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ABSTRACT 
This thesis introduces repetitive artificial grammar learning as a paradigm in the investigation 

of sequential implicit learning, in particular as a model for language acquisition and 

processing. Implicit learning of sequential structure captures an essential cognitive processing 

capacity of interest from a larger cognitive neuroscience perspective. We investigate in this 

thesis the underlying neural processing architecture for implicit learning/acquisition to 

acquire and process non-motor sequences, an implicit non-motor procedural learning ability 

present in the human cognitive system. In doing this, we validate and explore the repeated 

artificial grammar learning paradigm as a laboratory model to investigate the acquisition and 

processing of structural aspects of language, e.g. (morpho-) syntax processing, to further our 

understanding of the specific neural processing architecture subserving the syntax processing 

ability of the language faculty. A theoretical background on sequential procedural learning 

and formal grammars in cognitive processing is presented together with a general outline of 

the neuronal implementation of the cognitive functions involved. We suggest a lexical view 

on the processing and acquisition of artificial grammars to be beneficial to understand the 

nature and representation of the acquired knowledge. From this perspective we suggest that 

formal grammar acquisition and processing of the (regular) grammar type commonly studies 

in artificial grammar learning can be used as a model to investigate the neuronal 

infrastructure supporting language acquisition and processing, including to characterize the 

neuronal infrastructure supporting syntax processing and unification (cf. e.g., Hagoort, 2003; 

Jackendoff, 1997; Jackendoff, 2007; Kaan & Swaab, 2002; Shieber, 1986; Vosse & Kempen, 

2000). 

 

In study 1 we describe the neuronal implementation using a setup based on the seminal study 

on implicit learning by Reber (1967), and report an overlap in the neural activation on 

artificial syntax violation and similar natural syntax violation. In study 2 we replicate this 

finding using a more elaborated model with repeated acquisition sessions to simulate a 

prolonged acquisition period, and using a sequential presentation forcing the cognitive 

processing into a sequential processing mode. A neuronal activation pattern is reported which 

suggests that frontostriatal circuits are at play during artificial grammar classification, 

specifically the left inferior frontal region Broddmann’s area 44/45 and the head of the 

caudate nucleus. In study 3 we repeate the behaviour performance, introducing a preference 

classification instruction to further the cognitive system into an implicit learning mode, and 

report a clear and increasing preference for grammatical structure over repeated sessions. In 

study 4 we investigated the basal ganglia component in Huntington patients with specific 

caudate head lesions. While the patients did not show any deficit in their behaviour 



 

 

performance, structures in the basal ganglia including the caudate head showed abnormal 

activation patterns compared to their matched normal controls. Also, a cooperative activation 

between basal ganglia and hippocampus typically involved in declarative memory was found. 

We interpret this to reflect attempts of the cognitive system to compensate the damaged 

procedural processing with declarative knowledge processing. In summary, in the studies of 

this thesis we have gained an initial characterization of the neural infrastructure subserving 

artificial grammar processing. We have done so by characterising the end-state of the 

learning process as well as characterizing the learning curves reflecting the outcome of 

acquisition at different time points. This thesis reports findings supporting the view that the 

extended artificial grammar learning model is useful to capture structural aspects in language 

acquisition processing in the laboratory. 
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CHAPTER 0 —  PREFACE 
 

An expert is a man who has made all the mistakes which can be made, in a 

narrow field. 

Niels  Bohr 

 

The definition of insanity is continuing to do the same thing and expecting a 

different result. 

John Arquil la,  on the way America f ights terrorism 

 

eehm - well, alltfoer maanga idioter under alla omstaendigheter - aeven om det 

staat taemligen klart foer oss andra att vi inte foeds som oskrivna blad aer detta 

tydligen ingen garanti foer att inte bli ett. 

Anonymous,  2007 

 

Vad menar vi när vi säger att vi tänker?  För att kunna uttrycka eller skriva ner en fråga som 

denna utnyttjar vi vårt språks möjlighet att formulera och kommunicera ett meningsbärande 

budskap. Vi tar till oss budskapet när vi hör eller läser frågan, förutsatt att vi delar samma 

språk. Vi kan skapa mentala bilder för att visualisera for oss själva hur vi upplever det när vi 

tänker en tanke. Vi förstår intuitivt, eller kanske bara tror oss förstå, hur känslan av att tänka 

upplevs för oss. Vi kopplar upp oss till diverse analysverktyg som medan vi utför den 

mentala processen att tänka mäter effekten av hjärnans informationsprocesser i form av t ex 

syrekonsumtion i olika delar av hjärnan, eller förändringar över tid i elektricitetsfältet som 

hjärnan genererar utanför skallbenet. Dock ger varken den subjektiva upplevelsen vi bär när 

vi introspekterar vår tanke eller den objektivt mätbara analysen av densamma ett 

tillfredställande svar på frågan. Kankse är ett fullständigt tillfredställande svar orimligt. 

Kanske är det enda som kvarstår vår förmåga att uttrycka frågan. 

 

Strukturer för tänkande 

Genom att analysera en funktion som understödjer flera mentala kapaciteter kan en 

underliggande gemensam neuronal arkitektur studeras. Inlärning av konstgjord grammatik (så 

kallad artificial grammar learning) har kraft att nå detta mål. Studiet av artificiell 

grammatikinlärning bryggar mellan mentala processer och funktioner, såsom olika 

minnesfunktioner (procedurell inlärning, icke-motorisk och implicit sekvensinlärning, etc.) 
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och språkfunktioner (t ex (morpho-) syntaktiskt processande). Förståelsen av uppbyggnaden 

och mekanismerna som understödjer inlärning och processande är viktig för en förståelse av 

mänsklig kognition. 

 

Procedurell inlärning är beteckningen för förmågan att sammankoppla en sekvens av 

stimulus-responspar för att lära sig att observera eller genomföra en sekvens eller mönster av 

händelser. Denna typ av inlärning sker utan att individen kan uttrycka förmågan verbalt, 

åtminstone i ett initialt skede av inlärningsprocessen. Sluttillståndet kallas procedurell 

kunskap, alltså kunskap om hur man genomför en viss färdighet. Detta ska särskiljas från 

deklarativ kunskap som är förmågan att avgöra om någon proposition är korrekt. Procedurell 

kunskap sträcker sej utöver enkla motoriska färdigheter. Man kan betrakta många av våra 

mentala förmågor som olika exempel av procedurella färdigheter. 

 

En del av språkfunktionen utgörs av de regler eller strukturer vars uppgift är att avgränsa de 

fonemsträngar som hör till språket, dvs syntax. Antagligen kommer mer än en uppsättning av 

grammatiska konstruktioner och vokabulär att kunna generera samma totala uppsättning 

strängar (Quine, 1992). Det är denna funktion som bryter ner mångdimensionella 

tankematriser till ett endimensionellt seriellt ordflöde, för att åter bygga upp dem hos 

mottagaren. Oavsett om den syntaktiska protofunktionen är artspecifikt medfödd eller ej, så 

utvecklas den genom inlärning under individens uppväxt och liv. Var och en av oss lär sig sitt 

språk genom att observera andra människors verbala beteenden, och genom att få sitt eget 

bristfälliga verbala beteende observerat och förstärkt eller korrigerat av andra. Vi är helt 

beroende av tillgängligt beteende i observerbara situationer. (Quine, 1992). Denna 

avhandlings studier har ett värde för vår förståelse av denna syntaktiska funktions neuronala 

realiserande. 

 

As a general disclaimer, there is for me no claim of originality in writing this thesis. All 

possible misrepresentations of concepts, or for that matter, failure of understanding the ideas 

of others, are unintended. What further is, the concepts and ideas included in this thesis are 

not new but are well-known in either the field of cognitive neuroscience or in its related 

disciplines. I base much of my knowledge on the matter from the excellent works of those 

researcher that followed similar tracks in their investigations, as well as the many discussions 

and helpful guidance from those researcher that has surrounded me, and, intensionally or not, 

acted as my supervisors. Specifically, this work would not have been pursued without the 

kind supervision from my two benefactors, Martin Ingvar and Karl Magnus Petersson, who 
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made it possible for me to work and study not only at the PET and MR facilities at the 

Karolinska University Hospital, but also in the cognitive laboratories at the Donders Institute 

and the Max Planck Institute for Psycholinguistics in the Netherlands. 

 

This thesis is based on an empirical quest, centred on the use of the indirect measure of brain 

activity using FMRI, to motivate the use of a simplified paradigm for implicit learning as a 

model for language acquisition and/or language processing. At the time of the start of this 

quest it was to my knowledge the first attempts to investigate artificial grammar learning in 

the normal healthy young adult brains using functional neuroimaging. However, and as 

expected, as we looked further into the task layed out for us we found others to be were with 

us on the journey. The empirical works on which the thesis is based includes cognitive-

behavioral laboratory experiments in combination with functional neuroimaging methods. 

The thesis is composed of seven chapters, a reference list, and a last section with the four 

papers which are the basis of the thesis. The thesis starts out with an introduction to the 

artificial grammar learning paradigm followed by a general background (chapter 1), and 

methodological background (chapter 2 and 3) for the experimental studies that are discussed 

in chapter 4. The first experimental study discussed in chapter 4 represent our first attempt to 

investigate the brain regions involved in implicit sequence learning. The second study 

confirms and expands beyond the findings in the first study. The third study is constructed as 

a sequence of behaviour investigation comparing the classical artificial grammar learning 

paradigm and a version working on mere exposure using yes/no classifications. This 

modification is then used in study 4 in an investigation on Huntington’s disease patients and 

healthy controls, in which we tried to clarify the involvement of the caudate nucleus of the 

basal ganglia during classifications found in study 2. 

 

Investigations on different memory systems have mainly concentrated on different aspects of 

declarative types of memory but not that much on the unconscious variants such as 

procedural memory and mental skill acquisition, and more effort has been made to study 

procedural motor learning than non-motor learning (Seger, 1998). The focus of this thesis, on 

non-motoric procedural learning, is an example of investigations correcting this imbalance. 

 

Christian Forkstam 

2009-12-24 

 



 
 

4 
 

CHAPTER 1 —  BACKGROUND 
 

– Är ett oskarpt fotografi överhuvudtaget någon bild av en människa? 

Ja, är det alltid en fördel att ersätta en oskarp bild med en skarp? Är det inte 

ofta just det oskarpa som vi har behov av? Man kan t ex säga “Uppehåll dig 

ungefär här”. 

(Wittgenstein,  1953, Filosofiska undersökningar,  p.  45) 

 

1.1 OBJECTIVES 
The general objectives with the studies of this thesis were to develop an information 

processing model for the cognitive functions supporting implicit sequence learning. The 

thesis presents empirical and theoretical background on non-motor implicit sequence 

learning. It provides an introduction to recent developments on artificial grammar learning, a 

standard investigative paradigm on implicit sequence learning. In specific, the thesis 

introduce the implicit artificial grammar learning paradigm and evaluate its use for 

investigating implicit sequence learning in general, and language acquisition and processing 

in specific. 

 

The nature of the knowledge acquired during the implicit learning of an artificial grammar, 

its knowledge representation, and the functional role this knowledge acquires during learning, 

is useful to understand from a cognitive neuroscience perspective in general. Such pursuit 

includes the characterization of the neural infrastructure subserving these aspects of artificial 

syntax processing, both the end-state of the learning process as well as the learning process 

itself, using different functional neuroimaging approaches and behaviour measures. This will 

make it possible to compare natural and artificial language processing in the human brain, as 

well as to address questions related to the characteristics of the learning mechanism(s) 

involved, the nature of the knowledge acquired, how this knowledge is represented and how 

it is put to use. 

 

The objectives with this thesis are to investigate the functional mechanisms of implicit 

acquisition and classification of rule based implicit sequence processing. We will in this 

thesis investigate artificial grammar learning in order to: 
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1. Explore the underlying neural processing architecture for implicit learning/acquisition 

to acquire and process non-motor sequences, an implicit non-motor procedural learning 

ability present in the human cognitive system (section 1.3), 

2. Validate and explore the repeated artificial grammar learning paradigm as a laboratory 

model to investigate the acquisition and processing of structural aspects of language, 

e.g. (morpho-) syntax processing (section 1.4), and 

3. Further our understanding of the specific neural processing architecture which 

subserves the language faculty and its syntax processing ability (section 1.5). 
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1.2 ARTIFICIAL GRAMMAR LEARNING 
All studies included in this thesis make use of artificial grammar learning to investigate 

implicit sequence learning processes in the human. They all follow the classical artificial 

grammar learning paradigm as outlined in Reber (1967), the seminal study on artificial 

grammar learning. In this study participants memorized sets of letter strings such as TPPTS 

or VXVPS. Unbeknownst to the participants, the strings were generated by traversing 

through a finite-state grammar similar to the graph in Figure 1.1. After the study phase 

participants were informed that the strings they had just memorized conformed to a complex 

set of grammatical rules. They then received new strings that were either grammatical or not, 

and were asked to make a grammaticality judgment for each string based on the strings they 

had studied earlier. An average of 69% of the classification decisions was found to be correct. 

He proposed that classification was based on abstract rules that participants had formed 

implicitly during the initial study phase, that is, without using conscious, verbalisable 

strategies. The acquired rules were regarded as tacit knowledge, that is knowledge 

unavailable for conscious inspection (Reber, 1989). 

 

We will in this first chapter introduce the artificial grammar learning paradigm, followed by 

background on knowledge acquisition and implicit sequence learning (section 1.3), the 

language faculty and syntax processing and acquisition (section 1.4), and neuronal 

implementation of the processes that support implicit sequence learning (section 1.5). 

 

1.2.1 Outline of the artificial grammar learning paradigm 
The artificial grammar learning paradigm used throughout the thesis is a paradigm divided 

into an extended acquisition phase and several classification phases. The purpose with the 

acquisition phase is to covertly expose the subject to the underlying regularities of a specific 

grammar (Figure 1.1), and the purpose of the classification tests is to quantify the subjects’ 

level of implicit learning over the acquisition period. 

 

During the acquisition phase the participants are occupied with short-term memory tasks 

where they keep in active memory a set of letter strings that follow the sequential 

construction of a grammar. The acquisition task is set up as several short-term memory task 

distributed over the acquisition days. It consists of immediate serial recall of each letter string 

by typing the string correctly on a keyboard, completely without performance feedback. The 

acquisition set is composed of grammatical strings only, sometimes referred to as positive 

examples of the grammar. 
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In one type of classification the subjects are informed that the acquisition strings were 

generated by a complex set of rules. They are then asked to classify previously not 

encountered items based on their immediate intuitive impression (i.e., to guess based on ‘gut 

feeling’), as violating these rules or not. This type of instruction is called grammaticality 

instruction and the test grammaticality classification.  

 

In some of the studies manipulation of the instruction has been used with the aim to minimize 

the potential that the subjects develop problem solving strategies during classification, 

potentially enforcing explicit learning processes in parallel with ongoing implicit learning 

processes. In this alternative type of classification the subjects are instead asked to classify 

new items, not previously encountered, according to whether they like them or not. Here, just 

as in the grammaticality classification, they are instructed to classify based on their 

immediate intuitive impression (i.e., to guess based on ‘gut feeling’) and they are informed 

that this strategy would yield the best performance. This type of instruction is called 

preference instruction and the test preference classification. Preference classification take 

advantage of the structural mere exposure effect (Manza & Bornstein, 1995). In mere 

exposure artificial grammar learning subjects receive a preference classification instruction 

which make no reference to any previous acquisition episode and the subjects are not 

informed about the existence of an underlying generative mechanism. The idea is that mere 

exposure artificial grammar learning might measure implicit knowledge in a more pure 

manner because there is nothing in the classification procedures that refers to the acquisition 

part of the experiment and no reference to a complex set of rules are ever made. In both 

preference and grammaticality classification, performance lies reliably above chance 

(Forkstam, Elwér, Ingvar, & Petersson, 2008; Forkstam, Hagoort, Fernandez, Ingvar, & 

Petersson, 2006; Petersson, Forkstam, & Ingvar, 2004; Reber, 1967; Stadler & Frensch, 

1998). At the same time verbal reports reveal no or little explicit knowledge, indicating that 

implicit learning of relevant information related to the grammar has taken place. 
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Figure 1.1 Transition graph representation of the Reber machine (similar to a program 

machine table) used as generative system to construct grammatical (e.g., <MSSVRXR>) in 

contrasts to non-grammatical strings (e.g., <MSMVRSR>) used throughout this thesis. 

 

The classification stimulus material is composed in a factorial design with the factors 

grammaticality and associative chunk strength (ACS). Associative chunk strength is a 

statistical measure of substring familiarity between a given classification item and the 

acquisition set of items, in specific, the similarity of the classification items to the acquisition 

set in terms of 2 and 3 letter substring frequencies (see Table 1.1). During classification 

sensitivity to ACS offers a mean to quantify sensitivity to the frequency-count of chunks of 

letters in relation to previously encountered acquisition strings. In this way the artificial 

grammar learning paradigm can empirically quantify both the level of implicit acquisition 

based on grammatical examples, as well as independently quantify the level that familiarity to 

local substrings influence the classification performance. This design makes it possible to 

independently investigate processes working on structural knowledge and processes based on 

local substring familiarity. 

 

Associative chunk strength (ACS) 
2x2 factorial design 

High ACS Low ACS 

Grammatical 
25% HG 

(High ACS/Grammatical) 

25% LG 

(Low ACS/Grammatical) 

Non-grammatical 25% HNG 25% LNG 
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(High ACS/Non-grammatical) (Low ACS/Non-grammatical) 

 

Table 1.1. Structural knowledge vs. Local substring familiarity. Outline of the factorial 

design composition of the classification stimuli material. 

 

1.2.2 Background 
To understand the human capacity to learn to communicate through language is an 

outstanding scientific challenge (Chomsky, 2000; Hauser, Chomsky, & Fitch, 2002; 

Jackendoff, 2002). Chomsky has frequently quoted von Humboldt's description of language 

as a system which infinite use of finite means, meaning that an infinite number of sentences 

can be created using a finite number of grammatical rules (e.g., cited in Chomsky, 1965). 

Since the 1950s a fundamental problem in theoretical linguistics has been to construct 

explicit models reflecting this intuition (Chomsky, 1965; Newmeyer, 1995). The simplest 

formal model incorporating the idea of infinite use of finite means is represented by the 

family of regular grammars: right-linear phrase structure grammars (Chomsky, 1957). The 

Reber grammar used throughout the investigations included in this thesis is an instantiation of 

such a regular grammar (see Figure 1.1). 

 

Investigations on implicit sequence learning suggests that humans are equipped with 

mechanisms for learning or acquisition with the capacity to extract structural information 

implicitly from the experience of observed exemplars, without induction of an explicit model 

(Reber, 1967; Stadler & Frensch, 1998). It has been suggested that such acquisition 

mechanisms play an important role in several types of information extraction processes or 

forms of learning (e.g., Cleeremans & McClelland, 1991; French & Cleeremans, 2002; 

Lewicki, 1986; Stadler & Frensch, 1998). The task of learning an artificial grammar has 

previously been used as a laboratory model for investigating aspects of language learning in 

infants (Gomez & Gerken, 2000), exploring key differences between human and animal 

learning relevant to the narrow faculty of language (Hauser et al., 2002), as well as second 

language learning in adults (Friederici, Steinhauer, & Pfeifer, 2002). That humans can learn 

artificial grammars in an implicit fashion was shown in the seminal study of Reber (1967), 

who suggested that relevant information of the rules of the grammar was abstracted from the 

environmental input. He suggested further that this process represented a mechanism that is 

intrinsic to natural language learning. 
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Several theories on artificial grammar learning has been put forward since before the study of 

Reber (1967), in which the acquired knowledge was suggested to be best represented as a set 

of rules. In the theory of rule-based cognitive representations, participants are thought to, 

implicitly, acquire cognitive representations of the rules of the grammar used to generate the 

stimuli, and use these rules for grammaticality judgments. In an opposing theory, the 

exemplar-based account, participants are thought to store exemplars during the learning 

phase, and then base their grammaticality judgments on some relevant whole item similarity 

measure. In the fragment or chunk (n-gram) account, it is though that distributional properties 

of local sequential regularities/contingencies are acquired during learning, and that subjects 

base their judgment on measures of associative strength of the chunks present in a given 

string, in relation to the frequency of these chunks collapsed over all previously experienced 

strings. In the dual mechanism account, a combination of these latter theories was joined: 

simultaneous acquisition of both abstract rules and fragment learning. Finally, in the episodic 

processing account, it is thought that episodic processing knowledge is acquired during 

learning in addition to structural knowledge (e.g. rules or fragment statistics), which can be 

both explicit or implicit. Here, the training instructions and the learning task determine which 

aspects of the training items are encoded, while classification performance is determined by 

the degree to which test instructions reinstate the processing context during acquisition (cf. 

Johnstone & Shanks, 2001; Shanks, 1994). 

 

The computational architectures suggested to subserve artificial grammar learning includes 

both classical and connectionist types. In the production-rule classifier architecture, 

conditions are suggested to code for sequence features encoded probabilistically during 

learning, and that actions interact competitively during classification. In the exemplar-

similarity architectures, it is thought that exemplars are encoded during learning and that 

classification is based on neighbourhood similarity measures. In architectures based on 

hierarchical competitive chunking, it is thought that elementary chunks are hierarchically 

joined into non-overlapping higher-order chunks during learning. Classification is then based 

on the number of chunks necessary to represent a given sequence, that is, a measure of 

familiarity. In the feed-forward neural network architectures, an input-output mapping is 

learned in an unsupervised fashion, that is, it encodes co-occurrence or sequential 

contingencies between input features. Classification is based on a goodness-of-fit measure 

between input and output during testing. Finally, in recurrent neural network architectures, 

for example the simple recurrent networks, distributional properties of sequence fragments 

(n-grams) are acquired in an unsupervised fashion. Classification is here based on the overall 

prediction performance during testing. 
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1.2.3 Implicit sequence learning and dual mechanisms 
We will now shortly summarize some from my opinion relevant studies which all have in 

common that they support the idea of dual mechanism at play in artificial grammar learning 

(Forkstam & Petersson, 2005). In a study by Knowlton and Squire (1996), amnesic patients 

and normal controls were investigated on both a classical and a transfer version of the 

artificial grammar learning task, in which the subjects classified grammatical and non-

grammatical items composed from a novel letter alphabet. The normal controls and the 

amnesic patients performed similarly on both artificial grammar learning tasks and the 

amnesic patients showed no explicit recollection of whole-item or fragment information. 

Knowlton and Squire suggested that these results indicate that the explicit recollection in the 

normal controls reflects an epiphenomenon not necessary for adequate performance on 

grammaticality classification. Instead, artificial grammar learning depends on the implicit 

acquisition of both abstract (i.e. rule-based) and exemplar-specific information related to 

associative chunk strength (ACS). 

 

In a study by Meulemans and Van der Linden (1997), the initial acquisition phase, using a 

relatively small set of acquisition items, was characterized by the acquisition of distributional 

local sequential (fragment/chunk) information in the training set, since the initial performance 

correlated with ACS. When instead using a relatively large acquisition set, they suggested 

that the late acquisition phase is characterized by the abstraction of grammatical structure, 

since the performance did not correlate with ACS. Additionally, in neither phase did the 

performance correlate with explicit recollection as measured in a production test. 

 

Both these studies suggest that artificial grammar learning is dependent on implicit learning 

mechanisms as originally proposed by Reber (1967). However, while Reber (1967) originally 

argued that the implicit learning process abstracted rule-based knowledge, these more recent 

studies indicate that dual mechanisms might be at play (for an alternative perspective see 

Johnstone & Shanks, 2001). It is clear from these studies that distributional information of 

local sequential regularities are acquired and used for grammaticality classification (at least 

during certain stages in the learning process). Knowlton and Squire (1996) argued for abstract 

representations (i.e. rule-based representations) based on the performance of the amnesic 

patients and their normal controls on the transfer version of the artificial grammar learning 

task. However, it is not clear that this conclusion follows from the results on the transfer task. 

Specifically, this conclusion appears to depend on the assumption that transfer performance is 



 
 

12 
 

critically dependent on abstract representations. This is not necessarily the case. Transfer 

performance is dependent on a mapping from the representation of the acquired knowledge to 

the new surface form, which by necessity has to be established during the initial phase of the 

transfer task, and it is not clear that it is easier to generate such a mapping from an abstract 

knowledge representation in comparison to a surface based knowledge representation. On the 

other hand, the results of Knowlton and Squire (1996) is compatible with an abstract 

representation and the observation that the classification performance did not correlated with 

ACS when the participants had reach the late acquisition phase indicate that abstraction of 

grammatical structure in do take place. 

 

In a study by Chang and Knowlton (2004) it was shown that the sensitivity to grammaticality 

status was not affected by a change in low-level visual features (font/case), while this change 

reduced the sensitivity to ACS. The addition of a secondary task (articulatory suppression) 

during the acquisition phase eliminated font sensitivity and reduced the contribution of ACS 

to the classification performance. Consistent with FMRI data, showing reduced activation 

levels for high vs. low ACS items in early visual regions (Lieberman, Chang, Chiao, 

Bookheimer, & Knowlton, 2004), some aspects of classification performance might be 

related to perceptual fluency (e.g., repetition priming), since changes in surface features 

reduced the ACS sensitivity. In an event-related FMRI study, using a balanced chunk 

strength design, Lieberman and colleagues (2004) reported several brain regions that may 

contribute to artificial grammar learning classification. The main findings suggested that the 

caudate nucleus was more active for grammatical vs. non-grammatical items, while the 

medial temporal lobe (MTL) seemed to be more active for high vs. low ACS. Moreover, they 

reported some evidence for a negative correlation between the caudate and hippocampal 

activations, which they interpreted as suggesting a competitive relationship between the two 

regions. However, the observation of a negative correlation does not necessarily imply a 

competitive relationship and there is also some evidence suggesting that the MTL and the 

caudate nucleus can interact cooperatively (Voermans, Petersson, Daudey, Weber, van 

Spaendonck, Kremer, & Fernández, 2004). 

 

In a series of artificial grammar learning experiments, Zizak and Reber (2004) examined the 

links between the classic- and structural mere exposure effects (i.e., the preference of 

previously encountered to novel items and the acquisition of syntactic/structural regularities 

by being exposed to stimuli, resulting in a positive correlation between preference and 

grammaticality status on new items, respectively). In these experiments, subjects either 

classified stimuli based on grammaticality or rated them in terms of likeability. The grammar 
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was instantiated with familiar and unfamiliar symbols, and participants showed standard 

artificial grammar learning effects in all cases. However, whether the two exposure effects 

were dependent on symbol familiarity (high familiarity produced the structural mere 

exposure effect; moderate familiarity produced only the classic mere exposure effect; 

unfamiliar symbols produced neither exposure effect). In another series of behaviour 

experiments, Domangue and colleagues (2004) argued that learners can use at least two types 

of knowledge: an explicit model or instance memories. The subject performance was 

characterized in terms of response times and accuracy with respect to their ability to generate 

letter sequences. The acquisition conditions were experimentally controlled in order to 

manipulate the availability of the two types of knowledge. The memory based condition 

yielded rapid response times but less accuracy compared to the model-based acquisition 

condition. 

