods to deal with population stratification in the context of the GRE

model, for the prospective and the retrospective study setting, respectively.

We have shown that the method is powerful and that it is reasonably valid;

the empirical type I error of the GRE tends to be conservative (i.e. lower than

the nominal level) for data simulated under the null hypothesis of no associa-

tion; see e.g. Table 6.2.1. The GRE was, however, shown to be substantially

more powerful than the FBAT. We have also demonstrated that population

stratification can be accounted for properly in the prospective study setting,

although (as expected) at the cost of a loss in power; see e.g Table 6.3.3.

Although not shown here, the GRE should be able to handle missing off-

spring genotypes when multiple markers are considered. An assumption un-

derlying the I-GRE and the H-GRE is that the markers are tightly linked

so that no recombination occurs between the markers. Using the surround-

ing markers it should be possible to infer the set of possible missing offspring

genotypes. Given this information we could either impute the mean genotype
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score, E(X(Gij)), or add a summation over possible offspring configurations.

How this affects the power compared to removing the offspring with missing

data from the data analyzed remains an open question.

In paper IV, where we considered a GRE to test genetic comorbidity, we fo-

cused on a scenario where one marker affects two diseases; see Figure 6.3.1

(a). Another plausible scenario when considering two diseases with a (par-

tially) common genetic background is that two markers, in close proximity

of each other, affects the diseases separately as depicted in Figure 6.3.1 (b).

The GRE could be extended to include disease specific, correlated, transmis-

sion effects to account for the effect of linked DS loci. The bivariate gamma

distribution could be considered for this purpose.

The GRE in the present implementation in the free statistical software R [48]

is, however, very computer intensive. An implementation in another software

may make the implementation of the GRE quicker. In the present form, FBAT

wins by far in terms of computational run time.

7.2 Family-based versus population-based associ-
ation testing/estimation

There are several pros and cons of family-based association testing/estimation,

compared to population based association testing/estimation. Several authors

have discussed the future role of family-based association testing/estimation;

see e.g. Laird & Lange [30], Clerget-Darpoux & Elston [14] and Bourgain et

al. [9].

Pros :

• Family-based association tests offers protection against population strat-

ification; as was described in e.g. paper III and IV.

• If a marker locus is found associated in a family-based study that means

that the marker locus is both linked and in LD with the DS locus.

• Family-based designs offer informative imputation of missing genotypes

by use of existing data and information on family structures, as was

shown in paper III.
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• Family-based studies offer possibilities to separate genetic and environ-

mental effect on disease, for example in twin-studies [45].

• It is possible to detect parent-of-origin effects in family-based studies,

see e.g. Becker et al. [7].

Cons :

• In studies of late onset diseases it may be difficult to collect parental

genotype information.

• The power of family-based association testing is lower than that of popu-

lation -based association testing, in terms of power per genotyped indi-

vidual, and is typically more time consuming.

• Many population-based methods for testing association, such a the logis-

tic model for case-control data, are readily available in standard statis-

tical software. Family-based association tests often require home made

software.

• Family-based association tests are often more computer intensive than

population-based association tests. This is often a minor issue, however.

7.3 Some other important contributions to the
field

The arrival of genome-wide association studies, in which hundreds of thousands

of SNPs are typed in study subjects has lead to the discovery of new DS loci.

Replication of genetic association are difficult, but major breakthroughs in

2007 have confirmed the common disease common variant hypothesis [47].

Simple multiplicity corrections, such as the Bonferroni correction, suffer from

assuming independence between tests; tests based on neighboring markers are

not independent. Two stage strategies for selecting the most promising loci

are one way in which the number of tested markers can be reduced, thereby

lowering the number of tests that need to be taken into account in the overall

p-value. One of the more recent such developments is the two independent

stage strategy (using the same data) by Van Steen et al. [63]. Since the steps
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are independent one only needs to correct the p-value for the number of steps

in the second step.

Finally, we want to mention some family-based association tests not discussed

in the Background of the thesis:

Martin et al. [40] propose a fully parametric model which extends the retro-

spective probability of offspring marker genotypes in terms of identity-

by-descent (IBD) probabilities.

Millstein et al. [44] present a likelihood upon which they base a test for both

association and linkage using fixed effects.

Wheeler et al. [65] propose a prospective based approach; the Quantitative

’Conditioning on Parental Genotype’ QCPG; approach. for continuous

traits with parameters accounting for non-Mendelism (i.e. non-random

transmission) and population stratification.

Li et al. [37] present a test which, like the I-GRE, uses neighboring markers

to infer linkage, but it is not based on a formulation which conditions on

genotypes.

Tzeng & Zhang [62] have proposed a general framework for testing haplotype

effects starting from a VCM model for quantitative traits and show that

it can be generalized to other types of trait.
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