 

In a study of implicit acquisition of acoustic regularities (transition probabilities between 

timbres), Tillmann and McAdams (2004) extend previous implicit learning results to the 

domain of complex nonverbal auditory material. Their results suggest that listeners become 

sensitive to statistical regularities independent of acoustical surface characteristics in the 

stimulus material. A study by Bitan and Karni (2003) showed that readers are able to acquire 

an artificial script both with explicit and implicit acquisition instructions. In a follow-up 

study, Bitan and Karni (2004) provided data suggesting that letter decoding can evolve from 

implicit training on whole-word recognition and that the acquired knowledge was 

independent of explicit letter knowledge (measured by declarative recognition). They 

concluded that both implicit (procedural) and explicit (declarative) knowledge contributed to 

letter decoding and word-specific recognition, suggesting the dependency on explicit 

knowledge as related to the possibility that both routines become proceduralised with 

practice. 
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1.3 KNOWLEDGE ACQUISITION 
Human learning abilities are to a large extent unconscious or implicit in nature, similar to 

other primates and many other mammals. Many of these constitute evolutionary old features 

still shared with other vertebrates. Even though there is great variability between different 

implicit learning abilities they all share certain features such as fast computation and rigidity, 

that is, they are not easily modified. The combination of these features is of fundamental 

importance for a slowly adaptable system with robust characteristics to endure external stress 

on the system. Conscious learning abilities are on the other hand comparably fast, are less 

rigid and can be much more easily modified than unconscious ones. These properties provide 

a quickly adaptable system at the expense of stability. Since the beginning of conscious 

learning abilities, both conscious and unconscious learning systems have co-existed in the 

brains that evolved in the human primate lineage. 

 

Learning is defined in this thesis as adaptive processes by which the brain functionally 

restructures its processing pathways/networks or its representations of information as a 

function of experience. The memory trace (i.e., the stored information) is the resulting 

changes in the processing system due to learning. On this view, learning is a dynamic 

consequence of information processing and network plasticity. From this perspective, and in 

contrast to simple information storage, learning and adaptation can be viewed as a process of 

generalisation.  

 

1.3.1 Objective 1 
We will through investigation on artificial grammar learning explore the underlying cognitive 

processing architecture for implicit learning/acquisition to acquire and process non-motor 

sequences, an implicit non-motor procedural learning ability present in the human cognitive 

system. 

 

1.3.2 Adaptive cognitive systems 
A cognitive system such as the human brain in interaction with its current environment is—

like any other biological system—the outcome of its evolutionary and developmental history. 

Both its individual history (ontogenesis) and its evolution past (phylogenesis) has to be taken 

into account to understand its different characteristics. The capacity of an embodied cognitive 

system to develop and learn provides a necessary basis for cultural and evolutionary 

interaction. From the view of information processing systems, cognition is equated with 

internal information processing. A cognitive system is interfacing with the external 
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environment and its processing sub-system is interfacing with other sub-systems, internal 

components that receives input from and transmits output to other sub-systems. 

 

A physical system is an information processing device when its physical states can be viewed 

as cognitive-representational (in the sense of Jackendoff, 2002) and transitions between these 

can be conceptualized as a process operating on these cognitive structures. Information 

processing, or state transitions, can be conceptualized as trajectories in a state space. The 

brain can only represent information in the terms of numbers, that is, in terms of membrane 

potentials, inter-spike-intervals, or any appropriate set of dynamical variables, and therefore 

cognitive structures are not represented in the brain in a simple transparent manner. It is 

possible to simulate all finitely specified symbolic cognitive models as processes on numbers. 

These models can all be emulated in dynamical systems such as recurrent neural networks 

(for a review see, Siegelmann, 1999). 

 

From a parallel distributed processing perspective, learning in a neural network is a dynamic 

consequence of information processing and network plasticity. Brain regions do not merely 

act locally but interact with one another in complex neural networks (Churchland & 

Sejnowski, 1993). Learning is in this manner depends on changes in the interactions between 

regions in a neural network. 

 

Memory is a process decomposed into several processing stages, including on-line encoding 

(i.e., representation of the information to be stored), memory formation and storage, 

consolidation, re-organisation and maintenance, as well as retrieval. Different acquisition 

problems require different learning processes, instantiated in various memory systems, in 

order to ensure efficient solutions to learning problems. These processing systems, with 

multiple interacting memory systems, operate at several different time-scales, spanning some 

seven to nine orders of magnitude. An independent rational for the existence of multiple 

memory systems is related to the serial learning problem, also called the stability-plasticity 

dilemma, i.e. the problem to update the knowledge base by storing and integrating novel 

information with previously acquired information. There is a trade-off between stability and 

plasticity. Stability is necessary to ensure robust process reliability, while plasticity is 

necessary for the acquisition of new information. Too much stability precludes sufficient 

plasticity, and conversely, too much plasticity threatens processing stability. 
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Learning in the formulation of information processing systems with adaptive properties is 

conceptualized as the interaction between two or more sets of dynamical variables, cognitive-

representational and adaptive, respectively. Another form of memory can be instantiated in 

the state-space by the representational dynamics alone. This is a form of process memory 

which does not depend on learning instantiated in adaptive parameters. Fundamentally this 

form of memory is related to the fact that the current state on the state-space trajectory can be 

seen as representing aspects of the systems processing history. This form of process memory 

depends on the topology of possible state-space trajectories. This is the form of memory that 

finite-state architectures can instantiate and is commonly used as a strategy to implement 

short-term memory properties in such processing systems (i.e., via state-space coding, cf. 

e.g., Hopcroft, Motwani, & Ullman, 2000). It follows that the processing system’s response 

to a given input depends on the current internal state, where the current internal state may 

also represents the process history. 

 

Several memory researchers have argued on both theoretical and empirical grounds that the 

brain is equipped with multiple memory systems (e.g., Eichenbaum & Cohen, 2001; Schacter 

& Tulving, 1994b; Squire, Knowlton, & Musen, 1993; Stadler & Frensch, 1998). These 

memory systems serve different purposes and are therefore thought to store different types of 

information. Tulving (1995) suggested that cognitive memory research can be meaningfully 

divided in the two general concepts of memory systems and memory processes. Tulving 

proposed a simple model for memory organisation, in which cognitive memory systems are 

related to one another in terms of memory processes supporting encoding, storage, and 

retrieval, the SPI model. The SPI model is built on the hypothesis that all memory systems 

are related in a process specific manner in the sense that information is serially (S) encoded 

into the systems, memory traces are stored in parallel (P), and information can be retrieved 

independently (I) from each memory system. An important claim of the SPI model is that the 

relations between different memory systems are process specific. The serial character of 

encoding is consistent with the principle of adaptive changes and information processing in 

the brain. Information encoded simultaneously in several interacting memory systems does 

not imply that these interactions are best conceptualized as serial. Instead, there are 

dependencies between different processing systems, and in this sense the encoding of 

information in one system might be contingent on the processing of information in some 

other memory system. The output of one system is input to another. 
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1.3.3 Learning as a cumulative function 
Learning is cumulative in the sense that the effects of experience are carried forward to 

improve later performance, a property fundamental for the construction of learning curves. 

To justify the use of learning curves we plot the sampled data points in a xy co-ordinate space 

where the x-axis represents the independent variable and the y-axis the dependent response 

measure. This determines the discrete data points to be connected. We then find a rule for 

operationally defining a function, y = f(x), that describes a smooth curve that joints overall the 

data points. This is the function whose existence needs to be justified. Without it only 

discontinuous plots (e.g., bar graphs) would be justified. When designing a learning 

experiment, we can assume a vague, intuitive rule presumed to connect the trials into a series 

even if no such rule exists for the learner to follow, or if a different rule is actually used by 

the learner. Because of this possibility we might assume a simpler basis to the continuity over 

successive trials than is actually the case. It therefore cannot be enough simply to 

operationally define a function by which a curve might be drawn to fit observed data points, 

but one must also show why that particular function is a reasonable candidate for modelling 

the rule-governed constraints actually responsible for the learning accomplished by the 

organism in a given context. 

 

1.3.4 The perception-action cycle 
Perception is roughly a mapping from the series of values taken by the environmental 

variable into the series of values taken by the organism variable, whereas action consists of 

the inverse mapping. The individual brain interfaces with its environment through sensory 

input and motor output, in a perception-(cognition-)action cycle: sensory input → perceptual 

processing → (cognitive processing →) temporal organisation of motor output → action 

(Equation 1.1, Figure 1.2), represented here as: 

 

 P(tn) → A(tn+1) → P(tn+2) → ...  (1.1) 
 

where n = 0, 1, …, P = perception, A = action. The brain receives perceptual information 

through several sensory modalities and coordinates actions in the form of movements of the 

skeletomuscular apparatus, the autonomic nervous system, and other output systems such as 

the larynx and tongue. The perception-cognition-action cycle emphasises the overarching 

heuristic function of the brain (Rosenbleuth, Wiener, & Bigelow, 1943; Wiener, 1948), which 

both supports an individual survival and success within a particular ecosystem, increasing the 

likelihood of the genetic information of this individual to be passed on to the genetic pool of 
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the species. Perception and action operate on each other reciprocally, in a fashion that can be 

formulated as a spiral through space and time. This co-variation that results involves both 

environmental and organismic variables. 

 

Sensory Input 

Cognition / 
Information Processing

Environment

Motor Output

 

 

Figure 1.2 The perception-cognition-action cycle. The perceptual systems allow the human 

brain to extract relevant patterns of information from, at times, a noisy, changing, and 

unpredictable environment, while the motor output apparatus allows it to temporally organise 

behaviourally relevant actions and act in a goal directed fashion in its environment (including 

e.g. the creation of artefacts, communicating with conspecifics, as well as to effect changes in 

the physical and socio-cultural environment). Here cognition and internal information 

processing is equated. 

 

Brain complexity is reflected in the structural composition of its processing units—neurons. 

This includes the dendritic tree and neuronal soma composition, axonal arborisation, synaptic 

organisation and passive as well as active membrane properties supported by voltage- and 

neurotransmitter-gated ion-channels. These characteristics provide neurons with adaptable 

nonlinear dynamical properties (Koch, 1999; Shepherd, 1997). Chemical synapses show a 

number of different forms of plasticity with characteristic time-scales that span at least nine 

orders of magnitude, from milliseconds to weeks, providing a necessary substrate for learning 

and memory (Anderson, 2002; Koch, 1999; Koch & Laurent, 1999). 

 

Information is received through the input synapses of a neuron and flows from the dendritic 

tree, via the soma, to the axon hillock affecting the local membrane potential positively or 

negatively. Once triggered, the action potential spread along the axon and the final terminal 

arborisation, where neurotransmitters are stochastically released into the synapse from the 

pre-synaptic membrane, affecting the synapse environment and the post-synaptic receptor 
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dynamics. The increased concentration of neurotransmitters causes them to diffuse across the 

synaptic cleft and activates post-synaptic receptors generating a post-synaptic potential, 

which starts the whole process anew in the downstream neuron. In all its roles, the nervous 

system invokes neuronal processing, to store information through memory formation and 

changes in its adaptable properties given its dynamic processing environment. The 

perception-cognition-action cycle therefore needs to be complemented by the encoding-

storage-retrieval cycle (Figure 1.3). 

 

Cognition / 
Information Processing

Information Storage

Retrieval Encoding

 

 

Figure 1.3 The encoding-storage-retrieval cycle. Learning can be defined as the processes 

by which the brain functionally restructures its processing networks and/or its cognitive 

representations as a function of experience. The stored information is the resulting changes in 

the processing system. The processing system is non-stationary and learning in a neural 

network is the dynamic consequence of processing and network plasticity. 

 

The perception-action cycle and the encoding-retrieval cycle interact through active 

processing of information subserved by various forms of short-term working memories. 

There is not only one encoding-retrieval cycle but several, and likewise, that there are several 

parallel perception-action cycles. This gives rise to the idea of different memory systems as 

well as interacting cognitive modules (Figure 1.4). 
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Sensory Input 

Cognition / 
Information Processing

Environment

Information Storage

Retrieval Encoding

Motor Output

 

 

Figure 1.4 Interaction between the perception-cognition-action and the encoding-storage-

retrieval cycle. To incorporate the capacities for memory, learning and adaptation, the 

perception-cognition-action cycle is complemented with the encoding-retrieval cycle 

interacting through active information processing in for example working memory, such that 

adaptation and learning is a functional consequence of information processing. 

 

By endorsing the principle of organism-environment interaction one has to consider two sets 

of the data points, one showing how the learner’s perception of the task variables changed 

over time and one showing how the learner’s action (response characteristics) changed as a 

function of the task variables. Similarly, two learning curves must be justified, one for 

perceptual learning and the other for action learning. Two mathematical rules must be found 

for determining how the data points are to be connected to form a series, and two laws must 

be found to justify use of the pair of functions. 

 

Generally, we define learning as a cumulative function L that determines a mapping between 

two series: a perceptual (stimulus) series and an action (response) series. The perceptual 

series consists of episodes (e.g., trials) on which the learning function applies to increase the 

value of some response characteristic of the organism over time. 

 

Learning is not merely a simple increase of a response tendency with repeated experience. 

Often, if not always, specific and non-specific changes in the general disposition to learn also 

accompany these changes in response characteristics. Any function used to represent learning 

must consist of two distinct parts: a response variable and a behaviourally or cognitively 
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defined state variable. The response variable expresses the observed change in the behaviour 

of the system. The state variable expresses the specific or non-specific changes in the 

disposition of the system to learn. In the case of non-specific change in disposition, learning 

is promoted and persists over an extensive interval of time. This is referred to as the 

formation of a learning set, or as learning to learn (e.g., Harlow, 1949). Conversely, non-

specific transfer effect that is increasingly negative and inhibits learning is called fatigue. 

 

Similar descriptions of learning surface in the generic mechanism at play in the acquisition of 

an artificial grammar. This can be described as a modulation over time of a set of transitional 

probabilities that are position sensitive in a sequence of events (e.g., in a given sequence, 

what is the likelihood of Letter(t+1) given Letter(t)). In the starting state we regard all 

probabilities to be equal. This is an approximation and the true value depends on previous 

acquisition routes through similar experiences. During acquisition the cognitive system will 

reinforce connections related to those conditionalities that get imprinted though repeated 

exposure of regular patterns in the environment (i.e., the environmental input consisting of 

the acquisition sequences acting as the regular patterns). 

 

1.3.5 Learning paradigms 
Different memory systems may require different learning modes. Learning by instruction or 

supervised learning implies a rich source of external feedback—a teacher. An example would 

be error-based learning paradigms provided with detailed directional information which is 

utilized (e.g., error back-propagation) by the learning system to improve performance (Arbib, 

2003; Haykin, 1994). Another example is the trial-and-error based learning or reinforcement 

learning, which is a weaker form of environmental interaction still dependent on external 

feedback. In this type of learning a (cognitive) system learns through trial-and-error 

interaction with the environment to gradually select appropriate actions by being provided 

external feedback in the form of reward signals. This can be conceptualized as searching 

through the available model space. The strategy introduces an important trade-off in the form 

of an exploration-exploitation dilemma, i.e. how the learning system should allocate its 

temporal resources given a finite life-time. With respect to exploration: how much time the 

system should spend attempting improve its model of the environment with the objective of 

optimizing exploitation opportunities (i.e., performance). With respect to exploitation: how 

much time should be devoted to utilizing what has already been acquired in order to achieve 

the primary objectives of the learning system in the first place (cf., Sutton & Barto, 1998). 

Reinforcement learning represents a type of guided learning where positive and/or negative 

feedback is provided based on the outcome of an action without any detailed directional 
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information. The learning system is not instructed how to change its internal workings but 

only an evaluation of whether a certain choice of action was in some sense appropriate or not.  

 

Learning and adaptation can, as an alternative to supervised learning, take place without any 

external feedback, by means of unsupervised or self-organised learning. This implies that the 

outcome of the acquisition process is determined by the interaction between the input 

experienced and prior structure as well as properties of the learning system. A self-organised 

learning process may structure a neural network to represent the type of environmental 

structure it encounters and the adaptive process is sensitive to (e.g., correlation structures in 

the environment, cf., Rieke, Warland, van Steveninck, & Bialek, 1996). Another 

unsupervised learning example is based on internal monitoring of system performance based 

on internal measures of error or consistency. The internal measures can improve internal 

processing pathways, such that for example parts of the nervous system monitor other parts 

providing adequate teaching feedback. 

 

To understand neural processing within an evolutionary framework one have to consider that 

the human brain has an evolutionary history on the order of 1 billion years (Deacon, 1997), 

and that a neural system controls behaviour with local and global consequences in terms of 

survival and reproductive success. Evolvability, the property of a genetic system to tolerate 

mutations and modify the genotype without seriously reducing its phenotypic fitness, must 

have provided, it seems, a selective advantage. Koch and Laurent (1999) suggest that the 

property of evolvability favoured compartmentalisation/modularity, redundancy, weak and 

multiple parallel linkages between regulatory processes as well as component robustness (for 

a different perspective, see Fodor, 2000). Sufficient stability and tolerance for evolutionary 

modification is provided if several of the constituent components and their coupling links are 

not crucial for survival but can serve as a substrate for the evolutionary search for fitness. 

Indirect evolutionary pressures lead to neural systems replete with specialized circuits, 

parallel pathways, and redundant mechanisms, with the effects of neurobiological evolution 

as a mechanism for the incorporation of prior structure into the processing infrastructure. 

 

1.3.6 Cognitive models 
Historically cognition has been conceptualized in terms of on the one hand the classical 

cognitive rule-based symbolic processing paradigm (Fodor & Pylyshyn, 1990) or on the other 

hand in terms of parallel sub-symbolic processing at a certain level of abstraction (Shastri & 

Ajjanagadde, 1993; Smolensky, 1988). Regardless of ones beliefs on the matter it is clear that 
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cognitive functions are implemented in the network architecture of the brain and depend on 

the processing characteristics of such networks. 

 

When dissecting the classical cognitive paradigm it is important to realise the differences 

between the computer architecture and the human brain. The construction of logical gates in a 

computer is homogeneous and non-adaptive and the connectivity density of the gates is low 

compared that of the brain (cf. e.g., Savage, 1998; Tanenbaum, 1990), yet support memory 

on different time-scales and processing capacity. The logical gate in the central processing 

unit of a modern microprocessor is averagely connected to other gates on the order of 1-10, a 

connectivity factor 1000-10000 less than inter-neuronal convergence and divergence. The 

brains neural systems also wire themselves during ontogenetic development and its initial 

circuitry is up for modification from the environmental input throughout both the life of the 

individual as well as more short-term modifications driven by learning. The dynamical 

system of the brain function differ significantly in terms of information processing from 

present day computer architectures in the scale of structural and dynamic complexity. A 

computer derived from the classical Von Neumann Machine incorporates a general purpose 

central processing unit which exerts finite state control over the process flow (Minsky, 1967; 

von Neumann, 1957). The computer processing is globally synchronized through a clock-

frequency or highly coordinated through just-in-time processing. Specifically challenging for 

cognitive neuroscience is the absence of global process coordination in neural systems. 

 

Since the classical cognitive science perspective not easily translates into the processing 

characteristics of neural systems this could suggest a fundamental problem with either the 

classical view on cognition (e.g., Charniak, 1993; Churchland & Sejnowski, 1993; Edelman, 

1990; Rumelhart & McClelland, 1986), or for the discipline of neuroscience rather than 

cognitive science per se (Chomsky, 2000). However, advances in non-classical information 

processing in dynamical systems promote the integration of the classical cognitive science 

framework within a general dynamical systems framework. 

 

In the framework of classical cognitive science and artificial intelligence (cf. e.g., Charniak & 

McDermott, 1985; Fodor, 1983; Newell, 1992; Posner, 1989; Stillings, Weisler, Chase, 

Feinstein, Garfield, & Rissland, 1995) information is assumed to be coded by data structures, 

while cognitive processing is accomplished by algorithmic rule operations executed on the 

symbol representations which underlies the data structures. Such rule based symbolic 

processing paradigm (cf. e.g., Horgan & Tienson, 1996; Wilson & Keil, 1999) suggests that 
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cognitive phenomena can be modelled and that isomorphic models of cognition can be found 

within the framework of Church-Turing computability (cf. e.g., Cutland, 1980; Davis, Sigal, 

& Weyuker, 1994; Lewis & Papadimitriou, 1981; Rogers, 2002). 

 

From this perspective, a cognitive system consist of a state space of internal states and 

computations are instantiated as transitions between states while optionally receiving input 

and generating output as determined by cognitive transition functions or non-deterministic 

transition relations, generating trajectories in state space (Cutland, 1980; Davis et al., 1994; 

Lewis & Papadimitriou, 1981; Savage, 1998). This implies that information processing can 

be reduced to the topology of state-space trajectories determined by the dynamical system. 

 

For computations in the framework of Church-Turing from a time-discrete dynamical 

systems perspective, consider the case of a cognitive transition function with an input space, a 

space of internal states, and an output space, where all spaces are finite. A possible cognitive 

transition is determined or governed by the function Transition: StateSpace • InputSpace →  

StateSpace • OutputSpace. Suppose that at processing step n the system receives input(n) 

when in state(n). This makes the system change state into state(n+1) generating output(n+1) 

according to (Equation 1.2) 

 

 ( state(n+1), output(n+1) ) = Transition( state(n), input(n) ) (1.2) 
 

forcing the processing system to be driven by reading the input stream […, input(n), input 

(n+1), …] into a trajectory in a finite state space […, state(n), state(n+1), …] with the result 

that the system generates the output (alternatively, constructs the sequence of actions) […, 

output(n), output(n+1), …]. 

 

It is also needed to explicitly described the memory organisation of the computational system 

(cf., Table 1.2) since memory properties in terms of storage capacity (e.g., finite or infinite) 

and accessibility (e.g., stack- or random access) determine the computational power of the 

processing architecture (see e.g., Davis et al., 1994; Lewis & Papadimitriou, 1981; Savage, 

1998). 

 

Architecture Machine complexity Memory organisation 
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  States Registers Stack Accessibility 

Finite-state Finite Finite    

Push-down Finite Finite  Infinite Top of stack 

Turing Finite Finite Infinite  Random 

 

Table 1.2. Outline of the Chomsky hierarchy and its respective architecture memory 

organisation (adapted from Petersson, 2005a). 

 

Transitions between internal states during the process of receiving input, storing intermediate 

results of the computation in memory, and generating output, all subserve information 

processing. With respect to the mechanism underlying the transitions in state space there is 

no fundamental distinction in terms of machine complexity between the different 

computational architectures (Table 1.2) although there are differences in expressivity which 

are fundamentally related to the interaction between the generating mechanism and the 

available memory organisation. Machine complexity, in other words the complexity of the 

computational mechanism of the architecture, must be distinguished from memory 

organisation complexity. Whether the storage capacity of the memory organisation is finite or 

infinite is crucial for the level of nesting that can be expressed in the generated output, an 

important aspect of a systems expressivity. For all architectures, a Transition function can be 

realised as a finite-state machine (Equation 1.2, Table 1.2). This also holds for the control of 

the general purpose architecture of the universal Turing machine (cf., Hopcroft et al., 2000; 

Savage, 1998; Wells, 2005). 

 

The important determinant of expressivity is the availability of infinite storage capacity. A 

memory organisation that allows for infinitely recursive processing capacities is able to 

realise functions of high complexity, and will achieve complex levels of expressivity 

(Cutland, 1980; Rogers, 2002). In language modelling in theoretical linguistics and 

psycholinguistics, among other cognitive domains (cf. e.g., Newell, 1990; Russel & Norvig, 

1995), the classical framework has served well (cf. e.g., Partee, ter Meulen, & Wall, 1990; 

Sag, Wasow, & Bender, 2003). A fundamental hypothesis of generative grammar (Chomsky, 

1957) is that it is possible to give an explicit recursive definition of natural language (or at 

least for syntax) and all commonly used formal language models can be described within the 

classical framework (Wasow, 1989). 
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1.3.7 Levels of description of cognitive processes 
Cognitive models of information processing, formulated within the classical framework of 

cognitive science is best analyzed at three levels of description (Marr, 1982): 

 

1. The functional/computational level specifying in formal terms the function that results 

from the processes of the system, i.e. a formal theory for the function computed by the 

system. 

2. The procedural/algorithmic level which given a formal theory specifies the 

representations and procedures for processing these representations (i.e., InputSpace, 

StateSpace, OutputSpace, and Transition: StateSpace • InputSpace →  StateSpace • 

OutputSpace in Equation 1.2) 

3. The implementational/hardware level which given an algorithmic description specifies 

how the representations and procedures are implemented in a physical system. 

 

Starting at the functional/computational descriptive level of a cognitive model, the 

architecture supporting the cognitive model is an abstract functional organisation to which the 

physical state transitions are systematically related, independent of any particular 

implementation. However, for models of cognition that claims to model physically realisable 

systems an important constraint is that any processing has to be possible to implement in a 

physical device (Horgan & Tienson, 1996). To be able to implement the cognitive model in a 

physical device, the cognitive function must be describable not only at a functional level, but 

simultaneously at a procedural and an implementational level. The procedural description has 

to be within reasonable computational complexity, logical depth and machine complexity, 

while the implementational description must meet finite memory constraints and real-time 

and space constraints of the physical device. This means, for example, that the only possible 

algorithms that can be implemented are those that consumes computational resources scaling 

at a low polynomial order with the problem size (e.g. 2) in time and space, and not 

exponentially (Hopcroft et al., 2000). Unconstrained models of natural language, such as 

syntax parsing and comprehension, might be problematic. 

 

Classical cognitive science is also associated with the concept of modularity, in the sense that 

the cognitive architecture is thought as being divided into well-defined communicatively 

interactive sub-components. Modularity is connected with but not dependent upon genetically 

determined and informational encapsulated structures where these modules are viewed as 
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input-output devices, isolated from lateral or top-down influences between modules and 

feeding a central domain-general processing module (cf. the high-level feed-forward 

perspective on cognition in Fodor, 1983). In this way, cognition is commonly divided into 

functional domains, further divided into sub-domains and cognitive components/processes, as 

in for example language and the temporal organisation of behaviour. 

 

The modular view of brain function is supported from neuropsychological lesion data, while 

the genetic specification of these cognitive modules is supported from data on developmental 

disorders, although these it can be interpreted differently (e.g., Elman, Bates, Johnson, 

Karmiloff-Smith, Parisi, & Plunkett, 1996; Paterson, Brown, Gsodl, Johnson, & Karmiloff-

Smith, 1999; Plaut, 1995; Young, Hilgetag, & Scannell, 2000). The classical perspective of 

modularity is difficult to integrate with a neurophysiological perspective on brain function, 

given the current understanding of the coding and processing principles of the nervous 

system (cf. e.g., Arbib, 2003; Gerstner & Kistler, 2002). 

 

Cognitive functions are subserved by interactive and parallel distributed processing 

principles. The brain organisation resembles a hierarchically structured recurrently connected 

network indicates that the structure-function relationship is complex. Each brain region may 

dynamically participate in several functional networks and may serve different functions 

depending on the functional context in which it operates at a given moment of processing. 

Information is believed to be represented as distributed activity and information processing is 

thought to emerge from the interactions between different specialized regions. The challenge 

in cognitive neuroscience is to work out how these functions arise from brain network 

architectures. 

 

1.3.8 Memory systems 
Human memory is composed of several memory systems which operate on different 

characteristic time-scales. These memory systems most likely interact more or less in 

different constellations of subsystems or processing architectures (Gabrieli, 1998; 

McClelland, 1994). Attentional processes interact intimately with certain learning processes. 

In this context cognitive processes can be divided into controlled processes requiring a high 

degree of attention and automatic processes requiring a low degree of attention, where 

automaticity seems to develop gradually from controlled to automatic behaviour. 

Performance of a novel task is thought to rely on a higher degree of attention and controlled 
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processing while performance become more automatic with practice requiring less attention 

and controlled processing. 

 

One coarse division of memory along the dimension of time-scales is the division into short-

term and long-term memory. One influential model of short-term memory is the Baddeley-

Hitch model (Baddeley, 2000; Baddeley & Hitch, 1974). The Baddeley-Hitch model is 

actually a model of working memory since it combines short-term encoding, storage, and 

retrieval of information with components which are thought to support several higher 

cognitive functions, including reasoning and language (Baddeley, 1986). In this model, 

working memory consists of a central executive with three support systems. One component 

is the phonological loop which supports short-term encoding and storage of verbal 

information. A second is the visuospatial sketch pad supporting short-term encoding and 

storage of visuospatial information. The third component is the episodic buffer which is a 

capacity limited system that provides temporary storage of information held in a multimodal 

code. Its key function is integration between the different subcomponents of working 

memory and to provide an interface between the working memory components and long-term 

memory. It is thought to be capable of binding information from the subsidiary systems as 

well as from long-term memory into a temporary episodic representational format (Baddeley, 

2000). The transient and early role of the medial temporal lobe system in long term memory 

formation and sequence encoding, in conjunction with the prefrontal cortex, makes these 

structures likely candidates for the episodic buffer feature of short-term integrative role and 

episodic format (Eichenbaum, 2000; Simons & Spiers, 2003). The phonological store is 

putatively implemented in the left inferior parietal region (Brodmann’s area (BA) 39/40) 

together with parts of the superior temporal cortex (BA 22 Becker, MacAndrew, & Fiez, 

1999; Paulesu, Frith, & Frackowiak, 1993), with the articulatory rehearsal process involving 

a left frontal circuit including Broca’s region (BA 44) and pre-motor cortex (BA 6/44, Smith 

& Jonides, 1998, 1999). 

 

Human long-term memory is also composed of different memory systems (Tulving & 

Schacter, 1994). There exists a consensus concerning the broad division of human memory 

into subsystems supporting declarative memory and subsystems that do not, sometimes 

referred to as non-declarative memory systems since they all share the feature of not being 

accessible for conscious inspection (Figure 1.5). Declarative memory supports the capacity to 

encode, store, and retrieve information of facts and events. Declarative learning is a learning 

processes that are accessible to subjective conscious analysis during both learning and 

retrieval processes. Processes that were once consciously accessible (that they were 
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expressible or declarative) during the period of learning, but became out of reach for 

conscious description or exploration after neural compilation of some kind, are also 

considered a variety of unconscious learning abilities. Since an initial conscious access to 

existing learning abilities means that they were dependent on the existence of conscious 

processes to begin with, this kind of unconscious processes have to be of an evolutionary late 

origin. 

 

Long-Term Memory

Events
(Declarative)

Facts
(Declarative)

Procedural 
(Skills/Habits)

Priming

Conditioning

Nonassociative
learning

 

Figure 1.5 The taxonomy of the main types of human long-term memory systems. 

 

Unconscious learning abilities which constitute a disjoint spectrum including everything from 

rudimentary neural processes to processes that involves networks of neural connections at 

longer distances, such as different forms of conditioning, habituation, repetition priming (e.g., 

facilitation of recognition, reproduction or biases in selection of stimuli that have recently 

been perceived), incidental learning, and procedural learning such as skills and habits 

(Knowlton, Mangels, & Squire, 1996a). These are all evolutionary old abilities shared within 

the vertebrate series and with many invertebrate species. They are fast and rigid processes 

that develop and are modified over longer periods of time during the development of the 

individual. The underlying neural implementations that subserve the different abilities span 

from single neuron receptor level to large-scale neural networks. The knowledge or 

information acquired by unconscious memory systems is commonly expressed through 

performance changes rather than explicit retrieval, and depends on the integrity of specific 

brain systems; for example the basal ganglia, the amygdala, and the cerebellum (Eichenbaum 

& Cohen, 2001). 
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A commonly used distinction of memory systems (Tulving, 1995), related and partly 

overlapping to the distinction between declarative and non-declarative memory systems, is 

that between explicit and implicit memory, where explicit and implicit usually refer to forms of 

memory expression. In this usage, implicit memory denotes the expression of memory 

without awareness of its acquisition or use; that is, behavioural expressions of what an 

individual has learnt without remembering how, when, or where the learning occurred (cf. 

non-declarative). In contrast, explicit memory commonly refers to the expression of what the 

individual is aware of and can explicitly report if probed (cf. declarative). 

 

The typical example of procedural learning is skill acquisition such as master the art of riding 

a bike or master the motor control needed to pronounce words in what will turn out to be your 

native tongue, and yet being unable to put in words how this is achieved. Acquisition 

processes that are involved in the acquisition of procedural knowledge is an example of such 

non-declarative information acquisition, also called implicit learning. The outcome of implicit 

learning is referred to as implicit knowledge. 

 

Investigations on different memory systems have mainly concentrated on different aspects of 

declarative types of memory but not that much on the unconscious variants such as 

procedural memory and mental skill acquisition, and more effort has been made to study 

procedural motor learning than non-motor learning (Seger, 1998). The focus of this thesis, on 

non-motoric procedural learning, is an example of investigations correcting this imbalance. 

 

1.3.9 Implicit sequence learning 
Implicit acquisition of knowledge about structured patterns embedded in stimuli can occur as 

an unintentional consequence of experience. This phenomenon can be found in for example 

the sensorimotor domain, language, and music (Stadler & Frensch, 1998). Seger (1994), 

following Reber (1967; 1989; 1993), suggested four characteristics for the phenomenon of 

implicit learning (Forkstam & Petersson, 2005): 

1. Limited explicit accessibility to the acquired knowledge and subjects typically cannot 

provide sufficient (in many cases, any) explicit account of what they have learnt. 

2. The nature of the knowledge acquired is more complex than simple associations or 

based on simple exemplar-specific frequency counts. 
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3. Implicit learning does not involve explicit hypothesis testing but is an incidental 

(automatic) consequence of the type and amount of processing performed on the 

stimuli. 

4. Implicit learning does not rely on declarative memory mechanisms that engage the 

MTL memory system. 

Thus, to characterize implicit learning it is necessary to address issues related to the nature of 

the acquisition process (e.g., implicit vs. explicit, automatic vs. controlled, incidental vs. 

intentional), the nature of the acquired knowledge and its representation (e.g., implicit vs. 

explicit access, abstract vs. concrete, structural vs. surface-based, complex vs. simple), and to 

characterize their functional role (e.g., implicit vs. explicit strategies, automatic vs. controlled 

processing, Dienes & Perner, 1999). 

 

Implicit learning is typically investigated with three different stimulus structures (patterns, 

sequences, or functions) and three different response modalities (conceptual fluency, 

efficiency, or prediction and control, cf. Seger, 1994; Stadler & Frensch, 1998). Besides 

artificial grammar learning, one of the most intensely investigated implicit learning 

paradigms is the serial reaction time task, in which implicit learning is inferred from faster 

reaction times in responding to reoccurring vs. e.g. random sequences, while the participants 

typically report no or little awareness of reoccurring sequences. There are several proposals 

for how knowledge of sequence structure is acquired, including the acquisition of stimulus-

stimulus, stimulus-response, response-response associations, or perhaps more abstract 

representations (cf. Stadler & Frensch, 1998). The learning of sequences with a fixed order 

can be viewed as a special case of acquiring knowledge about more general structural 

regularities or temporal contingencies in stimuli. These regularities can be deterministic, 

probabilistic, or non-deterministic. 

 

In the serial reaction time task (Nissen & Bullemer, 1987) participants respond during a 

training phase to a target that appears on a computer screen in one of four horizontally 

arranged locations. Each location is mapped to a response key and participants are asked to 

respond as quickly and accurately as possible by pressing the key that corresponds to the 

current target location. Target locations on successive trials follow a systematic pattern that is 

continuously repeated throughout the training phase. Although participants are not informed 

of this sequential regularity, they nevertheless learn something about the deterministic 

structure of the task: When the systematic response sequence is replaced by random 

sequences response times increase, providing an indirect performance based measure of 
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sequence learning. Nissen and Bullemer (1987) observed reaction time savings for structured 

relative to random responses in six amnesic patients who reported to be completely unaware 

of a sequential regularity. This finding was confirmed in a study by Reber and Squire (1994) 

on amnesic patients showing normal sequence learning on the performance measure, while 

severely impaired in direct tests of conscious knowledge such as verbal report or recognition 

of the sequence. 

 

Previous studies in serial reaction time task suggests that implicit motor sequence learning is 

sensitive to the statistical structure of sequences. Both absolute frequencies and transition 

probabilities are important, and these characteristics might be detected in different temporal 

order depending on the statistical properties of the stimuli (Lungu, Wachter, Liu, Willingham, 

& Ashe, 2004). 

 

It is likely that that systems supporting both implicit and explicit learning can be engaged, 

and may perhaps also interact, during acquisition. Relevant stimulus dimensions 

(location/symbol) might engage different sequence learning mechanisms in the formation of 

internal representations (Tubau & Lopez-Moliner, 2004) suggesting a response-control shift 

(i.e., from stimulus-control to internal representational control) to correlate with the 

emergence of explicit knowledge in the symbol condition. Wilkinson and Shanks (2004) used 

a process dissociation procedure to separate automatic from intentional forms of processing 

(cf., Jacoby, 1991) and argued that sequence knowledge can be brought under intentional 

control. 

 

It is well-established that skill-improvement not only occur during practice but also during 

off-line periods (i.e., between practice sessions), a so-called consolidation effect (for reviews 

see e.g., Maquet, 2001; Robertson, 2004; Walker, Brakefield, Morgan, Hobson, & Stickgold, 

2002). In a recent artificial grammar learning study, participants classified novel strings after 

a period with or without sleep (Nieuwenhuis, Folia, Forkstam, Jensen, & Petersson, In 

submission). It was found that sleep actively enhanced the extraction of grammar knowledge. 

The contribution of rapid eye movement (REM) and non-REM sleep in consolidation of 

implicitly acquired sequence knowledge is still not well-understood. In a serial reaction time 

task study, Robertson and colleagues (2004) showed a sleep-dependent dissociation for 

implicit and explicit sequence learning. Off-line improvement was sleep-dependent for 

explicit sequence learning and correlated with non-REM sleep, while off-line improvements 

in implicit learning seemed to be sleep-independent and only to depend on the time-interval 
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between practice-sessions. Cajochen and colleagues (2004) showed that the acquisition of 

different sequence structures improved after controlled sleep with multiple naps vs. sleep 

deprivation, in particular with naps that followed the circadian REM-peak.  

 

The early findings reported in the implicit learning literature lent credibility to the position 

that memory is composed of functionally separate systems with distinctive neural structures 

(Cohen & Squire, 1980; Gabrieli, 1998; Schacter & Tulving, 1994a). In particular, the 

distinction between declarative and non-declarative memory (e.g. Squire & Zola, 1996) 

seemed to capture the critical finding well, that individuals can adapt to the statistical 

structure of their environments without being conscious of the underlying statistical 

contingencies. However, the multiple-systems view of conscious and non-conscious learning 

did not stand uncontested. An influential critique was formulated by Shanks and St. John 

(1994) concluding from an extensive literature review that the existence of dissociable 

conscious and non-conscious learning systems had not been established convincingly. 

 

Their critique was primarily methodological. The standard demonstration of non-conscious 

learning requires dissociation between an indirect performance measure that indicates 

learning, and a direct test that indicates a lack of conscious knowledge. However, in order to 

accept this dissociation as evidence for non-conscious learning, one needs to presume that the 

direct test is sensitive enough to detect all conscious knowledge that might have been 

expressed on the performance measure (Reingold & Merikle, 1988). Empirical dissociations 

reported in the literature either did not withstand scrutiny or failed to replicate. For example, 

both Reed and Johnson (1994) and Destrebecqz and Cleeremans (2001) reported sequence 

learning on the indirect test and chance performance on a recognition test, but subsequent 

replication studies by Shanks and colleagues (Shanks & Johnstone, 1999; Shanks, Wilkinson, 

& Channon, 2003) provided no evidence of dissociation, keeping implicit learning an elusive 

phenomenon. 

 

1.3.10 Knowledge representation and learnability 
The perspective taken in this thesis views artificial grammar learning as a model for 

investigating implicit sequence learning (Forkstam & Petersson, 2005; Seger, 1994; Stadler 

& Frensch, 1998). This view holds that the capacity for generalisation that the subjects show 

in the grammaticality classification task is based on the implicit acquisition of regularities 

reflected in the input strings. Reber (1967) defined implicit learning as the process by which 

an individual comes to respond appropriately to the statistical structure in the input ensemble. 
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Also, he suggested that humans can acquire implicit knowledge of aspects of the underlying 

structure through an inductive statistical learning process and this is put to use during 

grammaticality classification. At the time, Reber (1967) argued that implicit learning 

mechanisms abstracted ‘rule-based’ knowledge, but has since modified his position (Reber, 

1993), and more recent studies seem to suggest that dual mechanisms might be at play 

(Meulemans & Van der Linden, 1997). 

 

In artificial grammar learning, the implicitness of the to-be-learned information can be 

understood in essentially two different ways. Even though the presented material in each 

situation is fully accessible during learning, in grammaticality classification the subject is 

informed and aware of the existence of a common underlying structure of the stimuli. In this 

situation the task is explicit to the subject (classify grammatical from non-grammatical items). 

In preference classification, the subject is not informed or aware of the existence of a 

common underlying structure of the stimuli. In this situation the task is implicit to the subject 

(declare if you like or not the following items). Importantly, in both these situations the 

structure to be learned is always presented implicitly, that is, the rules of the grammar is not 

specified but is instead represented in the grammatical items presented during acquisition. 

Furthermore, since the subjects are always tested on novel items never encountered before, in 

both these situations it is the capacity to learn the underlying structure that is tested rather 

than a mere memorization of exemplars on surface forms. 

 

Support for the implicit character of artificial grammar learning comes from lesion studies of 

amnesic patients. Knowlton and Squire (1996) investigated amnesic patients and normal 

controls on a classical and a transfer version of the artificial grammar learning task, in which 

the subjects classified grammatical and non-grammatical items composed from a novel letter 

alphabet. The patients and their normal controls performed similarly on both artificial 

grammar learning tasks while the amnesic patients showed no explicit recollection of whole-

item or fragment (chunks of two or three letters) information. Knowlton and Squire (1996) 

argued that these results indicate that the explicit recollection in the normal controls reflects 

an epiphenomenon not necessary for adequate performance on the classification task. Instead, 

they argued, artificial grammar learning depends on the implicit acquisition of both abstract 

and exemplar-specific information, the latter suggesting acquisition of distributional 

information of local sequential regularities. Furthermore, they argued for the existence of 

abstract representations (i.e., rule based representations) based on the performance of the 

amnesic patients and their normal controls on the transfer version of the artificial grammar 

learning task. It appears that humans are able to transfer knowledge acquired from exemplars 
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in one domain to a different domain (Gomez & Schvaneveldt, 1994). Similarly, Skosnik et al. 

(2002) suggest that artificial grammar learning involve the non-conscious consolidation of 

complex rules. In addition, it has been shown that infants have some capacity to learn and 

generalize over local regularities. Studies in young infants indicate rapid (on the order of 2 – 

10 min) ‘rule-abstraction’ (Marcus, Vijayan, Bandi Rao, & Vishton, 1999), the learning of 

transition probabilities in artificial syllable sequences (Saffran, Aslin, & Newport, 1996), and 

artificial grammar learning (Gomez & Gerken, 1999). In the study of Gomez and Gerken 

(1999), infants also demonstrated transfer capacity, suggesting that they were abstracting 

beyond the transitional probabilities holding between particular items in the grammar. 

However, it is an issue under discussion whether transfer studies demonstrated ‘rule-based’ 

learning or not. It is not clear that this conclusion follows from the results on transfer tasks. 

Specifically, this depends on the assumption that transfer performance is critically dependent 

on abstract representations and it is unclear whether this is necessarily the case. Transfer 

performance is dependent on a mapping from the representation of the acquired knowledge to 

the new surface form, which by necessity has to be established during the initial phase of the 

transfer task. It is not clear that it is easier to generate such a mapping from an abstract 

knowledge representation in comparison to a surface based representation (Redington & 

Chater, 1996). For example, it has been suggested that transfer results could be explained by 

simple similarity judgements and knowledge of substring regularities (Redington & Chater, 

2002; Redington & Chater, 1996). On the other hand, the results of Knowlton and Squire 

(1996) suggests an abstract representation and the observation that the classification 

performance did not correlated with ACS strength when the participants had reached the late 

acquisition phase. This indicates that some form of abstraction of grammatical structure takes 

place. In addition, learning of long distance dependencies has been demonstrated in sequence 

learning as well as in artificial grammar learning (Ellefson & Christiansen, 2000; Poletiek, 

2002; Uddén, Araújo, Ingvar, Hagoort, & Petersson, In submission). This suggests that 

induction cannot be explained entirely in terms of the acquisition of local sequential 

regularities (cf., Meulemans & Van der Linden, 1997). While Reber (1967) originally argued 

that the implicit learning process abstracted ‘rule-based’ knowledge (however, see Reber, 

1993 for a modification of his position), these more recent studies indicate that dual 

mechanisms is engaged (for an alternative perspective see Channon, Shanks, Johnstone, 

Vakili, Chin, & Sinclair, 2002; Johnstone & Shanks, 2001). In summary, it is reasonably 

clear from these studies that distributional information of local sequential regularities are 

acquired and used in grammaticality classification. But since ACS is independently 

manipulated in relation to grammaticality, this parallel sensitivity to ACS cannot explain the 

classification performance. 
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It is in this context of interest to recall that no super-finite class of languages, including the 

class of regular languages, is learnable from positive examples alone without additional 

constraints on the specific learning paradigm. This is for example the case in the formal 

learning theory framework of Gold (1967). At a first glance this appears to exclude the 

possibility of learning an artificial grammar from positive examples. It has also been 

suggested that this is the case when statistical learning mechanisms (cf. e.g., Cherkassky & 

Mulier, 1998; Duda, Hart, & Stork, 2001; Vapnik, 1998) are employed (Nowak, Komarova, 

& Niyogi, 2002). In the classical Gold learning framework (1967; cf., Jain, Osherson, Royer, 

& Sharma, 1999) it was assumed that the learning system had to identify the target language 

exactly based on only positive examples (i.e., well-formed strings); in addition it was 

assumed that the learning system has access to an arbitrarily large number of examples, while 

issues related to computational complexity were ignored. However, already Gold (1967) 

noted that under suitable circumstances this (un)learnability paradox can be avoided. These 

may for example include the existence and effective use of explicit negative feedback, prior 

restrictions on the class of possible languages, or if there are prior restrictions on the possible 

language experiences that can occur, that is, prior restrictions on the characteristics of the 

possible language environments. Results in formal learning theory confirm Gold’s (1967) 

suggestion that, if the class of possible languages is restricted, then it is possible to learn 

infinite languages in infinite classes of formal languages from positive examples (Shinohara, 

1994; Shinohara & Arimura, 2000); see also Jain et al. (1999). It should be noted that these 

constraints are of a general kind and not necessarily ‘language specific’. As noted by Scholz 

and Pullum (2002), there exists classes of formal languages rich enough to encompass the 

string-sets of human languages and at the same time being identifiable from a finite sequence 

of positive examples. The restrictions determining these classes are not linguistically specific 

but general in character. Furthermore, the acquisition task becomes potentially more tractable 

if there are additional structure in the input or if only probable approximate identification 

success is required (cf. e.g., Anthony & Bartlett (1999) for an outline of the probably 

approximately correct learning paradigm and Engel & Van den Broeck (2001) for an 

alternative perspective). 

 

Gold (1967) also suggested that the acquisition of super-finite classes of languages may be 

possible given reasonable probabilistic assumptions concerning the language environment 

and the initial language experience of children source (e.g., a stationary language 

environment on a suitable time-scale). Similarly, Chomsky (1981) suggested that negative 

evidence could be available without explicit corrections based on expectations (cf., Rohde & 

Plaut, 1999). One possibility is to generate expectations or predictions based on an internal 
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model. If the learning system has access to or can acquire a forward model, this can be used 

for model dependent prediction. This entails the possibility of an unsupervised learning 

framework in which error information (= difference[input, prediction]) drives the learning 

process (i.e., adaptation of the learning parameters driven by error information, see e.g., Duda 

et al., 2001; Haykin, 1998; Manning & Schütze, 2000). Simple examples of this is predictive 

adaptive time series models (Haykin, 1998) and predictive simple recurrent neural networks 

(e.g., Elman, 1990; Haykin, 1998). Connectionist modelling suggest that this is a viable 

approach to limited recursion (for a general overview see Christiansen & Chater, 2001; 

Christiansen & Chater, 1999; Seidenberg, MacDonald, & Saffran, 2002; see also Seidenberg, 

1997). Simple recurrent networks may be viewed as a time-discrete analogue version of the 

finite state architecture (i.e., if real number processing is employed). It should be noted that 

simulations of a simple recurrent neural network, using finite precision numbers, effectively 

becomes a simulation of a finite state architecture. In summary, as noted by Scholz and 

Pullum (2002), it may be the case that language learning is not adequately described as ‘the 

logical problem of language acquisition’. Instead, formal learning theory (Jain et al., 1999) 

hold open the possibility that language classes of interest, at least in theory, can be acquired 

from weak environmental input consisting of a finite sequence of positive example (Pullum 

& Scholz, 2002; Scholz & Pullum, 2002). 

 

In all included studies of the thesis we used a regular grammar, the simplest form of phrase 

structure grammar, which can be implemented as a finite state machine. It is commonly held 

that the class of finite state machines represents a restrictive class of computational models. 

However, from the point of view of machine complexity (e.g., the minimal size and depth 

measured in the equivalent number of logical operations or logical gates necessary to realise a 

given generative mechanism, cf. Savage, 1998), universal computational architectures like 

unlimited register machines (Cutland, 1980) and Turing machines (Davis et al., 1994) are, 

like finite state machines, finite in this sense. This can be understood by realising that the 

central processing unit of the register machine and the control unit of a Turing machine are 

examples of finite state machines (see Savage, 1998 and ; Tanenbaum, 1990, for concrete 

examples). The difference in formal language expressivity between regular and non-regular 

grammars (cf. Davis et al., 1994; Partee et al., 1990) springs necessarily from the memory 

characteristics of the computational system. In particular, formal language expressivity 

depends on the interaction between the computational mechanisms and factors like memory 

access (e.g., stack or random access) and most crucially on the memory capacity, that is 

whether this is finite or infinite (cf. Minsky, 1967; Savage, 1998). In a fundamental sense, it 

is the characteristics of the memory organisation that allow the computational architectures to 
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re-use their processing capacities (i.e., computational mechanisms) recursively to generate 

structurally rich languages (i.e., high expressivity). The computational machinery of universal 

architectures is no more powerful on its own than that of finite state machines, if finite 

memory constraints are imposed. The finite state machine is the only computational 

architecture of the Chomsky hierarchy (Davis et al., 1994; Partee et al., 1990; see also 

Savage, 1998) of infinite expressivity with respect to its fundamental recursive concatenation 

(i.e. to all its syntactic constructions), that is both finite with respect to its computational 

machinery and to its memory organisation. In addition, it is possible to implement finite 

recursion of any type in a finite state machine. From a neurobiological and cognitive 

neuroscience perspective it seems reasonable to assume that the human brain instantiate a 

finite storage capacity, both with respect to short-term working as well as long-term memory. 

This might highlight the importance of the neurobiological analogue of the finite state 

architecture. Interestingly, Hauser, Chomsky, and Fitch (2002) suggested that many of the 

important characteristics of the faculty of language are determined by neural computational 

constraints. 
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1.4 THE LANGUAGE FACULTY 
 

The fact that all normal children acquire essentially comparable grammars of 

great complexity with remarkable rapidity suggests that human beings are 

somehow specially [innately] designed to do this. 

(Chomsky,  1959, Review of Skinner's  Verbal Behavior,  p.  57) 

 

The possibility that a finite-state grammar manage to model (or let say imitate) a 

context-free (centre-embedded; bracketed) grammar up to any finite level of 

embeddings by counting, urge any believer in the methodology of Ockham to 

shave off the excessive need of infinite context-free grammar in any cognitive 

task such as language. 

 

An investigative approach to language acquisition have to take into account the necessity for 

each human being to use hypothesis testing at some level or another as the main approach to 

internalize a communicative language. Linguistics offers no choice to the behaviouristic 

approach. Everyone learn their language by the observation of human verbal behaviour, and 

through the observation of its own verbal behaviour amplified or corrected by the 

environment. There is nothing in a linguistic perspective beyond what can be collected from 

the open behaviour in observable situations (Quine, 1992). The artificial grammar learning 

paradigm represents a minimalistic model for this insight when investigating language 

acquisition and syntax processing in the laboratory. Even though language in communication 

is not easily investigated in artificial grammar learning, the paradigm captures something 

very essential in the sense of investigating the actual syntactic signal. 

 

1.4.1 Objective 2 
We will through investigation on artificial grammar learning validate and explore the 

repeated artificial grammar learning paradigm as a laboratory model to investigate the 

acquisition and processing of structural aspects of language, e.g. (morpho-) syntax 

processing. 

 

1.4.2 Language acquisition 
Some syntax related language mechanisms seem to be specific to the language function, 

while others might be shared with other psychological abilities, as well as with non-human 

co-species. As part of the broad language faculty, that is, the faculty of language in its 
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entirety together with parts shared with other psychological abilities, syntax functions as a 

regulator: it helps determine how the meanings of words are combined into the meanings of 

phrases and sentences. As a subset of the broader faculty, some aspects of syntax is included 

as part of the narrow language faculty, that is, aspects of language that are special to the 

language function (Hauser et al., 2002). Of these two levels of the language faculty, the latter 

is suggested to be typically human. 

 

The function of syntactic structures in language is to code for who did what to whom, how, 

when, and where. Syntactic competence involves playing with basic who-does-what-to-

whom categories such as Agent, Themes and Goal (Chomsky, 1981). Thematic roles such as 

Theme, Agent, and Goal bridge between semantic content in the concept structure and their 

syntactic relevance as structure regulators. Such features have the potential to have been 

prime targets for the emergence of syntactic signal decomposition (Bickerton, 2000). In this 

process syntax decompose a message or signal into a structure that is predictable for the 

recipient to receive, which lowers the energy cost of communication. This syntactic signal 

decomposition might have co-evolved between the sender and recipient within the given 

species (e.g., humans) as a mean to cut the communication costs. The delimiting mental 

resource of working memory would in this way be relived. For the sender the message 

produced and sent could be of a lower quality as well as not well formulated, and for the 

receiver the predictive structure in the message or signal would free mental resources for 

parallel analysis of the underlying intension of the sender. 

 

The general combinatorial process employed during syntax processing are the hierarchical 

order of phonemes and morphemes into words, and words into syntactic phrases, which are 

then collapsed and flattened into a serial order of words and phrases within phrases. In the 

opposite direction a sequential input of phrases is transformed into a hierarchical order of 

words and phrases. Certain local and (non-adjacent) long-distance dependencies are involved 

in this process, by setting constrain to the flexibility of order a given language can allow. 

Important examples of local dependencies are agreement and case marking. In agreement 

dependencies, verbs or adjectives are marked with inflections that correspond to the 

classificatory features of syntactically related nouns such as number, person, and grammatical 

gender. In case marking dependencies, noun phrases are marked with inflections, such as 

nominative and accusative, depending on the grammatical role of the phrase with respect to a 

verb, preposition, or another noun. Long-distance dependencies can on the other hand allow a 

question word or a relative pronoun to relate to distant verb (Pinker & Jackendoff, 2005).  
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The principles of statistical learning, a fundamental mechanism of information processing in 

the human brain, contribute significantly to language acquisition. Empirical data suggests that 

the process of word segmentation, acquisition of a lexicon, and acquisition of simple 

grammatical rules can be entirely explained through statistical learning. Statistical learning is 

mediated by changes in synaptic weights in neuronal networks and its mechanism constitutes 

a direct bridge between behaviour and the molecular biology and neurophysiology of the 

neuronal synapse. Even if it is unlikely that all aspects of language acquisition can be 

explained through statistical learning, some principles of effective language training are 

obvious already. Most important is the massive, repeated interactive exposure. Conscious 

processing of the stimulus material may not be essential. Instead, the crucial principle is a 

high co-occurrence of language and corresponding sensory processes engaged with the 

analysis of the environmental input (Breitenstein & Knecht, 2003). 

 

1.4.3 The language acquisition device 
The acquisition of our first language is commonly assumed to take place largely implicitly 

and almost entirely from unlabelled positive information alone (i.e., almost without explicit 

feedback as well as negative evidence). The likelihood that a child would manage to acquire a 

language in all its complexity from an environmental input of such sparsity has made some 

researcher to assume the task to be impossible unless the child has an inborn knowledge of 

the possible grammar of the language to acquire. Thus, it has been argued that the capacity of 

children to acquire natural languages depends on an innate universal grammar that constrains 

the form of possible human languages (Chomsky, 1965, 1986; Chomsky & Lasnik, 1995). 

The concept of rules and grammatical constructions are entirely rejected to give way for 

general interacting linguistic constraints from which the properties of linguistic expressions 

are derived. These principles are thought to be not learned or acquired, but innate. This 

inborn knowledge, which instantiates the universal principles and parameters of human 

languages, is supposed to be subserved with a dedicated language function called the 

language acquisition device. The variation between natural languages is accounted for by 

different parameter settings which set during the acquisition process (Jackendoff, 2002; 

Kager, 1999; Radford, 1997, 2000). 

 

Although several researchers might believe differently, that language is not under natural 

selection pressure but instead is a perfect organ, such a statement is not congruent with the 

evolutionary theory. This postulates that natural selection also affect the language acquisition 

device. The process of signal decomposition instantiated as syntax processing in natural 

language is under phylogenetical pressure in the shape of evolution and natural selection, as 
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well as under ontogenetical pressure in the shape of individual development. The 

ontogenetical force set and tunes the syntax processing function within individuals to the 

communication and language space of the surrounding, including between generations. The 

phylogenetical force shapes the initial state of the processing architecture to possess capacity 

for neural process encapsulation which can be functional in syntactic analysis. 

 

A phylogenetical and ontogenetical potential precursor to protolanguage is the mechanism of 

imitation, or mimesis (Vihman & DePaolis, 2000). Whatever neurological structures that 

support mimetical memory, e.g. gestural memory or memory for sequences, those structures 

may constitute the phylogenetic precursors to those that support linguistic representations in 

humans today. The phonological loop, one of the slave systems of the working memory 

system, provides the entry point to long-term memory storage for phonetic strings and larger 

phonological units composed of phonetic strings. Two observations suggest that this device 

may be more closely related phylogenetically to the processing of temporal sequences of 

meaningful gestures than to the processing of non-speech auditory patterns. The phonological 

loop has a critical role in motor production through subvocal rehearsal (Baddeley, 1986; 

Baddeley, Gathercole, & Papagno, 1998), and the processing of sign language in native 

signers depends on the same brain structures as the processing of speech (Poizner, Bellugi, & 

Klima, 1991). 

 

Working from the perspective that human language evolved out of bodily actions in the shape 

of primate gestural systems in our evolutionary past (Arbib & Rizzolatti, 1997; Corballis, 

2003; Rizzolatti & Arbib, 1998), an ever-present form of nonverbal action might have 

developed in the shape of a co-speech hand gesture (Kelly, Ward, Creigh, & Bartolotti, 

2007). In its present-day role hand gestures together with spoken language would then impact 

speech comprehension in the brain, an influence fundamentally automatic in nature. This 

implies a specific relationship between gesture and speech within the domain of learning a 

first and maybe also a second language where gesture may act as a powerful tool in inducing 

neural change associated with the learning of a novel vocabulary. By not looking at language 

in isolation but instead putting it back in the body a more complete and accurate 

understanding of how people comprehend, develop and learn language in everyday 

communicative contexts might be generated. Hence, syntactic sequence processing might 

have its precursor in motor sequence control working with vocal soundings in its output, a 

view compatible with the ontogeny of the human child. 
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From the partial function of syntactic structure as to cut the costs of communication, it is 

interesting to imagine a version of protolanguage that possibly evolved within the primate 

lineage with vocal calls and body, hand and facial signing. Communication without syntax 

would be slow and displaced from real time reference. Thus an evolutionary pressure for 

nature to select for individuals with higher working memory capacity would be instantiated. 

As the output of the signal turned more acoustic/vocal an additional selective advantage 

would have been the case for individuals capable to comprehend and produce regulated 

message short cuts, possibly through means of calculating predictive feature of the signal 

detected by the receiver in an implicit fashion, in combination with the real time analysis of 

the underlying intention of the sender (instantiated as the mental capacity of Theory Of 

Mind). The interface for such a calculation would hook on to and unite nodes of mental 

capacity for sequentially controlled body posture, facial, manual, and vocal motor skills as 

well as visual and acoustic (implicit) feature detection. The suggestion of ventrolateral 

cortical regions sensitive to syntactic regulations thus seem comprehensible as target regions 

for further detailed analysis of involvement in syntactic feature calculations. Surrounding 

regions are receptive of phonological (BA 44/45/9), manual motor skills (BA 6/9), working 

memory (BA 46), and conceptual knowledge (BA 44/45/47). It is connected through 

reciprocal neural projections to basal ganglia (caudate) and thalamic structures sensitive to 

sensory structure features. 

 

1.4.4 Formal grammars 
The definition of a formal language includes a finite lexicon (alphabet) V of terminal 

symbols, V = p. The set of all possible finite symbol strings that can be generated from the 

alphabet V is given by Kleene-star operator V∗ = {Ø,t1,…,tn,t1t1,…,tntn,…}. A formal language 

L over V is then defined as a subset of V∗, L ⊆V∗; where a symbol string s = tk1…tkm is well-

formed or grammatical if and only if s ∈ L (cf. e.g., Hopcroft et al., 2000). This description 

of formal language emphasise an extensional or E-language, where the language is identified 

with its string set. This is adequate for formal investigations, but of limited meaning in the 

context of natural language grammars (Chomsky, 1986, 2000). A more fruitful approach 

from a cognitive point of view takes as its point of departure an intentional definition, an I-

language (cf. Chomsky, 1995; Chomsky & Lasnik, 1995). This entails the specification of a 

generating mechanism, including principles of combinations and additional non-terminal 

symbols, capable of generating all grammatical (well-formed) strings and only those in a 

given language (e.g., Davis et al., 1994; Lewis & Papadimitriou, 1981; Taylor & Taylor, 

1997). The generating mechanism serves as an intentional definition of the language, an I-

language, and a string s is grammatical (s ∈ L) if and only if the formal mechanism (or 
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machine) can generate it. The term ‘language’ in formal language, does not entail anything 

beyond what is outlined above. A formal (or artificial) grammar represents a specification of 

a mechanism that generates (or recognizes) certain types of structural regularities. 

 

A non-trivial yet simple formal model incorporating the idea of the infinite use of finite 

means is represented by a family of artificial grammars called regular grammars (finite state 

grammars) (Davis et al., 1994; Lewis & Papadimitriou, 1981; Partee et al., 1990). A finite 

state grammar is defined by: 

1. A finite set of internal states S = {S1,...,Si,...,Sm}, 

2. A vocabulary/alphabet of input/output terminal symbols V = {t1,...,tk,...,tn} 

3. A finite set of transitions T = {(t1,S1),...,(tk,Si),..., (tn,Sm)}, a machine table describing 

the possible trajectories in state space of the automaton from its internal state Si to Sj 

during which it will output the terminal symbol tk. 

 

Different generating mechanisms have different expressive power in terms of the languages 

they generate (cf. Table 1.2). The finite state automaton corresponds to the class of regular 

languages, which includes finite and some types of infinite languages, the latter examples 

implying that the general finite state automaton exemplifies a generating mechanism for the 

infinite use of finite means implementing a specific type of recursion. A regular grammar 

(Figure 1.1) generates right-branching phrase structure trees and the class of regular 

grammars has a generative capacity equivalent to the class of regular languages and can be 

implemented in the finite state machine architecture (see for example, Davis et al., 1994; 

Taylor & Taylor, 1997). A finite state machine can be viewed either as a language generator 

(Chomsky, 1957; Lasnik, 2000) or language recognizer for a given regular language (Cohen, 

1997; Davis et al., 1994; Savage, 1998). Developments in mainstream generative grammar 

suggest that two important processing devices capture human syntactic competence, namely, 

merge and move (Chomsky, 1995; Radford, 1997) and it is possible to further reduce move to 

copy + merge (Berwick, 1998; Epstein, 1999). The family of right linear phrase structure 

grammars is closely related to and can be implemented by a constrained Merge operator. 

They are equally easy to implement within the framework of unification grammars 

(Jackendoff, 1997; Shieber, 1986) by for example a constrained unification operation (Vosse 

& Kempen, 2000), or within most commonly formal approaches to grammar (Sag et al., 

2003). 
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Under certain circumstances, no super-finite class of languages are learnable from positive 

examples alone (Gold, 1967) even when powerful statistical learning mechanisms are put to 

use (Nowak et al., 2002; Vapnik, 1998). This includes regular, context-free, context-sensitive, 

recursively enumerable languages, etc. Under suitable circumstances this unlearnability 

paradox can be escaped (Gold, 1967), e.g. by explicit negative feedback, or if there are a 

priori restrictions on the class of possible natural languages, or on the possible initial 

language experiences that can occur (Rohde & Plaut, 1999). This means that learning of 

super-finite languages may be possible given some reasonable probabilistic assumptions 

concerning the language environment and the initial language experience of children source 

(Gold, 1967). Further, if negative evidence is available without explicit corrections based on 

expectations, unsupervised learning could be possible in which error information drives the 

learning process such that the adaptation of learning parameters in the model are driven by 

the error information (cf., predicative simple recurrent neural networks, e.g. Haykin, 1998). 

 

1.4.5 The Reber grammar 
Formal grammars instantiate a descriptive specifications of a finite generating/parsing 

mechanism for a given language. A formal grammar brings an explicit description of 

grammatical complexity. The Reber grammar (Figure 1.1) is an example of a formal 

grammar. The Reber grammar is a right-linear phrase structure grammar, which can be 

implemented in a finite state architecture. This Reber machine is an explicit generating 

mechanism for a formal regular language (e.g., Davis et al., 1994), in the present case 

corresponding to the Reber language. It should also be noted that the finite state machine 

corresponding to a regular language (or a right-linear phrase structure grammar), can serve 

equally well as a language recognition device or as a generative mechanism. Thus, the Reber 

grammar serves as an intentional definition (Chomsky, 1986) of the Reber language, as 

opposed to an extensional definition (i.e., the string set of the Reber language), and represents 

a formal specification of a mechanism that generates and recognizes certain types of 

structural regularities. 

 

In the cognitive architecture of language processing, the syntax parser is a module that 

attempts to generate structural descriptions (e.g., the parse trees) corresponding to a given 

input sentence. Formal grammars and their corresponding languages and machines, does not 

have to be interpreted within the domain of language. Instead, they are relevant for any 

cognitive domain which utilizes structured representations and processes operating on these 

representations: goal directed action planning and temporal organisation of behaviour, 
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complex problem solving, perception and generation of sound patterns in music, etc. (cf., 

Petersson et al., 2004). 

 

The finite state mechanism generating the Reber grammar consists of a finite set of internal 

states with the non-terminal symbols {State 0, State 1, State 2, State 3, State 4, State 5, State 

6}, an alphabet with terminal symbols {<, M, V, X, S, R, >}, and a finite set of transition 

functions or phrase structure rules {State 0 → # State 1; State 1 → M State 2; State 1 → V 

State 2; State 2 → S State 2; …}. 

 

They way a formal grammar is represented can simplify the detection of ungrammaticalities 

in language sequences. Following the tree adjoining grammar formulation (Joshi & Schabes, 

1997), a formal grammar can be described as a set primitive structures, so-called treelets 

(Figure 1.6). A treelet consists of a root node connected to a foot node and terminal symbol. 

In Figure 1.6 for example, we have extrapolated the treelet from the transition graph 

representation of the Reber grammar that connects the transition from state 1 to state 3 in the 

finite-state machine. 

 

foot node

V

root node

1

3 1

2

3

4

5

60 0

 

Figure 1.6 Tree adjoining formulation. 

 

This process can be continued until we have transferred the complete structure representation 

of the Reber grammar to its corresponding treelets (Figure 1.7).  
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[State 0]

[State 1]

[State 2]

[State 3]

[State 4]

[State 5]

[State 6]

< 1

0

M 2

1

V 3

1

S 2

2

V 4

2

X 2

3

X 5

3

R 3

4

S 6

4

> 0

4

R 5

5

M 6

5

> 0

5

> 0

6

 

Figure 1.7 Structured representations of the full Reber lexicon expressed as treelets (Joshi & 

Schabes, 1997). 

 

Primitives derived from the acquisition of a formal grammar are thought to be retrieved into 

the cognitive system during comprehension/parsing, and in the opposite direction, to be put 

together into larger complex during production. These processes are suggested to be 

performed in the human brain in a dedicated part of working memory, called the unification 

space (Hagoort, 2004). For example, as visualised in Figure 1.8, when encountered with the 

target item <MSSVRX>, the primitive composition of the sequence will be parsed in the 

unification space as a valid structure (see e.g., Forkstam et al., 2006). Learning in a cognitive 

system can in this way be viewed as expanding the nodes in a finite state grammar. For 

example, in phoneme acquisition, the division a phoneme into two separated phonemes is 

represented by splitting a node in two parts. Although the expected use of brain machinery 

might be more expensive, this visualisation of acquisition might generate a more adequate 

description of cognitive system acquisition. 
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Unification space
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S 2
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Figure 1.8 Sketch of the unification space. Primitives derived from the acquisition of a 

formal grammar are thought to be accessible to the cognitive system in the unification space. 

When encountered with the target item <MSSVRX>, the primitive composition of the 

sequence will be parsed in the unification space as a valid structure (see e.g., Forkstam et al., 

2006; Hagoort, 2004). 

 

1.4.6 Acquisition of formal grammars and artificial grammar learning 
Artificial grammar learning is commonly conceptualized in terms of either a structure-based 

(‘rule’) acquisition or a statistical (‘chunk-based’) learning mechanism. An alternative view 

that is placed somewhere between these two more common conceptualisations, re-traces a 

major trend in theoretical linguistics since the early 80’s, so-called lexicalisation (cf., 

Culicover & Jackendoff, 2005; Jackendoff, 2002), in which the distinction between lexical 

items and grammatical rules is vanishing and in effect shifts more of the grammar into the 

mental lexicon. In a lexicalized picture of artificial grammar learning, taking advantage of the 

fact that hierarchical structured information can be represented in terms of bracketed 

expressions (see e.g., Davis et al., 1994), the acquisition of simple structured representations 

(e.g., [sj, T, sk], where sj and sk are syntactic features and T a surface feature) is akin to lexical 

learning, and the integration of such representations takes place in working memory during 

parsing (e.g., [sj, T, sk] +  [sp, R, sq] → [sj, T - R, sq] if and only if sk = sp) after being activated 

(retrieved) by for example an input string. On-line incremental integration thus implements a 

recursive construction of complex representations (successive merging/unification, Petersson 

et al., 2004) from more primitive structures stored in long-term memory. We suggest that the 

latter process is dependent on general integrative mechanism supported by the left inferior 

frontal region. There is thus no need for a specific ‘rule’ acquisition mechanism, because the 

parsing process utilizes general integration mechanisms already in place for merging or 
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unifying structured representations. Finally, the syntactic features of lexical items have 

acquired the functional role of control in this picture (cf., finite-state control, Minsky, 1967; 

Savage, 1998), which is thus distributed over a long-term memory representation (‘mental 

lexicon’) in terms of the control features that govern the integration process based on the 

selection information that is allowed to merge (for further discussion see Forkstam & 

Petersson, 2005; Petersson, 2005b). 



 
 

50 
 

1.5 NEURONAL IMPLEMENTATION 
The brain of an individual develops following a genetic blue print. On the observation at the 

level of the brain, each individual can unfold differently depending on the specific 

circumstances in the environment. This setup has the evolutionary positive effect of mutation 

condensation, and the developmental positive effect of time-locking the development of 

specialized organs, such as brains. In the end, it is the interaction between genes, the 

individual organism (or vehicle or survival machine), and its environment that will shape the 

development of the organism. In this section we will give an introduction to the 

implementation level of implicit sequence learning (see section 1.3.7) including a description 

of the corticostriatal circuits and their implications in implicit sequence processing. 

 

1.5.1 Objective 3 
We will through investigation on artificial grammar learning further our understanding of the 

specific neural processing architecture which subserves the language faculty and its syntax 

processing ability, an implicit non-motor procedural learning ability present in the human 

cognitive system. 

 

1.5.2 Structural and functional complexity of the brain 
The structure of the human brain is complex. Macroscopically its 1.5 kg mass is composed of 

grey and white matter. The grey matter contains neuronal cell bodies as well as local and 

short distance neuronal interconnections. At the neocortex, the outer layer of the brain, it 

forms a convoluted surface described as gyri and sulci, a structure that maximizes the 

possible numbers cells and their local connections. Grey matter is also localized deep inside 

the brain as neuronal nuclei: the basal ganglia, the medial temporal cortex, the cerebellar 

cortex and nuclei, as well as other subcortical nuclei in the mesencephalon and brainstem. 

The white matter contains the long distance interconnections of the brain of both 

corticocortical and corticosubcortical origin, inter-hemispheric tracts, as well as sensory input 

and motor output fibre tracts (Nieuwenhuys, Voogd, & van Huijzen, 1978). 

 

Microscopically, the about 1010 neurons that form the brain is each working as an individual 

processing units supporting and receiving on the average more than 103 axonal output 

connections and a similar number of dendritic and somatic input connections. The brain is 

composed of some hundreds of trillions of interconnections using many thousand kilometres 

of cabling (Koch & Laurent, 1999). The synapse connections bridging the neurons consist of 

a double convolved cell membrane with a massive amount of large proteins working as 
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receptors and ion-channels embedded in the surface of both neurons. In each synapse, the 

complex matrix of synapse proteins controls the influx and outflow of signal molecules 

between the connected neurons. 

 

The brain connectivity structure is weakly hierarchical and consists of functionally 

specialized brain regions recurrently connected in a network. Each region consists in turn of 

several kinds of processing elements and synaptic connections (Felleman & Van Essen, 1991; 

Shepherd & Koch, 1998). Each processing element is independent and there is no focus for 

process control, in contrast to the central processing unit of the Von Neumann architecture 

(Tanenbaum, 1990). The organisational principles for cognitive brain functions depend on 

distributed connectivity patterns between functionally specialized brain regions as well as 

functional segregation of interacting processing streams, where the dominant pattern of 

interconnectivity is recurrent (see e.g., Gazzaniga, 2000, 2004). This complexity in this 

connection system is unnecessary for a system based on linear, sequential, and hierarchical 

feed forward information transfer, but essential for network processors that support 

interactive recurrent distributed processing. This suggests that parallel interconnected 

distributed anatomical networks, characterized by recurrent interconnectivity and functional 

integration across cortical networks, are essential for the processing characteristics of the 

brain.  

 

The behavioural and cognitive significance of a given brain region is determined by its 

connectivity pattern, its local architecture and input and output connections, and by its 

neuronal subtypes and their distribution of for example receptor types and ion channels. In 

addition, the uniform basic outline of the neocortical architecture suggests that the functional 

role of a given brain region might be determined by its place in the neocortical macro-

circuitry. It is suggested that each cytoarchitectonic area has a unique pattern of input and 

output connectivity and a corresponding pattern of task dependent functional connectivity 

(Passingham, Stephan, & Kotter, 2002). The functional architecture is additionally 

determined by the mechanisms that enable the processing systems to incorporate adaptive 

changes, allowing the system to learn as a functional consequence of information processing. 

Since the hypotheses of network circuitry (McCulloch & Pitts, 1943; see also Minsky, 1967) 

and neuronal assembly (Hebb, 1949), information processing in neural systems has been 

suggested to be accomplished such that information is represented as distributed activity in 

the brain and that information processing, subserving complex cognitive functions, emerge 

from the interactions between different functionally specialized regions or neuronal groups. 
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Fundamentally, all subsequent approaches suggest that cognitive functions emerge from the 

global dynamics of interacting sub-networks. 

 

It appears that the basic computational units of the brain and their interconnections are 

relatively slow and imprecise in relation to the real-time task demands on processing 

performance (Koch & Segev, 1998). This seems to be related to inherent processing 

limitations of neurons. However, at least some neurons and neural systems appear to perform 

at levels not too far off from what is physically possible given its input and hardware 

characteristics (Rieke et al., 1996). For this to be accomplished, it seems plausible that the 

brain processes information interactively in parallel, and that processing properties that are 

rapid, fault tolerant, and robust emerge from these processing principles. The complexity at 

multiple levels of structure as well as function suggests that continued reductionism is not 

likely to lead to a fundamental understanding of cognitive brain functions from a complex 

systems perspective (Koch & Laurent, 1999). Instead, the detailed investigation of the 

nervous system has to be complemented by investigations at several different system levels. 

At present, higher cognitive functions of the nervous system are commonly characterized in 

terms of large-scale/macroscopic concepts that are relevant at a behavioural level. An 

important objective of cognitive and computational neuroscience is therefore to bridge 

between the properties that characterize neurons, or neuronal assemblies, and the processing 

units and processing principles that are subserved by neural networks and are relevant to 

cognition. The most crucial scientific question still lingers: which is the neural code and how 

is the functional descriptions translated into this code. 

 

1.5.3 Frontal lobe function 
The prefrontal cortex is important for higher cognition. It is involved in the working memory 

functions supporting on-line maintenance, monitoring, manipulation, and selection, as well as 

in attentional processing, decision making, problem solving, language, non-automatic and 

flexible cognition and behaviour selection, the temporal organisation of behaviour and the 

decomposition of task processing into goals and sub-goals (i.e., prioritized dynamic 

scheduling or planning of sub-tasks), etc. How the prefrontal cortex subserves these cognitive 

functions is not yet well understood and various suggestions has been put forward: that 

prefrontal regions are specialized for different cognitive functions independent (Petrides, 

1995) or dependent (i.e., modality specific, cf. e.g., Fuster, 1995, 1997; Goldman-Rakic, 

1988; Goldman-Rakic, 1998), while others emphasize its adaptive nature (Duncan, 2001; 

Miller & Cohen, 2001). The primate prefrontal cortex has been investigated at the neuronal 

level on a wide range of tasks, including for example categorisation, working memory, rule 
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learning, rule switching, and cross-modal integration (for reviews see e.g., Duncan, 2001; 

Duncan & Miller, 2002). 

 

The response properties of prefrontal neurons are very adaptable and it seems that any given 

neuron can be driven by several different kinds of input. This might be a result of the dense 

recurrent connectivity within the prefrontal cortex and with many other neocortical and sub-

cortical structures (Fuster, 1997; Mesulam, 2002; Stuss & Knight, 2002). Following the 

adaptive coding model of Duncan (2001), working memory, attention and cognitive control 

are subserved by common processing properties of prefrontal cortex neurons in combination 

with the adaptable nature of these neurons. This would allow the prefrontal cortex to 

represent task-relevant information and provide a temporary, task-specific, context-dependent 

working memory space. Duncan (2001) suggests that this working space serves as a 

mechanism for selective attention and control by selecting task-relevant inputs, represented in 

the posterior neocortical regions, for further elaborate processing or manipulation of the task-

relevant information. 

 

Miller and Cohen (2001) argue that the prefrontal cortex stores representations of task-

specific rules, attention templates, and task relevant goals. In their view, an important role of 

the prefrontal cortex is to bias the activation of goal related representations that are stored, 

represented, and processed in the posterior neocortical regions. They propose that this form 

of guided or controlled activation of posterior representations is essential for rule acquisition 

as well as the acquisition of new information and behaviours. They suggest that repeated 

activation of the same processing pathways creates stronger associations between posterior 

representations (i.e., stronger connections between posterior representational regions), while 

at the same time, the role of the prefrontal cortex gradually diminishes in controlling 

posterior neocortical processing as this becomes increasingly automatic. 

 

Fuster (1995; 1997) propose that the common role of the prefrontal cortex is to temporally 

organise goal-directed behaviour and that this global function can be analyzed in terms of 

working memory, attention and inhibitory control, and he outlined mechanisms for 

monitoring, short-term memory and attentional selection that prioritize goals and task 

appropriate behavioural sequencing. Temporal integration is achieved by the prefrontal 

cortex in interactions with posterior cortical regions, determined by the modalities of task-

relevant sensory and motor information. Moreover, prefrontal representations and processing 

are recruited in non-automatic behaviour, while well-practiced tasks can be performed 
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relatively independently of the prefrontal cortex. Several other researchers have sketched 

similar ideas in terms of a global workspace for non-automatic cognitive processing (Cohen 

& Servan-Schreiber, 1992; Cohen, Dunbar, & McClelland, 1990; Dehaene, Kerszberg, & 

Changeux, 1998). 

 

Similarly, it has been suggested that the prefrontal cortex serves as a working memory that 

keeps stimulus representations active for on-line processing (Fuster, 1995, 1997; Goldman-

Rakic, 1988). In particular, it is proposed that the prefrontal cortex, being part of an 

integrated network of regions including temporal, parietal, and limbic, is involved in the 

representation of stimuli in their absence. This would allow the prefrontal cortex to guide 

behaviour responses through internal representations in the sense of cognitive states. Related 

views from investigations of language processing suggest that the prefrontal cortex is 

engaged in structural integration that serve to rapidly and selectively bring together 

information in posterior representational regions. Different linguistic representations (e.g., 

phonological, syntactic, semantic, and pragmatic) are activated in parallel and integrated in a 

prefrontal workspace where incremental unification takes place (cf. e.g., Forkstam et al., 

2006; Hagoort, 2003; Petersson et al., 2004). 

 

Several of the outlined perspectives so far are processing oriented, but also representational 

perspectives on prefrontal function have been put forward (cf., Miller & Cohen, 2001; Wood 

& Grafman, 2003). For example, in the structured event complex framework outlined by 

Wood and Grafman (2003), it is suggested that prefrontal cortex stores representations of 

knowledge in the form of so-called goal-oriented sets of events. These goal-oriented sets 

carries a schematic sequence structure and represents various forms of knowledge, like event 

features, event boundaries, social rules, thematic knowledge, concepts, as well as grammars. 

The different aspects of a structured event complex are represented independently and they 

are encoded and retrieved in an episodic format (Wood & Grafman, 2003). 

 

1.5.4 The left inferior frontal region 
The left inferior frontal region seem to have a broad role in cognition including musical 

syntax, absolute pitch perception, and human imitation (Marcus, Vouloumanos, & Sag, 

2003). An important general problem for models imply that the Broca’s region in the left 

inferior frontal region is specifically related to different aspects of language processing is that 

neither neuropsychological lesion studies nor functional neuroimaging data appear to support 

such a strong hypothesis (Caplan, 1992; Dronkers, 2000; Kaan & Swaab, 2002; Marcus et al., 
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2003; Zurif, 1990, 1998). Aphasia research requires a re-evaluation of the classical 

interpretation of the structure-function relationship based on the apparent double dissociation 

between Wernicke’s (traditionally associated with left temporoparietal lesions) and Broca’s 

aphasia (traditionally associated with left middle-inferior frontal lesions). Kaan and Swaab 

(2002) point out that these patients do not completely lack syntax processing capacities and 

they also exhibit some semantic deficits, suggesting that the Broca’s region is neither 

necessary nor sufficient to induce syntactic deficits. Instead, they suggest, Broca’s aphasia 

can be interpreted as a processing deficit in contrast to a knowledge deficit, and may at least 

partly be understood in terms of difficulties with certain aspects of temporal processing and 

integration of information, or in terms of short-term memory capacities. This suggestion is 

consistent with functional neuroimaging data indicating an important role for the prefrontal 

cortex, including the left inferior frontal region, in both short-term working memory and 

long-term memory (Cabeza, Dolcos, Graham, & Nyberg, 2002; Fletcher & Henson, 2001; 

Nyberg, Forkstam, Petersson, Cabeza, & Ingvar, 2002; Nyberg, Marklund, Persson, Cabeza, 

Forkstam, Petersson, & Ingvar, 2003; Simons & Spiers, 2003). In addition, functional 

neuroimaging studies comparing syntactically complex and simple sentences can be 

interpreted in terms of memory load and integration/unification of information (cf., Kaan & 

Swaab, 2002). 

 

A growing body of evidence from functional neuroimaging suggests an overlap in the 

processing of structural relations in language and music (for a review see Patel, 2003). There 

seems to be a considerable overlap between regions implicated in the perception/production 

of music and the perception/production of abstract sequences, including the left inferior 

frontal region (Janata & Grafton, 2003). The similarities between music and language have 

recently been stressed (Hauser & McDermott, 2003; Patel, 2003; Peretz & Coltheart, 2003; 

Trehub, 2003). It has been suggested that music is a human universal, that it like language, 

organises discrete elements into hierarchically structured sequences according to syntactic 

principles (Jackendoff, 2002; Lerdahl & Jackendoff, 1983; Patel, 2003). Patel (2003) 

suggests that the commonalities between structural processing in language and music can be 

understood in processing terms such that brain regions engaged in processing these 

commonalities provide the neural infrastructure for structural integration. It is thought that 

the neural infrastructure engaged in structural integration are processing regions that serve to 

rapidly and selectively bring low-activation items in representation regions up to the 

activation threshold needed for integration to take place. Similarly, Hagoort (2003) proposed 

a language integration workspace in which integration of various sources of linguistic 

information (phonological, syntactic, semantic/pragmatic) operate in parallel in a workspace 
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where incremental unification takes place. The left inferior frontal region is hypothesized to 

be the core region subserving this workspace. It is suggested that during parsing, lexically 

specified structures enter the unification space where cross-talk between different sources of 

information immediately can influence the integration process.  

 

There is also a growing body of evidence suggesting that Broca’s region is not the only 

region related to the processing of syntactic information. Other brain regions which have 

been related to syntax processing include the left superior anterior temporal lobe, the left 

middle and posterior parts of the superior and middle temporal gyri, as well as right 

hemisphere regions (Bookheimer, 2002; Friederici, 2002; Kaan & Swaab, 2002). It therefore 

is reasonable to suggest that natural language syntax processing, or more generally the faculty 

of language, is dependent on a functional network of multiple interacting brain regions, none 

which is uniquely involved in syntax processing. With respect to this perspective, one might 

suggest that particular brain regions, for example the prefrontal cortex are computationally or 

processing specific (e.g., detecting and recognizing structural regularities; interpreting, 

integrating or unifying hierarchical regularities, or recognizing dependencies between related 

elements) independently of particular content domains. Specific brain regions may genuinely 

participate in a range of tasks, including Broca’s region, with specialized function emerging 

from unique configurations of domain-general mechanisms (Marcus et al., 2003). 

 

Meta-analyses of functional neuroimaging studies of syntax processing (Bookheimer, 2002; 

Friederici, 2002; Indefrey, 2004) report that the most reliably replicable finding related to 

syntax parsing across imaging techniques, presentation modes, and experimental procedures, 

are localized to the left inferior frontal gyrus (Brodmann’s areas (BA) 44 and 45), consistent 

with what is known from brain lesion data (Caplan, 1992; Caramazza & Zurif, 1976; 

Friederici, 2002; Zurif, 1990). The left inferior frontal region is part of the prefrontal cortex, 

which has been related to different aspects of language processing, including phonological, 

syntactic, semantic, pragmatic, as well as non-linguistic contextual information (Bookheimer, 

2002; Duncan, 2001; Mesulam, 2002). The prefrontal cortex has also been related to different 

short-term working memory and long-term memory processes (Baddeley, 2003; Simons & 

Spiers, 2003). In Baddeley’s model of working memory (Baddeley, 1992, 2003), the 

phonological loop has been associated with the left temporoparietal and left inferior frontal 

regions. It has been suggested that the phonological loop may have evolved to facilitate the 

acquisition of language and in support of this notion, its capacity appears to be a good 

predictor of second language learning (Baddeley, 2003; Baddeley et al., 1998). The prefrontal 

cortex has been investigated in several primate studies at the neuronal level in a wide range of 
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complex tasks, including categorisation, working memory, rule learning and rule switching, 

as well as cross-modal integration (Duncan, 2001; Duncan & Miller, 2002). The response 

properties of prefrontal neurons are highly adaptable and any given neuron can be driven by 

different kinds of input, perhaps through the dense interconnections that exist within the 

prefrontal cortex as well as reciprocal connections to a majority of cortical and subcortical 

structures (Fuster, 1997; Mesulam, 2002; Stuss & Knight, 2002). 

 

1.5.5 Functional anatomy of the corticostriatal circuits 
Essential brain structures for procedural skill learning include the recurrent circuits 

connecting the prefrontal cortices with the basal ganglia and the thalamic nuclei. This seems 

to hold true also in the context of the acquisition and processing of implicit procedural 

knowledge subserving the mechanisms of artificial grammar learning. We will therefore here 

present an overview of general outline of these frontostriatal circuits (cf. e.g., Binder, 

Hirokawa, & Windhorst, 2008; Gazzaniga, 2004; Haber & Gdowski, 2004; Hendelman, 

2006; Wise, Murray, & Gerfen, 1996).  

 

1.5.5.1 The basal ganglia 

Buried deep within the cerebral hemispheres lies the basal ganglia (see Figure 1.9), a 

collection of interconnected subcortical structures in the telencephalon, diencephalon and 

mesencephalon, constituting an interface between these brain departments originating from 

the early divisions of the embryonic brain. Diseases affecting the basal ganglia lead to 

characteristic disturbances of movement and of resting muscle tone, indicating its 

involvement in movement control. Even though the most obvious symptoms of the basal 

ganglia are related to the motor system, clinical and experimental evidence indicates that the 

basal ganglia also play a role in higher mental functions. Indeed, fibre tracing methodology 

show that the main efferent connections of the basal ganglia do not descend to motor nuclei 

in the brain stem and spinal cord but are rather directed to various cortical areas including the 

prefrontal. The cerebral cortex also provides the main input to the basal ganglia. There are 

two main outputs, one descends to the brainstem motor systems and the other is directed 

toward the thalamus, which in turn projects back to cortex. The basic cortical basal ganglia 

loop is in its outline connecting the cortex-basal ganglia-thalamus-cortex. 

 

The striatum constitute the main input interface of the basal ganglia. It comprises three nuclei, 

all similar with respect to cells types, general projections, transmitters and receptors: the 

caudate nucleus, the putamen and the nucleus accumbens. The nucleus accumbens joins with 
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the striatum, the collective term for the caudate nucleus and the putamen. The caudate 

nucleus is localized deep within the cerebral hemispheres of the telencephalon. Although the 

caudate nucleus is one structure, it is regularly referred to as the head (in the frontal lobe), the 

body (in the parietal lobe), and the tail of the caudate (in the temporal lobe). The caudate is 

histologically similar to the putamen and the both regions originate embryonically from the 

same neurons. The strands of tissue connecting the caudate and the putamen in the adult 

human brain are a developmental rest of the internal capsule, a white matter fibre system 

separating the caudate and the putamen. The putamen is anatomically and functionally 

connected with the globus pallidus, forming the lentiform nucleus, a lens-shaped structure 

separated into the putamen and the external and internal globus pallidus. The globus pallidus 

is recurrently connected with the subthalamic nucleus. Finally, lying in the midbrain of the 

mesencephalon is the substantia nigra. It is composed of the pars reticulata which receives 

fibres from the basal ganglia and output to the thalamus, and the pars compacta which project 

back to the caudate and the putamen through the nigrostriatal pathway creating an internal 

feedback loop within the basal ganglia system. The neurotransmitter involved is dopamine. 

 

The striatum is characterized by three sets of afferent connections: from the cerebral cortex, 

from the intralaminar thalamic nuclei and from the pars compacta of the substantia nigra. The 

largest contingent of afferents comes from the cerebral cortex. Almost all regions of the 

cortex send fibres to the striatum, but the caudate nucleus and the putamen receive 

projections from different cortical regions. The putamen is dominated by somatotopically 

organised inputs from the primary sensory area and primary motor area, while the caudate 

nucleus receives projections predominantly from association areas. Thalamic inputs 

associated with a certain region project onto the same striatal region as does the comparable 

functional area of cortex (e.g., regions related to reward and motivation project to the ventral 

striatum, regions related to cognition project to the dorsal and medial caudate nucleus, and 

regions related to motor control project to the dorsolateral striatum). The striatum projects, in 

a generally topographic manner, primarily to the pallidal complex (not specified in Figure 

1.9; it includes the external and internal segment of the global pallidus and the ventral 

pallidum of the substantia innominata), the substantia nigra, and the ventral tegmental area. 

The two most abundant neuronal cell types in the striatum are its projection neurons and the 

striatal interneurons. The projection neurons receive an excitatory glutamatergic input from 

the cortex and thalamus and a dopaminergic input from the substantia nigra pars compacta, as 

well as from striatal interneurons. They contain either the D1 or D2 type of dopamine 

receptor, responsible for the different effect of dopamine input to these cells. The D1 receptor 
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containing cells respond with excitation while the cells containing D2 receptors respond 

inhibitory to dopamine input (Cooper, Bloom, & Roth, 1996).  

 

1.5.5.2 Corticostriatal circuits 

The two main corticostriatal circuits (see Figure 1.9) are the direct pathway and the indirect 

pathway. The direct pathway passes through the cortex-striatum-GPi/SNr-thalamus-cortex 

and information that carried through this pathway has a net effect of excitation generating a 

positive feedback on the cortex. The indirect pathway connects similar to the direct pathway, 

but involves in addition the GPe and the subthalamic nucleus. It passes through the cortex-

striatum-GPe-subthalamic nucleus-GPi/SNr-thalamus-cortex and has a net effect of inhibition 

generating a negative feedback on the cortex. Thus, the direct and indirect pathways affect 

the cortex (via the thalamic neurons) in opposite ways. This model of circuits has been used 

extensively to model how the basal ganglia may function in motor behaviour. 
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Figure 1.9 The main outline of the corticostriatal circuits that are thought to be involved in 

frontostriatal procedural learning. 
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The current idea of the functional and connectivity structure of the corticostriatal circuits 

suggests a segregated and parallel circuitry organisation. The basal ganglia, along with their 

connected cortical and thalamic areas, are viewed as components of parallel circuits whose 

functional and morphological segregation is relatively strictly maintained. Each circuit is 

thought to engage separate regions of the basal ganglia and thalamus, and the output of each 

appears to be centred on a different type of the frontal lobe. A well defined somatotopy is 

often maintained throughout the stages of the circuits, such that each circuit contains a 

number of highly specialized hierarchical flows of information that permit parallel, multilevel 

processing of a vast number of variables to process concurrently. The concept of parallel 

circuits help to explain the occurrence of the same symptoms observed caused by lesions at 

different locations in the cortico-striato-pallido-thalamo-cortical loop. In other words, one can 

relate to certain diseases as lesions of the frontostriatal circuitries. Behaviour syndromes 

observed with frontal lobe lesions can be related with striatal or thalamic lesions as 

recognizable circuit-specific behaviours. 

 

According to the idea that the basal ganglia switch between actions, the basal ganglia perform 

an operation critical for shifting mental set. The ability to shift is required for both producing 

novel behaviour and for combining behaviour patterns into novel sequences of behaviour of 

higher complexity. In the motor domain, a problem in initiating movements can be viewed as 

a deficit in set shifting. The basal ganglia are in a position to monitor activation across wide 

regions of the cortex, allowing a shift between different actions and mental sets by removing 

an inhibitory influence in selected neurons. This shifting hypothesis also holds the key to the 

basal ganglia’s role in learning. Dopamine is known to play a critical role in the reward 

system of the brain, providing the organism with neurochemical marker of the reinforcement 

contingencies that exist for different responses in the context of the current environment. 

Learning involves change in behaviour—either acquiring the appropriate response in an 

unfamiliar context or breaking a habitual response when contingencies change in a familiar 

context.  

 

1.5.6 Neural correlates of sequence processing 
 

1.5.6.1 Functional neuroimaging studies of natural and artificial syntax processing 

The left inferior frontal region has been suggested to play a role in several cognitive domains, 

including for example working memory (Baddeley, 1986, 2003; Baddeley et al., 1998), 

language processing (Bookheimer, 2002; Friederici, 2002; Hagoort, 2003, 2005; Kaan & 
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Swaab, 2002), and musical syntax (Jackendoff, 2002; Lerdahl & Jackendoff, 1983; Patel, 

2003). Additional evidence suggests that sequence learning depends on the left (Conway & 

Christiansen, 2001; Peigneux, Meulemans, Van der Linden, Salmon, & Petit, 1999) and the 

right inferior frontal region (Doyon, Owen, Petrides, Sziklas, & Evans, 1996). Moreover, it 

appears that the human left inferior frontal region is important for learning sequences which 

contain hierarchical structure (Gelfand & Bookheimer, 2003; Petersson et al., 2004). This 

suggests that the left inferior frontal region is engaged in the processing of structural aspects 

of cognitive representations and might provide a neural infrastructure for structural 

integration (Forkstam et al., 2006; Petersson et al., 2004). There are also evidence that the 

inferior frontal cortex is functionally subdivided (e.g., Bookheimer, 2002) which suggests 

some level of representational specificity as well as the possibility for interactive concurrent 

processing. Since none of these regions seem to be uniquely specific to linguistic syntax 

processing (see e.g. Kaan & Swaab, 2002) it is not unreasonable to suggest that syntax 

processing is in fact dependent on a functional network of interacting brain regions. This 

picture is similar to the one proposed by Hagoort (2003; 2005) in which the integration of 

various sources of linguistic information operates in parallel in a workspace for incremental 

unification of structured representation. Specifically, it is hypothesized that the left inferior 

frontal region subserves the unification space for language, one aspect of working memory.  

 

With respect to language, the left inferior frontal gyrus and in particular the Brodmann’s area 

(BA) 44 and 45 are implicated as a region involved in both syntactic comprehension and 

production (Bookheimer, 2002; Hagoort, 2003; Indefrey, Hagoort, Herzog, Seitz, & Brown, 

2001). This notion finds supports from both lesion data and functional neuroimaging 

investigations of natural syntax processing (cf., Stowe, Paans, Wijers, & Zwarts, 2004), as 

well as the distribution pattern of neural stimulations applied in order to disturb phonological, 

syntactic, and semantic processing (e.g., reviewed in Deacon, 1997). Syntax representations 

are likely created during comprehension even when the input is semantically un-interpretable. 

Two analyses of functional neuroimaging studies of language processing suggests that the 

most reliably replicable finding related to syntax parsing is localized to the left inferior 

frontal gyrus (BA 44 and 45) representing evidence for an involvement of Broca’s region in 

aspects of syntax processing (Indefrey, 2004), and further, that there appears to be some 

evidence for a functional specialisation with respect to the left inferior frontal region. 

(Bookheimer, 2002). Even though there was considerable overlap, there seemed to be 

tendencies, at a course spatial scale, indicating that the anterior-inferior part of the left 

inferior frontal gyrus (centred around BA 47) is likely related to aspects of semantic 

processing, while the posterior-superior part (centred on the posterior parts of 44 and 
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extending into the anterior parts of BA 6) is likely related to aspects of phonological 

processing. The greatest spatial distribution was observed in the syntactically related 

activations. However, the centre-of-mass of this distribution appears to be localized to the 

middle part of the left inferior frontal gyrus centered on BA 44 and 45. However, the issue of 

precise spatial localisation in functional neuroimaging is complex and it appears that spatial 

precision in group studies of higher cognitive functions is on the order of approximately 10 

mm (cf., Brett, Johnsrude, & Owen, 2002; Petersson, Nichols, Poline, & Holmes, 1999b). 

 

The classical model for language organisation in the brain (Broca, 1861; Wernicke, 1874) 

relates language production to the anterior language regions in the dominant hemisphere, 

most commonly the left, centred on the posterior left inferior frontal region, and language 

comprehension to the posterior language regions centred on the posterior left superior 

temporal (restricted Wernicke’s area) and surrounding parietotemporal regions (extended 

Wernicke’s area; see section 1.5.4). However, this simple mapping of production and 

comprehension components onto anterior and posterior language related brain regions have 

since been re-examined (see e.g., Caplan, 1992; Kaan & Swaab, 2002; Zurif, 1990, 1998). 

Cortical electrical stimulation mapping has indicated that aspects of syntax processing may 

be related to the left posterior middle-inferior frontal, posterior superior temporal, and 

inferior parietal regions (Ojemann, 1983; Ojemann & Mateer, 1979). Also, several 

neuroimaging studies (for reviews see e.g., Bookheimer, 2002; Kaan & Swaab, 2002) have 

indicated that these regions may be associated with different aspects of syntax processing, 

including the syntactic complexity of sentences (Caplan, Alpert, & Waters, 1998, 1999; 

Caplan, Alpert, Waters, & Olivieri, 2000; Cooke, Zurif, DeVita, Alsop, Koenig, Detre, Gee, 

Pinango, Balogh, & Grossman, 2001; Inui, Otsu, Tanaka, Okada, Nishizawa, & Konishi, 

1998; Just, Carpenter, Keller, Eddy, & Thulborn, 1996; Stromswold, Caplan, Alpert, & 

Rauch, 1996), grammatical error detection (Embick, Marantz, Miyashita, O'Neil, & Sakai, 

2000; Indefrey et al., 2001; Kang, Constable, Gore, & Avrutin, 1999; Ni, Constable, Mencl, 

Pugh, Fulbright, Shaywitz, Shaywitz, Gore, & Shankweiler, 2000), or sentence matching 

under a syntactic/lexical manipulation (Dapretto & Bookheimer, 1999).  

 

As noted earlier Chomsky has argued that children’s capacity to acquire natural languages 

depends on an innate universal grammar (UG) that constrains the form of possible human 

languages (Chomsky, 1965, 1986; Chomsky & Lasnik, 1995). A study by Musso et al. (2003) 

attempted to investigate the neural correlate of acquiring new linguistic competence by 

teaching adult participants two types of rules, UG consistent rules and rules which have not 

been found in natural languages. They reported relative activation over time in Broca’s region 
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for the former and relative decreased activation for the latter. These results are broadly 

consistent with the observations of Opitz & Friederici (2003). Musso et al. (2003) suggested 

that in Broca’s region, biological constraints and language experience interact to enable new 

linguistic competence to develop. The subjects in the study of Musso et al. (2003) were 

explicitly taught the rules they had to learn, information was provided describing each rule 

with example sentences clarifying the rule. The subjects then practiced on correct and 

incorrect examples and performance feedback were provided. However, they were not 

provided with any information about phonological aspects of the new vocabulary. Thus, as 

noted by Marcus et al. (2003), one may ask whether the results reported reflect language 

acquisition as such. Marcus et al. (2003) also suggest a number of alternative interpretations 

in terms of working memory, complexity demands, or linguistically independent domain-

general rule learning. 

 

1.5.6.2 Implicit and explicit sequence learning and the medial temporal lobe 

The medial temporal lobe memory system is critically involved in declarative and episodic 

memory (Cohen, Barch, Carter, & Servan-Schreiber, 1999; Eichenbaum & Cohen, 2001; 

Squire, 1992; Squire et al., 1993). The serial reaction time (SRT) task introduced in section 

1.3.9 involves several cortical and subcortical structures as investigated by FMRI and lesion 

studies (Daselaar, Rombouts, Veltman, Raaijmakers, & Jonker, 2003; Doyon, Penhune, & 

Ungerleider, 2003; Grafton, Hazeltine, & Ivry, 1995; Rauch, Whalen, Savage, Curran, 

Kendrick, Brown, Bush, Breiter, & Rosen, 1997), including motor regions, parietal regions, 

the basal ganglia, and the cerebellum, but implicit SRT has until recently appeared to be 

independent of the medial temporal lobe (MTL) memory system (including the hippocampus, 

cf. e.g., Curran, 1998). Other studies suggest however that the MTL may be involved in both 

implicit and explicit learning of visuomotor sequences (Schendan, Searl, Melrose, & Stern, 

2003). The important commonalities in studies that report MTL activation is that they 

implement performance feedback to the subjects. For example, MTL activation have been 

reported during learning of material generated from artificial grammars/languages using a 

feedback approach (Fletcher, Buchel, Josephs, Friston, & Dolan, 1999; Opitz & Friederici, 

2004; Strange, Henson, Friston, & Dolan, 2001). In a study of the weather prediction task (a 

category learning task in which good/bad weather is probabilistically determined by card-

sequences), MTL activity was associated with receiving positive feedback but not with 

correct classification (Seger & Cincotta, 2005), suggesting that the MTL might be involved in 

associative feedback prediction, perhaps based on sequence recognition at some level. 

Similarly, the explicit character of the task seems to be a likely explanation when observing 

learning related effects in the medial temporal lobe (Opitz & Friederici, 2003; Strange, 
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Fletcher, Henson, Friston, & Dolan, 1999). Results from a case study of a densely amnesic 

patient with bilateral MTL lesions (Gagnon, Foster, Turcotte, & Jongenelis, 2004) indicate 

that this region has a limited role in implicit learning of recurrent sequences, both in the SRT 

and Hebb’s supra-span learning task (in which subjects echo digit strings in a series in which 

every third string is identical; learning is quantified in terms of increased accuracy on 

repeated strings compared to non-repeated). These findings are consistent with previous 

studies on implicit sequence learning (Reber & Squire, 1994; Reber & Squire, 1998) and 

artificial grammar learning (e.g., Knowlton & Squire, 1996; Knowlton & Squire, 1997) in 

amnesic patients as well as a rat model of the SRT task (Christie & Dalrymple-Alford, 2004). 

Similarly, using a computer version of the radial-arm maze (cf., DeCoteau & Kesner, 2000), 

Hopkins and colleagues (2004) found that amnesic subjects with selective MTL (hypoxic) 

lesions learned procedural sequences to the same degree as controls when compared to 

random sequences. In contrast, the controls performed significantly better than the amnesic 

patients on declarative sequences. 

 

Whereas MTL lesions typically impair explicit but not implicit learning and memory, cases 

of implicit impairment and explicit sparing following basal ganglia lesions have been less 

consistent. It has been suggested that implicit and explicit sequence learning can proceed 

concurrently without interference (Jimenez & Mendez, 1999), although explicit processing 

can interfere with implicit learning (Schmidtke & Heuer, 1997), suggesting that explicit and 

implicit processes can interact during learning. As an example, in a study of standard and 

alternating SRT tasks, Fletcher and colleagues (2004) investigated the interaction between 

implicit and explicit learning. The results suggested right prefrontal, caudate nucleus, 

thalamus, and MTL engagement during sequence learning. The right prefrontal engagement 

seemed to be related to the explicit acquisition of alternating sequence structure. They 

suggested that explicit attempts to learn the alternating sequence reduced implicit learning 

and behaviour data indicated that the reduction in implicit acquisition was related to the 

suppression of learning itself rather than the expression of acquired knowledge. While they 

observed a negative frontothalamic interaction irrespective of task instruction with the 

standard SRT task, they observed a positive correlation between the right prefrontal region 

and the left thalamus in the explicit compared to the implicit alternating SRT condition.  

 

1.5.6.3 Implicit and explicit sequence learning and subcortical structures 

Implicit motor learning as indexed by the SRT task has been shown to be impaired in 

Parkinson patients (Smith & McDowall, 2004). However, in a study using dual-task 

conditions to reduce influence of attention and strategic learning, no difference between 
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Parkinson patients and controls was found (Kelly, Jahanshahi, & Dirnberger, 2004). Kim and 

colleagues (2004) found implicit SRT effect in controls but not in early stage Huntington 

patients, implicating the importance of intact basal ganglia structures in implicit motor 

sequence learning. In implicit artificial grammar learning no such deficit in early stage 

Huntington patients has been found (Forkstam, Voermans, Dekkers, Kremer, Fernández, & 

Petersson, In submission; Knowlton, Squire, Paulsen, Swerdlow, & Swenson, 1996b). In 

Forkstam et al. (In submission), despite similar behavioural performance, the Huntington 

patients showed an atypical fronto-striatal activation pattern compared to controls (see study 

4 of this thesis). In a study of individuals with unilateral cerebellar lesions (stroke) on an 

implicit motor learning task (sequence tracking) evidence for a cerebellar role in implicit 

motor learning was provided (Boyd & Winstein, 2004). They suggested that the cerebellum 

supports the formation of predictive strategies for the timing of motor responses and that this 

function is not lateralized but that cerebellar output may affect the formation of an internal 

model for timing movements in both extremities. Moreover, Torriero and colleagues (2004) 

showed that repetitive transcranial magnetic stimulation of the lateral cerebellum interferes 

with the acquisition of SRT task sequence knowledge and provided some evidence for 

hemispheric cerebellar differences with respect to the expression of learning. Representation 

of sequential structure can occur with respect to the order of perceptual events or the order in 

which actions are linked. Bischoff-Grethe and colleagues (2004) showed with event-related 

FMRI that transfer type (motor vs. perceptual) interacted with sequence retrieval (sequencing 

vs. rest) which revealed significantly greater activation in the bilateral supplementary and 

cingulate motor areas, ventral premotor cortex, left caudate, and inferior parietal lobule for 

subjects in the motor group suggesting successful sequence retrieval at the response level. 

Lungu and colleagues (2004) suggested that cortical brain regions including the prefrontal 

and motor regions encode the transitions from one element to the next early in learning, while 

the basal ganglia encode the full sequence structure toward the end of learning. 

 

1.6 SUMMARY 
Natural language acquisition is a largely spontaneous, non-supervised, and self-organised 

process. The structural aspects of natural language are acquired at an early age and largely 

without explicit feedback (Chomsky, 1965; Jackendoff, 2002; Pinker, 1994). In contrast, 

reading and writing are examples of typically explicitly taught cognitive skills (see e.g., 

Petersson, Ingvar, & Reis, 2009). The artificial grammar learning (AGL) paradigm has been 

proposed as a suitable model for the acquisition of structural aspects of language (Gomez & 

Gerken, 2000; Petersson et al., 2004) and for exploring differences between human and 

animal learning relevant to the faculty of language (Hauser et al., 2002). The underlying 
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grammar supports unbounded parsing and generation, and the paradigm comprise implicit 

learning on acquisition sets of grammatical examples alone without performance feedback 

(Forkstam et al., 2006; Petersson et al., 2004). It is likely that natural and artificial language 

acquisition share implicit acquisition mechanisms, as originally suggested by Reber (1967). 

Evidence from functional neuroimaging data is consistent with this suggestion. Brain regions 

related to natural language syntax are engaged in artificial syntax processing. In particular, 

the left inferior prefrontal cortex centered on Broca’s region (Brodmann’s area, BA, 44/45) is 

sensitive to artificial syntax violations (Forkstam et al., 2006; Petersson et al., 2004). This 

region is specifically sensitive to the structural properties rather than to local linear surface 

features of the input items. Additional support for the implicit character of artificial grammar 

learning comes from lesion studies on amnesic patients. Knowlton and Squire (1996) 

investigated artificial grammar learning in amnesic patients and normal controls on 

grammaticality classification. Both groups performed similarly on grammaticality 

classification, while the amnesic patients showed no explicit recollection of either whole-item 

or substring information, suggesting that artificial grammar learning depends on the implicit 

acquisition of structural knowledge (i.e., rule-based representations). Alternative theoretical 

frameworks have questioned the abstract (rule) acquisition picture and suggest instead that 

grammaticality classification utilizes exemplar-based representations (Vokey & Brooks, 

1992) or substring representations (Perruchet & Pacteau, 1991). In order to address this issue 

and to control as well as test for any potential substring dependency, the ACS measure was 

developed (Knowlton & Squire, 1996; Meulemans & Van der Linden, 1997). Associative 

chunk strength (ACS) is a statistical measure of the associative familiarity of local substrings 

(e.g., bi-and trigrams) between a classification item and the acquisition set. It is quantified in 

terms of the frequency with which its substrings occur in the acquisition set. In this approach, 

acquired structural and instance specific information is quantified by grammaticality and 

ACS, respectively. From several studies which control ACS it is clear that structural 

knowledge is acquired (Forkstam et al., 2006; Meulemans & Van der Linden, 1997).  

 

Evidence suggests that natural and artificial grammar learning can be conceptualized both in 

terms of structure based rule acquisition and surface based statistical learning mechanisms. 

We have proposed an alternative view on artificial grammar learning between these two 

conceptualisations (Forkstam et al., 2006; Petersson, Grenholm, & Forkstam, 2005) where 

proposal hierarchically structured information is recursively constructed from primitive 

structures which are stored in long-term memory. On-line integration of structured 

information could in this conceptualization result from the unification or successive merging 

of primitive structures, which are retrieved from long-term memory to the unification 
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component of working memory when activated. If a mechanism for on-line structural 

integration is already in place there is no need for a specific rule acquisition mechanism in 

order to establish a parsing process. Rule acquisition is instead accomplished by lexical 

acquisition of structured representations and their subsequent on-line unification (cf. e.g., 

Hagoort, 2004; Jackendoff, 2007; Vosse & Kempen, 2000). In this way the proposal re-traces 

a major trend in theoretical linguistics in which syntax is shifted into the mental lexicon in 

such a way that the distinction between lexical items and grammatical rules dissolves 

(Culicover & Jackendoff, 2005; Jackendoff, 2002, 2007).  

 

The typical artificial grammar learning experiment includes a short acquisition session 

followed by a classification test. During the acquisition phase, participants are engaged in a 

short-term memory task using an acquisition sample of symbol sequences generated from an 

artificial grammar, typically a right-linear phrase structure grammar. Subsequent to the 

acquisition session, the subjects are informed that the items were generated according to a 

complex system of rules, without providing information about the rules, and the subjects have 

to classify new items based on their immediate intuitive impression (i.e., guessing based on 

gut-feeling), as grammatical or non-grammatical. The subjects typically perform reliably 

above chance, suggesting successful knowledge acquisition about relevant aspects of the 

underlying grammar. Subjects typically are unable to provide relevant motivations for their 

classification decisions (for reviews see Forkstam & Petersson, 2005; Seger, 1994; Stadler & 

Frensch, 1998), and this suggests that the classification performance is based on implicit 

acquisition mechanisms. However, it can be argued on principled grounds that invoking 

grammaticality judgments might not be the optimal way of accessing implicit knowledge, 

since the grammaticality classification instruction may induce a problem-solving strategy 

that, in principle at least, might encourage explicit processing (Manza & Bornstein, 1995; 

Newell & Bright, 2001). An alternative approach to probe implicit knowledge is based on the 

mere exposure effect. This effect refers to the finding that repeated exposure to a stimulus 

induces an increased preference for that stimulus compared to novel stimuli (Zajonc, 1968). 

For this reason in some of the studies of this thesis we use preference classifications to be 

able to keep the subjects completely unaware of the objectives of the task throughout the 

experiment. 
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CHAPTER 2 —  METHODOLOGICAL BACKGROUND 
 

2.1 WHOLE BRAIN INVESTIGATIONS 
Cognitive brain function is a multi-level phenomenon and the study of brain function is 

consequently multi-disciplinary in nature. Detailed studies of adaptive processes and brain 

function will demand and benefit from a multi-disciplinary conceptual framework, using 

concepts from different scientific fields of research, including basic neuroscience, 

neuropsychology, cognitive neurosciences, linguistics, biological plausible and artificial 

neural network theory, machine learning and statistical learning theory (Arbib, 2003; Ashby, 

Alfonso-Reese, Turken, & Waldron, 1998; Gazzaniga, 1995; Gazzaniga, 2000, 2004; 

Rumelhart & McClelland, 1986; Schacter & Tulving, 1994a).  

 

The methods chosen for the research described are functional neuroimaging methods that 

image brain functions (e.g., FMRI), in conjunction with behaviour methods from cognitive 

neuroscience and neuropsychology (e.g., classification and reaction time paradigms), as well 

as methods capturing the neurophysiological dynamics of human brain functions (e.g., 

electroencephalogram or EEG). Imaging methods are useful and well adapted for the study of 

dynamic processes in the human brain since it is possible to sample data with a reasonable 

resolution in time and space, a few seconds as well as a few millimetres respectively. This 

has the consequence that functional neuroimaging is a good tool to bridge the field between 

microscopic descriptions of the brain and its functions on one hand, and macroscopic 

descriptions of cognitive processes and behaviour on the other (Buckner & Koutstaal, 1998; 

Pascual-Leone, Bartres-Faz, & Keenan, 1999; Posner & Raichle, 1994). 

 

Moreover, brain function is not only characterized by which regions are active but also by the 

interaction between different regions. With functional neuroimaging methods it is also 

possible to study the interactions between different brain regions. But to capture the hasty 

processes of networking neurons one has to combine functional neuroimaging methods with 

the more direct techniques such as EEG measurements of voltage fluctuations, or 

magnetoencephalogram measurements of magnetic field differences over time at the scalp 

(Menon, Ford, Lim, Glover, & Pfefferbaum, 1997; Opitz, Mecklinger, Friederici, & von 

Cramon, 1999). 
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Further inference for causal neuronal involvement in the processing of a cognitive function is 

derived from lesion studies (used e.g. in study 4 of this thesis) and from studies on 

transcranial magnetic stimulations or TMS (Walsh & Pascual-Leone, 2003). However, in the 

domain of functional neuroimaging, neural regions correlating with dysfunction suggest a 

break in a functional system, not typically a suppression or modulation of a subfunction 

within that system. Similarly, 

…”the removal of any of several widely spaced resistors may cause a radio set 

to emit howls, but it does not follow that howls are immediately associated with 

these resistors, or indeed that the causal relation is anything but the most 

indirect. In particular, we should not say that the function of the resistors in the 

normal circuit is to inhibit howling. Neurophysiologists, when faced with a 

comparable situation, have postulated ‘suppressor regions’ ” (Gregory, 1961). 

 

2.2 METHODS 
In cognitive neuroscience, when investigating the living human brain, experimental strategies 

of cognitive and experimental psychology are combined with techniques allowing detailed 

investigations of brain activity correlating with cognition. In the process of constructing 

controlled experiments, our aim is that our results in the end will help to disentangle brain 

events that actually support cognition with brain events that merely correlate with unspecific 

(cognitive) processes. In this enterprise the problem is to capture the living brain with at the 

same time both time and space accuracy.  

 

To succeed with such reversed engineering of brain function and brain structure we have to 

keep in mind the kind of correlational connectivity that underlie our methodological 

approach. We need to keep track on the scale of investigation, whether we investigate our 

objective best on the level of transmitter substance, receptor, membrane potential, neuronal 

spike or train of spikes, one-cell dendritic input and axonal output system, small group of 

neuronal network, or large-scale neuronal network. Finally, we need to have some idea what 

the effective behaviour variable might be, e.g. perception and sensory input categorisation, 

motor output adjustment, adjustment of reflexive activity, hormonal output control, emotional 

processes, or language processes. 

 

In three of the studies of this thesis we used functional neuroimaging to correlate oxygen 

uptake of the neural substrate with the behaviour of the individuals. Functional neuroimaging 

methods provide experimental access to the living human brain. The techniques have 
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developed rapidly during the last few decades. A framework of well described theories and 

empirically validated methods of hemodynamically based functional neuroimaging methods 

are now available. Positron emission tomography (PET) and functional magnetic resonance 

imaging (FMRI) are nowadays extensively used to investigate how neuronal processing 

correlates with changes in behaviour or cognitive processing (Frackowiak, Friston, Frith, 

Dolan, Price, Zeki, Ashburner, & Penny, 2004; Raichle, 1994). Any given method differ in 

its underlying assumptions and approximations employed, and the empirical data have to 

fulfil these assumptions and approximations for optimal use of the method. Of equal 

importance is the robustness of the methods used in analyzing the data. This notion 

emphasizes the importance of empirical validation and the explicit characterisation of the 

inherent limitations of a given method. Nevertheless, the standard functional neuroimaging 

methods provide useful means to investigate how networks of brain regions interact due to 

the whole brain coverage and the fact that primary data from different brain regions can be 

sampled in space and time on an approximately equal basis. When the underlying 

assumptions and limitations are taken into account, the various standard approaches used 

generally serve their purposes well (Petersson, Nichols, Poline, & Holmes, 1999a; Petersson 

et al., 1999b). 

 

2.3 THE COUPLING BETWEEN NEURAL ACTIVITY AND REGIONAL 
CEREBRAL BLOOD FLOW 

The neurophysiological basis of functional neuroimaging is the relatively tight and roughly 

linear coupling between the regional cerebral blood flow, the metabolic activity, and the 

neural electrophysiological activity (Gusnard, Raichle, & Raichle, 2001; Logothetis, Pauls, 

Augath, Trinath, & Oeltermann, 2001; Rees, Friston, & Koch, 2000; Scannell & Young, 

1999). At rest the human brain consumes approximately 20% of the oxygen and metabolic 

supply needed by the body, although the brain accounts for only approximately 2% of the 

body mass (Raichle, 2001). The oxygen is used in the oxidative metabolism of glucose to 

supply the brain with energy in the long-term (Raichle, 1997). Brief increases in neural 

activity of a given brain region implies that the energy and oxygen requirements in the given 

region increases and is accompanied by an increase in blood flow as well as glucose 

consumption that exceed the increase in oxygen consumption (Fox, Raichle, Mintun, & 

Dence, 1988). The relationship between oxygen consumption and blood flow is not 

proportional. In a region of momentary activity, the increase in glucose is partly broken down 

anaerobically by glycolysis despite of overcompensation in blood supply. As a result there is 

a lowered extraction fraction of oxygen that results in increased oxygen content in the blood 

nearby (Raichle, 2001). The study of Logothetis and colleagues (Logothetis, Guggenberger, 
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Peled, & Pauls, 1999; Logothetis et al., 2001) suggests that a spatially restricted increase in 

the blood-oxygen-level dependent (BOLD) FMRI signal directly reflects an increase in 

neural activity. When they recorded action potentials, local field potentials, and the BOLD 

signal in parallel, local field potentials correlated somewhat better with the observed BOLD 

signal than the action potentials. Local field potentials arise from the input to as well as 

integrative processes within neurons. These findings are consistent with autoradiographic 

measurements of glucose consumption by different brain regions in rats (Raichle, 2001). The 

signal-to-noise ratios for neural signals recorded directly from the brain are much greater than 

the accompanying FMRI signal (Raichle, 2001), suggesting that the absence of an FMRI 

signal does not necessarily imply an absence of information processing in a particular brain 

region. 

 

The dominant energy consumption in the brain stems from maintenance at appropriate levels 

of ionic concentrations and membrane potentials. Neuronal signalling evokes ionic fluxes 

across membranes that need to be restored and most of these fluxes are supported directly or 

indirectly by the Na/K-ATPase and other ionic pumps (Siesjö, 1978). In FMRI, the sensitivity 

of the measured signal is based on the related increase in oxygenated blood locally. The 

BOLD signal correlates well with local field potentials generated to a large extent in the 

postsynaptic dendritic component where the restoration of large ionic fluxes is generated 

from the neuronal input. The signal is a composite net-activity and it is likely that regional 

activity is a mixture of both excitatory and inhibitory components. However, given that 

inhibitory signals give rise to hyperpolarization and less ionic leakage post-synaptically, the 

recorded signal might be more closely related to local excitatory activity (Shinohara, 

Dollinger, Brown, Rapoport, & Sokoloff, 1979). 

 

2.4 IMAGE PROCESSING AND STATISTICAL ANALYSIS 
The BLOD-FMRI data were subjected to several steps of image- and statistical analysis 

(Figure 2.1). Most functional neuroimaging studies are analyzed as group studies because we 

are typically interested in commonalities over participants that generalize to the population 

sample. Another reason for conducting group investigations is to increase the signal-to-noise 

ratio and thereby the statistical power of a given experiment. In all studies of this thesis the 

FMRI data were analyzed through out using the statistical parametric mapping software, 

SPM (http://www.fil.ion.ucl.ac.uk/spm). Functional neuroimaging data have a natural 3D 

structure and are pre-processed in two main steps. Data are first spatially normalised to 

account for inter-individual anatomical variation using spatial normalisation procedures. Data 

are then low-pass spatial filtered using 3D isotropic Gaussian convolution kernels to account 
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for residual anatomical variation and to increase signal to noise ratios. The typical way to 

analyse this type of data is a mass-univariate approach to each voxel (the lowest sample 

resolution volume) followed by subtraction analyses between conditions (Petersson et al., 

1999a, 1999b). 

 

 

 

Figure 2.1 The general data analysis flow-chart in functional neuroimaging. The primary 

functional neuroimaging data are pre-processed (realigned, anatomically normalised, and 

spatially low-pass filtered), a statistical model for the data is created, model parameters are 

estimated and a test statistic is chosen in order to conduct statistical inference taking into 

account the multiple non-independent comparisons. 

 

During the last decades a body of well described theories and empirically validated methods 

have been developed, providing a framework for investigating functional neuroimaging data 

and making scientific inferences based on statistical analysis. Statistical models make explicit 

as well as implicit assumptions about data. Of importance are how well these assumptions or 

approximations are fulfilled by the empirical data, and the robustness of the methods used 

when these are not fully met. The primary functional neuroimaging data are pre-processed 

(realigned, anatomically normalised, and spatially low-pass filtered), a statistical model for 

the data is created, model parameters are estimated and a test statistic is chosen in order to 

conduct statistical inference taking into account the multiple non-independent comparisons 

and possible auto-correlation (Figure 2.1). A short outline of the different processing steps 

involved in analyzing functional neuroimaging data will now follow. 
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2.4.1 Image pre-processing 
 

2.4.1.1 Realignment and anatomical normalisation 

In a functional neuroimaging study several measurements of 4d images (i.e., a time-series of 

3d images) are acquired from several participants with the different experimental conditions 

occurring in a balanced order. In this thesis some hundreds BOLD-FMRI scans were acquired 

for each subject in each study. In order to minimize head movement during the experiment 

the participants were positioned in the MR scanner during the experiment with the head 

comfortably and softly fixated inside the scanner head coil. Small head movements on the 

order of 1 – 3 mm still occurred, and to compensate for this movement the images were 

realigned (cf., Ashburner & Friston, 1997) such that the brain in each volume of the time-

series of a given individual occupied the same position in image space. 

 

Since the brains of different individuals are anatomically different, a necessary requirement 

for group studies is to represent data in a standardized anatomical space. This requires 

anatomical normalisation to transform individual data into the standardized space. 

Anatomical normalisation aims to adjust for anatomical differences in order to allow data to 

be averaged across subjects and transforms the image time-series of the individual participant 

into a standardized anatomical space. In the studies of this thesis either the stereotactic space 

defined by the SPM template (http://www.fil.ion.ucl.ac.uk/spm/) or a study specific template 

was used. 

 

2.4.1.2 Functional-anatomical variability and spatial filtering 

There have been several attempts to assess the residual functional-anatomical variability after 

realignment and anatomical normalisation in more or less low-pass filtered data. These 

attempts have often used the variability in location of the local maximum statistic (peak 

location). Inter-subject standard deviations of the peak co-ordinates has been estimated to be 

on the order of 5-10 mm (Fox & Pardo, 1991; Hasnain, Fox, & Woldorff, 1998; Ramsey, 

Kirkby, Van Gelderen, Berman, Duyn, Frank, Mattay, Van Horn, Esposito, Moonen, & 

Weinberger, 1996). The intra-individual variability can also be significant, even for robust 

primary motor activations (Hunton, Miezin, Buckner, van Mier, Raichle, & Petersen, 1996). 

This variability increases when data from different laboratories are compared (Poline, 

Vandenberghe, Holmes, Friston, & Frackowiak, 1996; Senda, Ishii, Oda, Sadato, 

Kawashima, Sugiura, Kanno, Ardekani, Minoshima, & Tatsumi, 1998). This suggests that 
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activation foci that are less than 10 mm apart cannot be reliably distinguished (Grabowski, 

Frank, Brown, Damasio, Boles Ponto, Watkins, & Hichwa, 1996). 

 

The inter-individual residual variability in functional anatomy generally exhibits spatial 

structure and is dependent on the algorithm used for normalisation. Simulation studies 

indicate that a reduction of registration (realignment) error and a minimization of the residual 

anatomic variability can significantly improve signal detection sensitivity (Worsley, Marrett, 

Neelin, Vandal, Friston, & Evans, 1996). In the presence of residual functional-anatomical 

variability the effect of inter-subject averaging amounts to a spatial filtering effect. Thus, if 

the spatial-scale of the filter matches the inherent scale of functional-anatomical variability in 

the population, no or little spatial information is lost. In general, using a voxel-based 

approach, it is important to reduce the impact of miss-registration and inter-individual 

residual functional-anatomical variability. A common strategy is to spatially low-pass filter 

the data either at reconstruction or with a suitably chosen convolution kernel (e.g., an 

isotropic 3D Gaussian kernel). Spatial filtering, which in effect is a local weighted averaging 

procedure, also increase the local equivalence of the voxel data across measurements and 

individuals and thus the validity of voxel-based statistical models. 

 

Filtering data spatially may or may not increase the signal to noise ratio, depending on the 

relation between the size and shape of the signal and the convolution kernel used. This 

relation between the signal size/shape and the characteristics of convolution kernel can be 

understood in the light of the matched filter theorem (Rosenfeld & Kak, 1982). This theorem 

states that a signal in a background of white noise is detected with optimal sensitivity using a 

convolution kernel that matches the size and shape of the signal. It should be noted that the 

situation is slightly more complicated when the noise component is spatially autocorrelated, 

which typically is the case with hemodynamic functional neuroimaging data. The result of the 

matched filter theorem serves as a good approximation, if the spatial extent of the signal is 

large compared to the extent of the autocorrelation. If this is not the case the choice of an 

optimal filter is more complicated, and the autocorrelation has to be taken into account when 

choosing the filter. These issues apply similarly to signals in the temporal domain. 

 

The objective of spatial filtering is mainly related to minimizing individual differences in 

residual functional-anatomy after anatomical normalization. Spatial filtering might also 

increases the signal-to-noise ration, since the power of the residual spatial noise is usually 

dominant in the higher spatial frequencies. Moreover, convolving the data with a Gaussian 
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kernel conditions the data to conform more closely to Gaussian random field theory. One of 

the mechanisms behind this is the fact that filtering amounts to a weighted averaging and it 

follows heuristically from the central limit theorem of probability theory that random 

variables averaged in this way converge towards a Gaussian distribution. In our studies, we 

have generally filtered the data with a 3D isotropic Gaussian kernel of 10 mm full-width-at-

half-maximum (FWHM). 

 

2.5 STATISTICAL MODELING AND ESTIMATION 
 

2.5.1 The general linear model 
Functional specialization or functional segregation is one central principle that has emerged 

in functional neuroimaging and in cognitive neuroscience at large. The idea of functional 

specialization rests on the hypothesis that different brain regions are specialized and 

implement different computations or operations on cognitive representations. This principle 

is reflected in the general linear model approach, a framework that encompasses all basic 

univariate models, including the ANOVA/ANCOVA and multiple regression models. In the 

general linear model framework n observations or response variables from a single image 

voxel are represented as the data vector Y of size n x 1. The p effects and predictor variables 

are represented as p column vectors also of length n forming the design matrix X of size n x 

p. The fixed regression parameters are represented as a column vector β of length p. The 

residual random error is written as the column vector ε of length n. It is typically assumed 

that ε is on the average zero and dependent (temporally autocorrelated and correlated as in 

repeated measures designs). The concise representation of the general linear model Y = Xβ+ε 

is: 

 

E(Y) = Xβ, Cov[Y] = Cov[ε] = T2V, 

 

where V is the n × n positive definite matrix. The usual normality assumption is only needed 

for statistical inference and no specific distributional assumptions are made. According to the 

Gauss-Markov theorem, the linear unbiased estimate of β that is best in terms of minimizing 

the squared estimation error is given by (least square estimation after pre-whitening): 

 

β̂  = (XTX)-1XTY, and s2 = 1/(n-p)(Y-Xβ)T(Y-Xβ), 
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β̂  = (XTV-1X)-1XTV-1Y, 

 

where β̂  and s2 are the estimate of the unknown β and σ2, respectively. Note that Y - Xβ is 

the residuals, and the form of s2 is just the mean squared residuals (the n-p reflecting the 

dimensionality of the residuals that are left after fitting p independent effects). Tests of linear 

combinations of the parameters can be made under the normality assumption, which gives: 

 

C β̂  ~ N(C β̂ , C(XTV-1X)-1CT), 

 

where C is a row vector of length p, typically referred to as a contrast (cf., Frackowiak et al., 

2004). 

 

2.5.2 Baseline fluctuations and global normalisation 
Functional neuroimaging experiments test hypotheses regarding regionally specific changes 

in neuronal activity. In BOLD FMRI these changes are indirectly reflected in the associated 

changes in regional susceptibility. Imaging experiments typically focus on relative regional 

differences. This can be problematic since variability in global factors often induces baseline 

fluctuations of both physiological (e.g., changes in pCO2 levels and circulatory system 

changes) and of imaging system related origin (e.g., between-run variability in FMRI gain, 

see e.g., Frackowiak et al., 2004). Baseline fluctuations may be large, potentially hiding the 

effects of interest, and it is necessary to account for this variability in some manner. 

Measurements of global effects are predicated on the assumption that the variability in global 

effects adequately represent the baseline fluctuations and that the experimentally induced 

regional changes are superimposed on this. Several approaches to account for global changes 

have been developed, and how to explicitly model or remove the variability in baseline 

activity have been proposed and compared. It has been shown that most functional 

neuroimaging studies on normal subjects are roughly independent of the global normalisation 

method chosen (Aguirre, Zarahn, & D'Esposito, 1998). In this thesis we consistently used the 

proportional scaling approach. The problem of estimating baseline fluctuations should be less 

complicated if closely matched activation and reference conditions are investigated. The 

problem might become significant with increasing activation differences between conditions, 

emphasizing the need for carefully designed experiments that include active reference 

conditions. 
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2.5.3 Choosing reference state 
If the activation and reference conditions differ in some relevant specific aspect of cognitive 

processing, the locations of statistically significant differences in signal between conditions 

will define brain regions related to this difference. The functional map generated by an 

activation condition will vary with the choice of reference condition, an adequate choice of 

comparative conditions is critical. In the simplest comparative analysis, the subtraction 

analysis, only parts of the underlying functional network will be observed while common 

components activated to a similar degree will not. Results obtained with the subtraction 

approach can only be interpreted as relative differences since a canonical reference state or 

baseline condition are difficult to define. This introduces a complication in the interpretation 

of functional maps, a fundamental ambiguity in the activation approach. Imagine a relative 

increase in regional cerebrospinal fluid in a certain condition A compared to another 

condition B. In relation to a third condition C this can either represent activation in condition 

A, a deactivation in condition B, or a combination of both.  

 

The formulation and specification of the appropriate choice of reference condition(s) is an 

important and difficult issue and must be addressed at the design stage of the experiment. For 

a certain activation condition, the appropriate reference condition(s) depends crucially on the 

questions that the experimental data are supposed to address. With several reference 

conditions, multiple perspectives on the activation condition can be taken, for instance by 

using both closely matched control conditions and so-called low-level control conditions. 

With the closely matched control conditions that ideally differ only in a single aspect from 

the activation condition one can test for specifically induced effects, while with the low-level 

control condition (e.g., rest with eyes closed or visual fixation) one can detect common brain 

regions involved in different conditions.  

 

The main complication in the interpretation of subtraction analysis results is under which 

comparisons a brain function is well approximated as a linear mixture of component effects. 

The interpretation of results from a subtraction approach is difficult and may strongly depend 

on the choice of experimental component tasks. This is particularly problematic if there is no 

canonical way of decomposing an overall task into components. It is necessary to develop 

new approaches that explicitly address the fact that brain functions emerge from non-linear 

interactions between components. Steps in this direction are the network analysis approaches 

of structural equations modelling (McIntosh & Gonzalez-Lima, 1994) and dynamical causal 

modelling (Friston, Harrison, & Penny, 2003). With the activation approach it is only 

possible to detect quantitative differences in information processing, or qualitative 
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differences accompanied by quantitative changes, network approaches can in principle detect 

qualitative differences in the pattern of interactions between brain regions without any 

changes in mean activity. 

 

2.6 HYPOTHESIS TESTING AND STATISTICAL INFERENCE 
The parameters in the general linear model are always assessed relative to their uncertainty in 

a statistical hypothesis-testing framework. What is searched for is if the magnitude of the 

contrast of parameter(s) is substantial with respect to its uncertainty, its standard deviation. In 

hypothesis testing the null hypothesis is assessed with a certain test statistic, a function of the 

data that is sensitive to departures from the null hypothesis and reflects the effects of interest. 

The observed statistic is compared to its distribution under the null hypothesis, yielding a P-

value. A small P-value indicates that there is little support for the null hypothesis. The 

interpretation is more subtle however. The P-value is the probability of observing an equal or 

larger statistic value under an identical replication of the experiment assuming that the null 

hypothesis is true. It therefore is a statement about the data under the null hypothesis, neither 

the null hypothesis itself nor the alternative hypothesis.  

 

In the decision theoretic framework for hypothesis testing, a pre-specified level of 

significance is used to accept or reject the null hypothesis (Bickel & Docksum, 1977). In 

alternative frameworks, the smallness of the P-value is viewed as a measure of the strength of 

the empirical evidence against the null hypothesis (Edgington, 1995). This perspective views 

the size of P-value as representing a smooth transition from empirical evidence supporting 

the alternative hypothesis to empirical evidence in favour of the null hypothesis. If one rejects 

the veracity of the null hypothesis whenever the P-value is below a critical value α then a 

valid test will control the false positive rate at α. The false negative rate β is on the other 

hand related to the statistical power, 1-β, the probability of rejecting the null hypothesis when 

it is false.  

 

The regression approach in functional neuroimaging fits univariate models at every voxel (the 

number of voxels is typically on the order of 105). Effects of interest are tested in each 

individual model by generating and assessing a statistic image, usually by fitting the same 

univariate model at each voxel. The test procedures conform to the standard structure of 

hypothesis testing, that is if a particular, pre-specified voxel is of interest, then standard 

univariate theory can be applied. Less regionally specific approach is to search the statistic 

image for voxels of significant magnitude using the local maximum statistic, or to search for 
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the significant clusters using the supra-threshold cluster size statistic given an intensity 

threshold. 

 

The statistical analysis of functional neuroimaging data typically implies that many 

hypotheses are tested on the same data set. Central to this massive univariate hypothesis 

testing is an adequate handling of the multiple comparisons problem: It is necessary to 

appropriately control the false positive rate. The statistical inference procedure should handle 

the multiple comparisons problem effectively, avoiding any unnecessary loss of sensitivity 

and statistical power. Given the null-hypothesis and a test statistic of the data, the test is said 

to be liberal, conservative, or exact, if for any given threshold level and rejection region, the 

probability that the test statistics belongs to the rejection region is greater than, less than, or 

equal to the threshold level, respectively. Appropriate control of the false positive rate 

requires an exact or conservative test. However, the more conservative the test is, the lower is 

the sensitivity of the test. In order to handle the multiple comparisons problem (Hochberg & 

Tamhane, 1987) appropriately, the rejection criteria has to be chosen so that the probability of 

rejecting one or more of the null hypotheses when the rejected null hypotheses are actually 

true, is sufficiently small. 

 

A common approach to control for multiple comparisons is the family-wise error rate, 

defined as the probability of falsely rejecting any of the null hypotheses. In the family-wise 

error approach evidence against the omnibus null hypothesis indicates the presence of some 

activation somewhere, meaning that the test has no localizing power and the false positive 

rate is not controlled for at individual voxels. Omnibus tests are tests with weak control of the 

family-wise error, useful to detect whether there is any experimentally induced effect at all, 

regardless of location. Instead a test procedure with strong control over the family-wise error 

is required to reliably locate the effect. This requires that the family-wise error is controlled 

not just under the null hypothesis but under any subset of hypotheses. Localizing power is 

ensured by a procedure testing all possible subsets of hypotheses with weak control over the 

family-wise error, making the test valid at every voxel, and the validity of the test in any 

given region not affected by the truth of the null hypothesis elsewhere. 

 

Functional neuroimaging data are often characterized by spatial autocorrelation, meaning that 

closely spaced voxels are correlated, due to the imaging system, physiological factors, and 

post-acquisition smoothing of the image. Given a non-trivial spatial autocorrelation in the 

statistic image this implies that multiple comparisons are non-independent. An effective 
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solution of the multiple non-independent comparisons problem is central to the massive 

univariate approach. Broadly speaking, the approaches to handle this problem divide into 

parametric, non-parametric, and Monte-Carlo simulation approaches (for a review, see 

Petersson et al., 1999b). The parametric approaches used in functional neuroimaging are 

usually based on some type of random field theory (Adler, 1981; Worsley et al., 1996) which 

generate explicit distributional approximations.  

 

The hypothesis testing and statistical inference in the studies of this thesis are based on 

parametric approaches founded in smooth random field theory. The random field theory 

approach allows for spatial correlation between voxels in the statistic image when correcting 

for multiple comparisons, preserving statistical power. It has proved versatile in testing a 

number of test statistics (e.g., local maximum, cluster size statistic, or the number of regions 

with size greater than a given size), and it has been extensively validated on simulated data. 

Empirical studies using real null data have indicated that this approach gives accurate results 

(e.g., Aguirre, Zarahn, & D'Esposito, 1997; Zarahn, Aguirre, & D'Esposito, 1997), and 

investigations of the robustness and characterization of inherent limitations of the approach 

with respect to the various assumptions and parameters have been carried out extensively. 

 

In the application of smooth random field theory to discrete statistic images it is assumed that 

the statistic image can be considered as a well-sampled version of the smooth random field. 

In theory the spatial frequency spectrum of smooth stochastic process is not bounded, but in 

practice the observable spatial frequencies are limited in experimental data since only the 

spatial frequencies below half the frequency of the sampling process are observable by the 

Nyqvist-Shannon sampling theorem. The sampling issue becomes particularly important in 

the context of smoothness estimation, which amounts to the estimation of a parameter related 

to the spatial auto-correlation. The estimation of the smoothness parameter should be 

independent of experimentally induced effects, which is why smoothness estimation is 

generally made on the residual images. In smooth random field theory, the volume, surface 

area, and diameter of an excursive set are estimated in the space of resolution elements (i.e., 

resel space, Worsley et al., 1996). 

 

2.7 VOXEL BASED MORPHOMETRY 
Voxel based morphometry is a neuroimaging analysis technique that allows investigation of 

focal differences in brain anatomy using the ordinary statistical approach describe above. In 

traditional morphometry, volume of the whole brain or its subparts is measured by drawing 
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regions of interests on images from brain scanning and calculating the volume enclosed. This 

is time consuming and can only provide measures of rather large regions while smaller 

differences in volume may be overlooked. In voxel based morphometry the grey and white 

matter segments of the structural MRI images are investigated (Ashburner & Friston, 2000, 

2004, 2005; Good, Scahill, Fox, Ashburner, Friston, Chan, Crum, Rossor, & Frackowiak, 

2002), characterizing local differences in the tissue density. Typical application of voxel 

based morphometry are group comparisons, or in longitudinal studies, on the same subjects. 

In any case, one has to take into account the importance of the impact of the image template. 

The typical hypothesis is that there is a difference between groups in specific regions. 

Creating a study specific template from all subjects included in the study minimizes the risk 

that the brains in one of the groups fit the template better. In this procedure, structural images 

from each brain are normalised to a common template to produce study specific grey and 

white matter templates by for example averaging over all normalised images. With this study 

specific template the segmentation procedure is performed anew, correcting the grey and 

white matter intensity levels using the Jacobian modulation. The images are then spatially 

filtered and statistical hypothesis testing is performed in a similar manner as in ordinary 

functional neuroimaging analysis. 
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CHAPTER 3 —  SPECIFIC BACKGROUND TO THE 
INCLUDED STUDIES 

 

3.1 STIMULUS MATERIAL 
As stimulus material in all four studies of this thesis we generated grammatical (G) strings 

from the Reber grammar from the alphabet {M, S, V, R, X} (see Figure 1.1). In study 1, of 

the 110 possible grammatical items in the Reber language that can be generated of 2–8 

letters, we randomly chose and allocated 56 items to the acquisition/training set and the 

remaining 54 items were included in the classification set. Non-grammatical strings were 

generated from the grammatical strings by randomly re-arranging the order of letters to 

render them non-grammatical. In this way we generated one set of 56 acquisition strings and 

one set of 108 classification strings (50% grammatical and 50% non-grammatical items). In 

study 2-4, we generated all possible strings with a string length of 5-12 letters length from the 

Reber grammar. Thus this string set was somewhat larger than in study 1, in total 569 strings. 

In addition to the grammatical/non-grammatical manipulation in study 1, we independently 

manipulated the expected familiarity of the surface structure of the strings by controlling for a 

familiarity score of 2 and 3 letter fragments in the classification strings in relation to the 

acquisition set. For each item we calculated frequency distribution of 2 and 3 letter chunks 

for both the terminal positions of the strings, as well as collapsed over all positions in the 

string, in order to derive the associative chunk strength (ACS) for each item (cf., Knowlton & 

Squire, 1996; Knowlton & Squire, 1997; Meulemans & Van der Linden, 1997). Then 

iteratively, we randomly selected 100 strings, generating an acquisition set which were 

comparable in terms of 2 and 3 letter chunks to the complete string set. For the remaining 

grammatical strings non-grammatical strings was generated by a letter replacement in two 

inner positions (not first or last position). The non-grammatical string selected were the ones 

best matching the grammatical strings in terms of both terminal and complete string position 

ACS (i.e., collapsed over order information within strings). These grammatical and non-

grammatical strings were further classified as high/low ACS in terms of their ACS status 

independent of grammatical status, such that high/low ACS refer to classification strings 

composed of common/uncommon bi- and trigrams in the acquisition set, respectively. The 

classification sets were then randomly selected in an iterative procedure such that for each 

given classification set, 

1. the high ACS strings in the classification and acquisition sets did not differ 

significantly (P >> 0.05) in terms of ACS; 
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2. the high and low ACS strings did not differ significantly (P >> 0.05) in terms of ACS 

when compared with the high and low ACS strings in the other classification sets; and 

3. the low ACS strings did differ significantly (P < 0.05) in terms of ACS when 

compared with both the acquisition set and the high ACS strings in each classification 

set. 

In this way, we expanded the classification sets and organised the classification material in a 

2 x 2 factorial design with the factors grammaticality (grammatical/non-grammatical) and 

ACS (high/low), and the classification sets included 25% from each category: high ACS 

grammatical (HG), low ACS grammatical (LG), high ACS non-grammatical (HNG), and low 

ACS non-grammatical (LNG). 

 

3.2 EXPERIMENTAL PROCEDURE 
During acquisition the acquisition strings were presented on a computer screen either in its 

complete length (study 1 and 4), or letter-by-letter (study 2 and 4). The string presentation 

order was randomized for each acquisition session. After the presentation of each string on a 

monitor, when the string had disappeared from screen, the participants were asked to 

immediately type the string from memory in a self paced manner. The subjects were not 

provided with any sort of performance feedback and only positive examples (i.e., 

grammatical strings) were presented during acquisition. The classification sets were balanced 

across subjects, days and groups, and the string presentation order was randomized for each 

test. In the case of a baseline test this was presented to the subjects as independent of the 

subsequent testing. The preference classification groups were unaware of the final 

grammaticality classification test until it occurred on the last day, while participants with 

grammaticality instructions were informed about the existence of an underlying complex set 

of rules in the acquisition material during the days of the experiment (except for study 1 

which took place within one day). Each classification session was presented as a yes/no 

classification task by inviting the subjects to respond with one of two response buttons after 

the finalized presentation of each string. The subjects were emphasised to respond with 

accuracy without haste, yet they had to keep up with the pace of the experiment. 

 

3.3 BEHAVIOUR DATA ANALYSIS 
For the behaviour data analysis we analysed the percent correct scores, the endorsement rates 

(i.e., strings accepted as grammatical or preferable regardless of grammaticality), and the 

statistical signal detection scores as measured with d-prime (Macmillan & Creelman, 1991). 

Throughout the studies we used mixed-effect multi-way repeated measures analysis of 
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variance (ANOVA) using the statistics package R (www.r-project.org). We modelled the 

main factors grammaticality (grammatical/non-grammatical), associative chunk strength 

(high/low ACS), and, when applicable, classification session (test occasions) as within 

subjects fixed-effects. The main factor group, when included in the design, was modelled as 

between subject fixed-effect and subjects as random-effects. An overall significance level of 

P < 0.05 was used for statistical inference, and explanatory investigations for significant 

effects were restricted to the reduced ANOVA contrasted over the appropriate factor levels. 
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CHAPTER 4 —  OVERVIEW OF THE EXPERIMENTS 
The general objectives with the studies of this thesis were to develop an information 

processing model for the cognitive functions supporting implicit procedural learning. As 

criteria of the paradigm, it should be well described on Marr’s (1982) three levels of 

description: the functional-computational level, the procedural-algorithmic level, and the 

implementational-hardware level (see section 1.3.7). The artificial grammar learning 

paradigm investigated in the seminal study of Arthur Reber (1967) was considered the best 

candidate for this purpose. Reber (1967) had in a behaviour setup investigated participants on 

a grammaticality classification task after acquisition of well-formed consonant strings 

generated from an artificial regular grammar. In parallel to the paradigm development, the 

use of this paradigm as a lab model for language acquisition was validated empirically. 

 

All the studies of this thesis share the common denominator to investigate whether brain 

regions related to language processing overlap with the brain regions activated by a 

grammaticality classification task after acquisition of a small artificial grammar. The initial 

FMRI finding in study 1, that artificial syntax violations activated Broca’s region 

(Brodmann’s areas 44 and 45) of the left inferior frontal gyrus, was validated in study 2 using 

an elongated acquisition period and a stimuli material that was controlled for ACS (see 

section 3.1). In study 3 we investigated behaviourally the use of forced-choice preference 

classification comparing this with grammaticality classification (see section 1.2.1). In study 4 

we tested the involvement of the caudate head in artificial grammar learning, a region 

suggested by the results in study 2 to be part of a frontostriatal network activated during 

artificial syntax classification. 

 

4.1 STUDY 1: ARTIFICIAL SYNTACTIC VIOLATIONS ACTIVATE 
BROCA’S REGION 

In the first study of the thesis (Petersson et al., 2004) we investigated whether the brain 

regions activated by the grammaticality classification task overlapped with brain regions 

related to natural language processing. It was suggested in a meta-analysis of functional 

neuroimaging studies on language processing (Bookheimer, 2002) that natural syntax 

processing is related to the left inferior frontal gyrus (Brodmann’s areas 44 and 45) or 

Broca’s region. We therefore designed our first experiment after behaviour piloting as a more 

elaborated replication of the study by Reber (1967). We used an implicit acquisition 

paradigm in which the participants were exposed to positive examples only. The stimulus 

material was generated as described in section 3.1. During acquisition each of the 12 subjects 
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studied the acquisition strings in a short-term memory task. They were instructed to attend to 

each consonant string as it were presented, in its whole length, on a computer screen for 5 s, 

and then as the string disappeared, to recall the string and type it into the computer using the 

keyboard. The paradigm was self-paced and subjects were allowed to correct themselves. The 

acquisition set was presented three times and the acquisition phase lasted approximately 40 

min. Following the acquisition phase, the subjects were informed that the previously studied 

strings followed a complex set of rules and subsequently performed grammaticality 

classification (see section 1.2.1) in the scanner while event-related FMRI data were acquired. 

As a baseline condition for the FMRI analysis, we included a sensorimotor classification 

control task, in which the subjects had to indicate whether the presented string consisted of 

only P:s or L:s (controlled for average string length). The subjects responded by pressing one 

of two buttons in both grammaticality and baseline classifications. The classification and 

baseline items were presented in random order on a screen for 3 s during which the subjects 

responded by pressing a keypad, followed by a fixation-cross for 4 s. The computer screen 

was displayed to the subject by a LCD-projector standing inside the MR scanner room, 

projecting onto a semi-transparent projection screen that the subject viewed comfortably 

through a binocular device mounted on the head-coil. 

 

 

 

Figure 4.1 Artificial syntax violations were related to a significant activation in the left 

inferior frontal gyrus centred on Brodmann’s area 45 extending into Brodmann’s area 44 

(Petersson et al., 2004). 

 

The subjects showed significant above-chance correct classification performance on the 

classification task (mean ± standard deviation = 73 ± 7%, range = 61–92%, whereas 50% 

correct is expected by chance), validating that they were able to reliably differentiate between 

grammatical and non-grammatical items. We also observed that artificial syntax violations 
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activated Broca’s region in all participants. More specifically, we observed that artificial 

syntax violations specifically activated Brodmann’s areas 44 and 45 of the left inferior frontal 

gyrus (Figure 4.1). The violation effect was time specific in that the effect was stimulus-

locked rather than response-locked (when time-locking on the subject responses we did not 

observe the effect). 

 

In Figure 4.1, the cross-hair surrounding the region activated by artificial syntax violations is 

localized at the mean coordinates (approximately [x y z] = [−44 19 12]) of the natural syntax 

FMRI studies reported in the review of Bookheimer (2002). The mean distance of the 

individual local maxima reported in Bookheimer (2002) to the mean coordinates is 

approximately 13mm indicated by the radius of the circle. This suggests that the use of the 

knowledge acquired from an artificial grammar in an implicit acquisition paradigm, using 

only positive examples and no feedback, is subserved by the same neural processing 

infrastructure that has most consistently been related to human syntax processing. From this 

finding we concluded in study 1 that the activation of Broca’s region in artificial syntax 

processing lends some support to the suggestions that artificial grammar learning provides a 

model for investigating aspects of structural language learning (Friederici et al., 2002; Gomez 

& Gerken, 2000), and exploring differences between human and animal learning relevant to 

the narrow faculty of language (Hauser et al., 2002). Further, that this finding validate the use 

of the artificial grammar learning paradigm to investigate syntax processing of hierarchical 

information structures in the human brain.  

 

4.2 STUDY 2: NEURAL CORRELATES OF ARTIFICIAL SYNTACTIC 
STRUCTURE CLASSIFICATION 

In the second study of the thesis (Forkstam et al., 2006) we modified and employed the 

artificial grammar learning paradigm to replicate and further investigate the role of the left 

inferior frontal cortex (Brodmann’s area 44/45) and its sensitivity to artificial syntax 

violations. As in the first study, during each acquisition phase participants were engaged in a 

short-term memory task using an acquisition sample generated from the Reber machine 

(Figure 1.1). To make the presentation of the sequences more language like we changed to a 

sequential presentation setup, in which each string was presented symbol by symbol, instead 

of the parallel presentation setup used in study 1 where each string was presented in its 

whole. This had the further consequences that we also could measure EEG in parallel with 

the FMRI investigation. The sequential presentation has the further consequence that it 

increases the working memory load during processing of the stimulus material. This forces 
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the subjects’ cognitive system to process the structured information sequentially, more 

similar to natural language processing. 

 

Moreover, to investigate effect of extended acquisition and proficiency, the subjects 

participated in repeated acquisition sessions over 8 subsequent days. In addition, on day 1 and 

day 8 subsequent to the acquisition sessions, both event-related FMRI and EEG data were 

collected while the subjects performed grammaticality classification of novel strings. The 

objective with this manipulation was to correlate the behaviour performance with individual 

changes in functional neuroanatomy and event-related potentials (ERPs) over the learning 

period. 

 

We also worked more intensively on the stimulus material as described in section 3.1. We 

expanded the classification sets, and in addition to the grammatical/non-grammatical 

manipulation we independently manipulated the expected familiarity of the surface structure 

of the strings. Thus, in study 2 we exposed the subjects to both a larger acquisition set and 

over a longer period than in study 1. 

 

For the classification strings, we generated 4 sets of 56 (in total 112) grammatical and non-

grammatical strings independently manipulated for high and low ACS. In this way we 

investigated the influence of substring familiarity in a factorial design, with grammaticality 

status (grammatical/non-grammatical) and associative chunk strength (ACS, high and low 

chunk similarity relative the acquisition strings, cf. Meulemans & Van der Linden, 1997) as 

factors. Thus the stimulus material included an acquisition set and four classification sets (all 

sets were pair-wise disjoint), and each classification set consisted of 28 strings of each string-

type: high ACS grammatical (HG), low ACS grammatical (LG), high ACS non-grammatical 

(HNG), and low ACS non-grammatical (LNG). 

 

It had been argued that sensitivity to the level of ACS is a reflection of a statistical fragment-

based learning mechanism while sensitivity to grammaticality status independent of ACS is 

related to a structure-based acquisition mechanism (Knowlton & Squire, 1996; Meulemans & 

Van der Linden, 1997). Due to its involvement of frequency information, sensitivity to ACS 

manipulation suggests involvement of declarative learning mechanisms and hence a 

dependence on medial temporal lobe structures. Sensitivity to grammaticality status 

independent of ACS instead suggests involvement of procedural learning mechanisms, 

presumably dependent on interactions between prefrontal regions and the basal ganglia (cf. 
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e.g., Ullman, 2004 for a similar argument in natural language processing). With the factorial 

design of study 2 we had the means to investigate these claims. 

 

The complete experiment included 8 days with one acquisition session each day followed, on 

day 1 and 8, by a classification test during which event-related FMRI data were acquired, and 

a subsequent classification test during which EEG data were acquired (see section 4.2.1). 

During both acquisition and classification sessions, each string was centrally presented letter-

by-letter on a computer screen (2.7-6.9s corresponding to 5-12 letters; 300 ms letter 

presentation, 300 ms inter letter interval). During acquisition all subjects were presented with 

the 100 acquisition strings, randomly ordered for each acquisition session. When the last 

letter in a string disappeared the subject was instructed to immediately reconstruct the string 

from memory by typing on a keyboard in a self-paced fashion, similar to the procedure in 

study 1. Also in this study the subjects were not provided with any sort of performance 

feedback and only positive examples (i.e., grammatical strings) were presented during 

acquisition. During classification on day 1 and 8, the participants were presented with novel 

letter strings, in a similar way as during acquisition, while either FMRI or EEG 

measurements were conducted. 

 

Different from study 1, this study introduced an instruction manipulation in that the subjects 

already in beginning of the experiment on day 1 were informed about the existence of a 

complex rule system underlying the strings composition. This mean that the knowledge of the 

task during the acquisition sessions differed between study 2 and study 1, in that the subjects 

were informed about the grammaticality classification task before any acquisition took part 

(see section 1.2.1). To minimize eye movements in the EEG setup, two white horizontal bars 

were presented centrally on a black background throughout the scanning sessions. In the 

FMRI setup a similar sensorimotor decision control task was included as in study 1. In this 

low-level baseline condition task, strings of repeated letters P or L (matched in string length 

to the classification set) were randomly interspersed and presented in the same fashion as the 

classification strings and subjects had to respond by pressing a button. The stimuli were 

presented via an LCD-projector standing outside the scanner room, projecting the computer 

display onto a semi-transparent screen that the subject comfortably viewed through a mirror 

device mounted on the head-coil. 

 

The analysis of the classification performance in terms of endorsement rate (i.e., number of 

strings accepted as grammatical independent of grammaticality or ACS status) showed that 
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the subjects were sensitive to both grammaticality and ACS. The participants showed a 

greater sensitivity to grammaticality on day 8 compared to day 1, while they showed no 

additional sensitivity to ACS. Thus, subjects classified the items reliably above chance on the 

first day and the classification performance improved with repeated acquisition sessions 

(Figure 4.2). 
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Figure 4.2 Endorsement rates (i.e., number of string classified as grammatical) over 

grammaticality and associative chunk strength (ACS). The endorsement rate for grammatical 

vs. non-grammatical items, but not for high vs. low ACS, increases as a function of repeated 

acquisition. (G = grammatical strings, NG = non-grammatical strings, H = high ACS strings, 

L = low ACS strings; error bars correspond to one standard deviation). 

 

To be noted is that the proficiency in categorisation improved for each string category (i.e., 

HG, HNG, LG, LNG) over the 8 days. This shows that the subjects increased their detection 

capacity for both grammatical and non-grammatical strings independent of substring 

familiarity (Figure 4.3). 
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Figure 4.3 Endorsement rates (i.e., number of string classified as grammatical) over 

grammaticality and associative chunk strength (ACS) factor levels. The endorsement rate for 

grammatical vs. non-grammatical items increases as a function of repeated acquisition for 

both high and low ACS strings. (HG = grammatical high ACS strings, LG = grammatical low 

ACS strings, HNG = non-grammatical high ACS strings, LNG = non-grammatical low ACS 

strings; error bars correspond to one standard deviation). 

 

In the second study, the FMRI data from 12 subjects performing reliably above chance on the 

grammaticality classification tasks on day 1 and 8 showed significant activation in a 

corticostriatal processing network compared to the sensorimotor decision baseline (Figure 

4.4). These results were highly similar to study 1. Regions significantly sensitive to 

performance, grammaticality, substring familiarity, or any interactions (omnibus ANOVA) 

included the inferior frontal region, the frontal operculum and anterior insula bilaterally, as 

well as the caudate nucleus bilaterally. To investigate which experimental manipulations 

carried explanatory value for the peak nodes in this network, we performed a regions-of-

interest analysis on the cluster local maxima.  

 

In this analysis we found the prefrontal regions activated more extensively than in study 1 

and that the activated regions also included right homotopic regions. The Broca’s region was 

specifically sensitive to artificial syntax violations, meaning that we replicated the findings 

from study 1 with high specificity. In particular, the left inferior frontal region (BA 44/45) 

was specifically related to syntax violations. It was the only frontal region which was 
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selectively sensitive to grammaticality but not to the level of associative chunk strength 

(ACS). This lends support for the suggestion that the left inferior frontal cortex (BA 45) has a 

specific role in processing structural regularities. This is also consistent with results showing 

that the left prefrontal cortex subserves syntax processing independent of lexical meaning 

(Indefrey et al., 2001). In contrast, the right inferior frontal region was sensitive to ACS, 

potentially reflecting aspects of declarative retrieval or generic error detection processes (cf., 

Indefrey et al., 2001). This finding was also the motivation behind a follow-up investigation 

on the role of the left and right inferior frontal regions classification of artificial syntactic 

structures by means of an off-line repetitive transcranial magnetic stimulation (rTMS) 

paradigm (Uddén, Folia, Forkstam, Ingvar, Fernandez, Overeem, Elswijk, Hagoort, & 

Petersson, 2008). In this study, the participants showed a reliable effect of grammaticality on 

classification of novel items after 5 days of exposure to grammatical exemplars without 

performance feedback in an implicit acquisition task. The stimulus material was manipulated 

independently for grammaticality status and local substring familiarity (see section 3.1). The 

results show that rTMS of BA 44/45 improves syntactic classification performance by 

increasing the rejection rate of non-grammatical items and by shortening reaction times of 

correct rejections specifically after left-sided stimulation, suggesting that activity in the 

inferior frontal region is causally related to artificial syntax processing. 

 

In addition to the left inferior frontal activation, the head of the caudate nucleus correlated 

positively with syntactic correctness. This activation was however only present in the later 

part of the acquisition period, on day 8 but not on day 1. At the same time the subject 

behaviour performance was higher on day 8 relative day 1. This suggests a higher fluency for 

the subjects in the task, and the activation of the caudate head then suggests that this region 

contributes to an increase in cognitive processing fluency. This finding motivated the study 4 

of this thesis, using Huntington’s disease as a neurological model for the involvement of the 

caudate head in artificial grammar learning. 
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Figure 4.4 Regions sensitive to grammatical status (day 1 and 8; grammatical > non- 

grammatical items in red, non- grammatical > grammatical items in blue; only correct 

response trials included). Left: test day 1. Right: test day 8. Threshold at P = 0.05 corrected 

for multiple non-independent comparisons using the false discovery rate. Activations are 

projected onto the normalised structural (T1) image from a single subject (x = -45; z = -3; left 

is left; upper slices are in the left hemisphere). 

 

4.2.1 ERP correlates of artificial syntactic structure classification 
The second study also included an EEG experiment. Our aim with this approach was to also 

electrophysiologically relate the artificial grammar learning paradigm with natural language 

processing, to validate the usefulness of the paradigm as a tool to explore syntax processing 

in language. We set out to explore modulation of well-known language related ERP 

components and their time-frequency patterns during syntactic classification. A primary 

achievement in the understanding the functional neurophysiology of the human language 

faculty has been the revelation of neurophysiological processes associated with the treatment 

of semantic vs. syntactic aspects of language, through the analysis of ERPs during word and 

sentence processing. Over the last two decades, at least three specific language related ERP 

components have been identified and analyzed, including the N400, P600/SPS and the LAN. 

The N400 is an enhanced centroparietal negative-going component for semantically 

inappropriate words, peaking at about 400 ms after the offending word (Kutas & Hillyard, 

1980). The P600 (Osterhout & Holcomb, 1992) or syntactic positive shift (SPS, Hagoort, 

Brown, & Groothusen, 1993) is a late centroparietal positivity associated with the processing 

of syntactic anomalies. The left anterior negativity (LAN) is a late negative-going potential 
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that can occur between 300 and 700 ms, with a left anterior spatial distribution, associated 

with syntactic structural processing complexity (Kluender & Kutas, 1993). Processing 

consistently shown to elicit a LAN effect includes the processing of content words that carry 

meaning (i.e., open-class words including nouns, verbs and adjectives) vs. function words that 

are essentially empty of meaning but contain information that is crucial for syntactic parsing 

(i.e., closed-class words including prepositions or determiners).  

 

The N400 and SPS/P600 are traditionally associated with language processing, and both have 

also been evoked in appropriate non-linguistic cognitive sequence processing tasks. For the 

N400, it appears that the effect is evoked only if a particular stimulus does not fit into a pre-

established semantic context independent of the input code (Niedeggen, Rosler, & Jost, 

1999). Similarly, the SPS/P600 can be evoked in linguistic and non-linguistic conditions in 

which an element of a rule governed sequence is difficult to integrate, including the 

processing of musical phrase structure violations (Patel, Gibson, Ratner, Besson, & Holcomb, 

1998), and in the processing of non-linguistic sequences that violate a learned rule in an 

artificial grammar task (Lelekov, Dominey, & Garcia-Larrea, 2000). We now wanted to 

validate and explore this finding in our artificial grammar learning paradigm with elongated 

acquisition.  

 

We present here the analysis of the ERP data from 19 of the subjects included in study 2 

performing reliably above chance on grammaticality classification on day 1 and 8. The EEG 

classification sessions occurred subsequent to the FMRI classification sessions, and the four 

classification sets was balanced over the two FMRI sessions and the two EEG sessions. 

Similar to the FMRI sessions each string was centrally presented letter-by-letter on a 

computer screen (2.7-6.9s corresponding to 5-12 letters; 300 ms letter presentation duration, 

300 ms inter-letter-interval) using the Presentation software (http://nbs.neuro-bs.com). The 

acquisition sessions were the same as in the FMRI part of the study. During classification on 

day 1 and 8, the participants were presented with novel letter strings while EEG 

measurements were acquired using a 61-channel scalp electrode BrainVision amplifier setup. 

As in the FMRI sessions the subjects were informed about the grammaticality classification 

task before the first acquisition session. After a 1 s pre-stimulus period the strings were 

presented between these bars, followed by a 1 s delay and 2.5 s fixation cross period, 

indicating that the subject had to respond by pressing either left or right index finger, 

balanced within subject over sessions. The classification sets and string presentation order 

were balanced over subjects. The stimuli were presented via a computer monitor standing 
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inside a faraday cage room, comfortably viewed by the subject from approximately 1 metre 

distance. 

 

In the ERP analysis we applied the cluster randomization algorithm implemented in the 

FieldTrip software (http://fieldtrip.fcdonders.nl) to keep the multiple comparison problem 

under control (Maris, 2004). Essentially two different approaches were made to disentangle 

the time signal in the EEG data as the subjects classified grammatical and non-grammatical 

items. In the first approach we performed a time-locked analysis, time-locked to the initial 

violation position in the letter strings. Recall that each non-grammatical string differed from a 

matched grammatical string by sequential violation in two locations in the string. The 

information up to the point of the initial violation was exactly the same in the grammatical 

and the non-grammatical string, which suggests that any deviation time-locked to this event 

likely has been triggered by the detection of a grammaticality violation. Indeed, strings with a 

syntax violation in the initial part of the string did show up as a late positive deviation during 

classifications on day 1 (Figure 4.5). However, the P600/SPS component was absent on day 

8. 

 

 

 

Figure 4.5 Day 1 topographic ERP distribution for non-grammatical strings compared to 

grammatical strings; time-locked to the first violation position; cluster-randomization 

analysis (two-sided t-test), baseline [-150,0] ms. The positive deviation starts at 500 ms after 

the presentation of the critical letter in the syntax violation target position. 
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In the second approach we performed a time-locked analysis, time-locked to the last letter in 

the sequence. In this analysis a negative deviation for grammatical violations was found on 

both day 1 (Figure 4.6) and day 8 (Figure 4.7). The effect was larger and lasted over a longer 

time period on day 8, as indicated by the significantly larger negative shift on day 8 as 

compared to day 1 in the later part of the component (Figure 4.8). 

 

 

 

Figure 4.6 Day 1 topographic ERP distribution for non-grammatical strings as compared to 

grammatical strings, time-locked to the last letter position; cluster-randomization analysis 

(two-sided t-test), baseline [-150,0] ms. The negative deviation on day 1 lasts from 100 ms 

until 500 ms after the last letter is presented. 
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Figure 4.7 Day 8 topographic ERP distribution for non-grammatical strings as compared to 

grammatical strings, time-locked to the last letter position; cluster-randomization analysis 

(two-sided t-test), baseline [-150,0] ms. The negative deviation on day 1 starts already 50 ms 

after the last letter is presented. 

 

 

 

Figure 4.8 Topographic ERP distribution for the difference in ERP between day 1 and day 8 

for non-grammatical strings as compared to grammatical strings; time-locked to the last letter 

position; cluster-randomization analysis (two-sided t-test), baseline [-150,0] ms. This figure 

illustrate the additional negative deviation on day 8 as compared to day 1 (see Figure 4.6 and 

Figure 4.7). 

 

The outcome of the EEG experiment suggests that it is possible to detect differences in the 

EEG signal related to the violation position. Strings with a syntax violation in the initial part 

of the string did show up as a late positive deviation during classifications on day 1 (Figure 

4.5), lending some support to the previous artificial grammar learning finding (Lelekov et al., 

2000) that artificial syntax violations trigger a late positive shift similar the P600/SPS 

component. However, the P600/SPS component was absent on day 8. This is unexpected if 

taking the view that skill acquisition, in this case regularity detection working on acquired 

knowledge of syntactic structure, should be reflected as an increase in relevant components to 

index the phenomenon. The possibility remains that the failure to replicate the P600/SPS was 

a false negative, possibly due to lack of statistical power. The population sample used in the 
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EEG investigation was however larger than the one used in the parallel FMRI investigation. 

A significant EEG difference was also observed time locked to the last presented letter on 

both day 8 and day 1, and reliably more so on day 8 than on day 1. This effect time-locked to 

the last letter presentation shares some similarities with the N400 component but it is unclear 

what cognitive processing this effect relates to. In the case the component is similar to the 

N400 this suggests that also non-syntax related components can get elicited in artificial 

grammar learning, and that this effect increases with performance. This interpretation is 

congruent with the suggestion that N400 gets elicited when a particular stimulus does not fit 

into a pre-established semantic context (Niedeggen et al., 1999). We are currently 

investigating and exploring the use of the repeated artificial grammar learning paradigm in 

follow up EEG studies with higher statistical power using both larger classification sets and 

more subjects. 

 

4.3 STUDY 3: INSTRUCTION EFFECTS IN IMPLICIT ARTIFICIAL 
GRAMMAR LEARNING: A PREFERENCE FOR GRAMMATICALITY 

In study 3 we investigated the behaviour effect in artificial grammar learning repeated over 

several days, while taking advantage of the structural mere exposure effect (Manza & 

Bornstein, 1995). In mere exposure artificial grammar learning subjects receive a preference 

classification instruction (see section 1.2.1) which make no reference to any previous 

acquisition episode and the subjects are not informed about the existence of an underlying 

generative mechanism. The idea is that mere exposure artificial grammar learning might 

measure implicit knowledge in a more pure manner because there is nothing in the 

classification procedures that refers to the acquisition part of the experiment and no reference 

to a complex set of rules are ever made. It has been shown that the preference classification 

instruction induces similar classification performance as the grammaticality instruction 

(Buchner, 1994; Manza & Bornstein, 1995) in a graded classification task (i.e., preference 

continuum). However, the graded classification complicates a direct comparison with forced-

choice (yes-no) grammaticality classification.  

 

The typical artificial grammar learning setup employs grammaticality classification 

instruction (see section 1.2.1). Some researchers have raised the concern that this might direct 

subjects to use explicit problem solving strategies, based on perceived regularities or 

imagined rules, and that this might interfere with the implicitly acquired knowledge put to 

use during classification. This concern appears unwarranted on theoretic grounds as long as 

incidental implicit acquisition is employed and the subjects base their classification decisions 

on their immediate ‘gut-feeling’. However, if performance on preference and grammaticality 
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classifications is statistically similar also empirical data would indicate that similar concerns 

are of less importance. The objectives of study 3 was therefore to compare forced-choice 

(yes-no) preference with grammaticality classification and to investigate whether and to what 

extent preference classification would show a similar pattern of results as the standard 

grammaticality classification. If no differences between forced-choice preference and 

grammaticality classification are found, then at least from an observational point of view 

grammaticality and preference classifications are similar as quantification measures for the 

acquired knowledge in artificial grammar learning. The use of preference or grammaticality 

classification could then be more a matter of which instruction that fits the experimental setup 

best. 

 

Just as in study 2, the stimulus material was organised in a 2 x 2 factorial design using the 

factors grammaticality (grammatical/non-grammatical) and level of associative chunk 

strength (ACS; high/low; see section 3.1). Thus we are able to assess differences between 

instruction types related to grammaticality as well as of substring familiarity (i.e., ACS). In 

addition to the rate of acquisition, we also investigated the influence of instruction type on 

pre-acquisition baseline classification. To investigate the effect of instruction during baseline, 

we pooled the participants from experiments 1-3 (i.e., 20 participants with grammaticality 

classification and 20 with preference classification) and divided the baseline items into two 

equal sized time-blocks of 20 items (first/second half as they were presented over time). The 

basic ANOVA was extended with the factor block [1/2]. For the random acquisition set in 

experiment 2, 100 random strings were generated from the same alphabet and of the same 

length and with similar levels of associative chunk strength as the Reber grammar acquisition 

set.  

 

In experiment 1 we directly compared the outcome of implicit artificial grammar learning in 

subjects given either the grammaticality classification or preference classification instruction. 

In this experiment subjects engaged in a short-term memory task using only grammatical 

strings without performance feedback for 5 days. Classification performance was 

independent of instruction type and both the preference and the grammaticality group 

acquired relevant knowledge of the underlying generative mechanism to a similar degree 

(Figure 4.9).  
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Figure 4.9 Experiment 1: Classification performance day 1-5. Endorsement rate (mean and 

standard error) as a function of instruction type; B = baseline, D1-5 = day 1-5 classification, 

ACS = associative chunk strength, and variable dotted line = response bias deviating from 50 

% chance level (straight dotted line). 

 

In experiment 2, changing the grammatical stings to random strings in the acquisition 

material resulted in classification being driven by local substring familiarity (Figure 4.10). In 

experiment 3, contrasting repeated vs. non-repeated preference classification showed that the 

effect of local substring familiarity decreases with repeated classification (Figure 4.11). This 

was not the case in the repeated grammaticality classifications. We conclude in this study that 

classification performance is largely independent of instruction type and that forced-choice 

preference classification is equivalent to the typical grammaticality classification. 
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Figure 4.10 Experiment 2: The effect of acquisition on Reber and random strings. 

Endorsement rate (mean and standard error) as a function of acquisition material; B = 
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baseline, D1-5 = day 1-5 classification, ACS = associative chunk strength, and variable 

dotted line = response bias deviating from 50 % chance level (straight dotted line). 
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Figure 4.11 Experiment 3: The effect of repeated classification. Endorsement rate (mean and 

standard error) as a function of preference classification repetition; B = baseline, D1-5 = day 

1-5 classification, D5G = final grammaticality classification, ACS = associative chunk 

strength, and variable dotted line = response bias deviating from 50% chance level (straight 

dotted line). 

 

 

The main finding of study 3 is that forced-choice preference classification is behaviourally 

equivalent to the standard grammaticality classification, suggesting that implicit acquisition 

of knowledge about the underlying generative mechanism are assessed similarly in the 

preference and the grammaticality version of artificial grammar learning. This is most clearly 

suggested in the non-repeated preference classification group. This group had a final 

grammaticality classification test on the last day and was never informed about the existence 

of a complex set of rules for generating the acquisition set until their final grammaticality 

classification test. This group showed the same overall pattern of results as the 

grammaticality group and the repeated preference classification group (recently replicated in 

e.g. Folia, Uddén, Forkstam, Ingvar, Hagoort, & Petersson, 2008). Thus, the artificial 

grammar learning paradigm yields very robust implicit learning quite independent of the 

experimental details. However, we suggest that forced-choice preference classification might 

have certain theoretical advantages over grammaticality classification. It appears that 

preference classification induces less dependency on surface features related to local 
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substrings. Preference classification might thus be less likely to induce explicit problem 

solving strategies, if these latter possibilities are of a real concern. In addition, the 

grammaticality effect was boosted in the non-repeated preference classification group when 

switching from preference to grammaticality instruction (a finding recently replicated in e.g. 

Folia et al., 2008). This might suggest that the grammaticality instruction is perceived as 

more well-defined by the subjects. Alternatively, the grammaticality instruction might trigger 

general motivation or attention effects. As a final remark, we note that the fact that effects of 

grammaticality as well as associative chunk strength can develop already during 

classification prior to acquisition suggests that the mechanism engaged (not necessarily the 

same as in artificial grammar learning proper) can work on surprisingly scarce input.  

 

4.4 STUDY 4: FRONTOSTRIATAL CIRCUITRY IN ARTIFICIAL GRAMMAR 
LEARNING: AN FMRI STUDY IN HUNTINGTON’S DISEASE 

Several studies suggest that artificial grammar learning involve a frontostriatal network 

comprising the head of the caudate nucleus and the left Brodmann’s area 44/45 (e.g., 

Lieberman et al., 2004, see also study 2 of this thesis). In study 4 of this thesis we 

investigated the consequences of a deteriorating caudate infrastructure on successful artificial 

syntactic classification using event-related FMRI in early stage Huntington’s disease (HD). 

The caudate nucleus is a core region affected in HD, a neuropathological well-characterized 

genetic neurodegenerative disease which in its early stages consists of a gradual, selective 

neuronal loss with concomitant gliosis of the caudate nucleus and the putamen, in 

combination with only little or moderate macroscopic atrophy (Vonsattel, Myers, Stevens, 

Ferrante, Bird, & Richardson, 1985). The relatively well-defined caudate degeneration in the 

early stage of the disease suggests that the role of the caudate nucleus in grammatical 

processing can be investigated with implicit artificial grammar learning, and raises the 

question how incipient functional caudate changes affect the network proposed to be 

functional in procedural memory. The use of artificial grammar learning to assess non-motor 

procedural memory may circumvent the limitations imposed by motor impairments related to 

HD. If the caudate nucleus plays a causal role in the neural architecture supporting 

grammatical processing and language acquisition, caudate degeneration in early stage HD 

implicate classification impairment in implicit artificial grammar learning. However, 

Huntington patients was previously shown to perform similar to controls (Knowlton et al., 

1996b). Unfortunately Knowlton and colleagues confounded grammaticality with substring 

familiarity in such a manner that the normal classification performance could be explained by 

recognition of familiar substrings supported by medial temporal lobe declarative memory 

processes not typically affected in HD.  
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The objectives with study 4 was to clarify the caudate involvement in implicit artificial 

grammar learning using test material not confounded with substring familiarity (see section 

3.1). Participants engaged in implicit acquisition of grammatical consonant strings over three 

days (full length string presentation; see section 3.2). On day 3 the subjects performed 

preference classification inside the scanner, followed by grammaticality classification outside 

the scanner (see section 1.2.1).  

 

Both controls and Huntington patients performed similarly and reliably above chance on both 

tasks, extending earlier findings of intact artificial grammar learning in Huntington’s disease 

to stimuli material controlled familiarity of substrings (Knowlton et al., 1996b). Despite 

similar behaviour performance the Huntington patients showed an atypical frontostriatal 

activation pattern compared to controls: basal ganglia structures outside the caudate head 

activated as a function of the experimental manipulations, hippocampus activated as a 

function of grammaticality and not only as a function of substring familiarity, and the left 

Brodmann’s area 44/45 activated in the Huntington patients also as a function of substring 

familiarity and not only for grammaticality as in the controls. The hippocampus effects of 

grammaticality in the Huntington group but not in controls suggests that the medial temporal 

lobe memory system might compensate for a deteriorating caudate, consistent with the notion 

of a cooperative interaction between the medial temporal lobe memory system and the basal 

ganglia learning system. We suggest that the caudate deterioration in early-phase 

Huntington’s disease reveal a cooperative and compensatory interaction between the medial 

temporal lobe memory system and the basal ganglia learning system, in order to keep 

performance levels during artificial grammar learning classification roughly intact (consistent 

with e.g. Voermans et al., 2004). We conclude that the results of the present study are 

consistent with the notion that the caudate is involved in artificial grammar learning 

classification.  
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Figure 4.12 Voxel based morphometric grey matter reduction in the head of the caudate 

nucleus bilaterally in the Huntington’s patients compared to healthy controls (projected on 

the mean grey matter segmentation from the 14 patients and 14 controls included in the 

study); left is on the left, y = 10 mm, z = 10 mm. 
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Figure 4.13 Preference and grammaticality classification performance (endorsement rate) for 

(a) main factors, and (b) factor levels; ACS = associative chunk strength. 
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Figure 4.14 Regions significantly sensitive to grammatical classification (left) and regions 

significantly sensitive to performance, grammaticality, substring familiarity, or any 

interactions (omnibus ANOVA) in the Huntington group (right); corrected for multiple 

comparisons using the false discovery rate, projected on the study-specific mean grey matter 

segmentation, left is on the left, x = -54 mm, y = 20 mm, z = 24 mm. 
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CHAPTER 5 —  CONCLUSIONS 
We have in this thesis attempted to introduce the repeated artificial grammar learning model 

in the investigation of sequential implicit learning, in particular as a model for language 

acquisition and processing. We have however pointed out that the feature of implicit learning 

of sequential structure captures an essential cognitive processing capacity of interest from a 

larger cognitive neuroscience perspective. We set out in the objectives of this thesis (section 

1.1) to investigate certain aspects of an extended version of the classical artificial grammar 

learning model, namely to 

1. Explore the underlying neural processing architecture for implicit learning/acquisition 

to acquire and process non-motor sequences, an implicit non-motor procedural learning 

ability present in the human cognitive system (section 1.3), 

2. Validate and explore the repeated artificial grammar learning paradigm as a laboratory 

model to investigate the acquisition and processing of structural aspects of language, 

e.g. (morpho-) syntax processing (section 1.4), and 

3. Further our understanding of the specific neural processing architecture which 

subserves the language faculty and its syntax processing ability (section 1.5). 

We present in this thesis a theoretical background on sequential procedural learning and 

formal grammars in cognitive processing (section 1.3 and 1.4) as well as give a general 

outline of the neuronal implementation of the cognitive functions involved (section 1.5). We 

suggest that as an alternative to describe implicit procedural acquisition as either rule 

acquisition or acquisition of statistical knowledge, it can beneficial to take a lexical view on 

the processing and acquisition of artificial grammars, to understand the nature and 

representation of the acquired knowledge during artificial grammar learning. We pointed out 

that this pursuit re-traces a major trend in theoretical linguistics since the early 80’s, so-called 

lexicalisation (cf., Culicover & Jackendoff, 2005; Jackendoff, 2002), in which the distinction 

between lexical items and grammatical rules is vanishing and in effect shifts more of the 

grammar into the mental lexicon. One lexical level we suggest to be of interest is the 

primitives which are the core of the formal language used in artificial grammars (section 1.4). 

From this perspective we suggest that formal grammar acquisition and processing of the 

(regular) grammar type commonly studies in artificial grammar learning can be used as a 

model to investigate the neuronal infrastructure supporting language acquisition and 

processing, including to characterize the neuronal infrastructure supporting syntax processing 

and unification (cf. e.g., Hagoort, 2003; Jackendoff, 1997; Jackendoff, 2007; Kaan & Swaab, 

2002; Shieber, 1986; Vosse & Kempen, 2000). 
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In the studies included in this thesis we have managed to address some but not all of the 

objectives we set out to investigate. In study 1 we began to described the neuronal 

implementation using a setup based on the seminal study on implicit learning by Reber 

(1967). We found an overlap in the neural activation on artificial syntax violation and similar 

natural syntax violation. In study 2 we replicated this finding using a more elaborated model 

with repeated acquisition sessions to simulate a prolonged acquisition period, and using a 

sequential presentation forcing the cognitive processing into a sequential processing mode. 

We found a clear advance for structural (grammaticality) knowledge over surface (ACS) 

knowledge where grammaticality increased over repeated acquisition sessions while ACS 

knowledge were stable over time. We also found a neuronal activation pattern which 

suggested that frontostriatal circuits were at play during artificial grammar classification, 

specifically the left inferior frontal region BA 44/45 and the head of the caudate nucleus. In 

this thesis we also report results from EEG measurements from the same study population, 

which suggests that the cognitive system can discriminate between grammatical and non-

grammatical structures already on the first non-grammatical position in the sequence. In 

study 3 we repeated the behaviour performance, introducing a preference classification 

instruction to further the cognitive system into an implicit learning mode to avoid explicit 

problem solving strategies during acquisition and classification, and found a clear and 

increasing preference for grammatical structure over repeated sessions, while the knowledge 

of ACS surface structure was stable or even diminished over sessions. In study 4 we 

investigated the basal ganglia component in Huntington patients with specific caudate head 

lesions. We found that while the patients did not show any deficit in their behaviour 

performance, structures in the basal ganglia including the caudate head showed abnormal 

activation patterns compared to their matched normal controls. We also found a cooperative 

activation between basal ganglia and hippocampus typically involved in declarative memory. 

We interpreted this to reflect attempts of the cognitive system to compensate the damaged 

procedural processing with declarative knowledge processing. We conclude that we have in 

the studies of this thesis gained an initial characterization of the neural infrastructure 

subserving artificial grammar processing (objective 1) using FMRI, EEG, and alterations in 

behaviour performance. We have done so by characterising the end-state of the learning 

process (study 1-4), as well as characterizing the learning curves reflecting the outcome of 

acquisition at different time points (study 2 and 3). We further conclude that we have in this 

thesis reported findings supporting the view that the extended artificial grammar learning 

model is useful to capture structural aspects in language acquisition processing in the 

laboratory (objective 2). Finally, we conclude that we have in this thesis furthered our 

knowledge of the neuronal implementation and mechanisms at play in syntactic aspects of 

artificial language acquisition (objective 3), using implicit artificial grammar learning as a 
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method to engage brain regions involved in natural language processing. Further 

investigations will clarify the validity of this finding in natural language. 
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