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ABSTRACT 

Peroxisomes are cell organelles that play an important role in the metabolism of a 

variety of lipids including very long chain fatty acids, dicarboxylic acids, bile acids, 

and xenobiotic carboxylic acids. The metabolism of lipids in peroxisomes requires the 

concerted efforts of many different enzymes, which includes members of the type I 

acyl-CoA thioesterase/acyltransferase protein family and the nudix hydrolases.  

 

We have identified two new peroxisomal members of the thioesterase/acyltransferase 

protein family, which we have named acyl-CoA:amino acid N-acyltransferase 1 

(ACNAT1) and 2 (ACNAT2). ACNAT1 acts as an acyltransferase that efficiently 

conjugates long-chain and very long-chain fatty acids to taurine; these novel 

metabolites are known as N-acyltaurines (NATs) and can allow the excretion of fatty 

acids as taurine conjugates, or alternatively these NAT may have roles in cell signaling. 

While we have not yet established an activity for ACNAT2 we hypothesize that it also 

functions as an acyltransferase, but with different substrate specificity to ACNAT1. 

The type I acyl-CoA thioesterase/acyltransferase family contains nine members in total 

that display two different types of activities, one is hydrolysis of fatty acyl-CoAs and 

the other is the conjugation of bile acids or fatty acids to glycine and/or taurine. These 

proteins belong to the !/" hydrolase family in which a highly conserved structure, 

called the nucleophilic elbow is very important for activity. By using site directed 

mutagenesis we demonstrate the importance of the amino acids in the nucleophilic 

elbow for activity, and propose a hypothesis for the evolution of this gene family. 

 

Coenzyme A (CoASH) is an important cofactor in peroxisomal metabolic pathways. 

Peroxisomes contain their own pool of CoASH and an unresolved issue is how this 

pool is regulated. It has been suggested that nudix hydrolase 7! (NUDT7!) regulates 

the peroxisomal CoASH pool by metabolizing CoASH. However, our study shows that 

NUDT7! is mainly active towards a wide range of acyl-CoAs, with highest activity 

towards medium-chain acyl-CoAs and lower activity with CoASH. This suggests that 

NUDT7!, together with the acyl-CoA thioesterases, has a function in the regulation of 

peroxisomal acyl-CoA/CoASH levels. 
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INTRODUCTION 

Peroxisomes 

Peroxisomes are cell organelles that belong to the microbody family, together with 

glyoxysomes and glycosomes. They were first described in 1954 in a thesis from the 

Karolinska Institutet by a Swedish graduate student, Johannes Rhodin, in which he 

identified small single membrane-bound organelles in rat renal tissue (1). It was more 

than 10 years later before they received their name “peroxisomes” from the work of 

Christian de Duve and co-workers. The name arose due to the fact that these 

organelles contain hydrogen peroxide producing oxidases and catalase that degrade 

hydrogen peroxide into molecular oxygen and water (2). Since then the list of 

functions associated with peroxisomes has grown quite extensively. One of the more 

important discoveries in peroxisome research was the identification of a fatty acid "-

oxidation system in mammalian peroxisomes (3). Lipid metabolism is considered to 

be one of most essential functions of mammalian peroxisomes and more than half of 

the 50 plus enzyme activities that have been described in mammalian peroxisomes 

play a role in lipid metabolism. It is now well established that peroxisomes have 

many metabolic roles that include not only the "-oxidation of fatty acids but also !-

oxidation, glyoxylate metabolism, ether-phospholipid synthesis, isoprenoid 

metabolism and bile acid synthesis (for review see (4)). It has even been suggested 

that peroxisomes are also involved in cholesterol biosynthesis but this has recently 

been under debate (5-8). However, it was recently shown that enzymes involved in 

the presqualene segment of cholesterol synthesis are localized in peroxisomes (9). 

 

Peroxisomal disorders 

The importance of peroxisomes is underlined by the existence of a group of genetic 

diseases in humans, which were first described by Sidney Goldfischer in 1973 (10, 11). 

They are low in occurrence but are usually very severe and often without any treatment. 

Peroxisomal disorders can be divided into two groups – the peroxisomal biogenesis 

disorders and the single peroxisomal enzyme deficiencies. 

The peroxisomal biogenesis disorders are characterized by the absence of functional 

peroxisomes and are comprised of the Zellweger syndrome (ZS), neonatal 

adrenoleukodystrophy (NALD), infantile Refsum disease (IRD) and rhizomelic 
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chondrodysplasia punctata (RCDP) type 1 (for review see (12)). Symptoms common to 

all three are liver disease, neurodevelopmental delay, retinopathy and deafness. Patients 

with ZS usually die within the first year of life, while those with NALD have less 

severe clinical phenotypes than the ZS and normally die in late infancy. IRD is 

considered to have the mildest phenotype and is characterized by hearing impairment, 

retinal degeneration and mild psychomotor retardation. These patients can survive 

longer than the second decade of life. In RCDP type 1, there is a defect in import of 

peroxisomal proteins containing a peroxisomal targeting signal type 2 (PTS2), which 

results in calcific stippling of multiple joints and severe mental and growth retardation. 

Most patients die in the first year or two of life but some survive into the second 

decade. The range of disease abnormalities may be a result of a corresponding range of 

peroxisome failures; that is, in severe cases of ZS, the failure is nearly complete, while 

in IRD, there is some degree of peroxisome activity. 

 
The second group of disorders are the single peroxisomal enzyme deficiencies, and 

these are grouped according to the peroxisomal metabolic pathway they affect. The 

pathways affected include ! and "-oxidation, ether phospholipid synthesis, glyoxylate 

detoxification and hydrogen peroxide metabolism (for review see (13)). This group 

includes X-linked adrenoleukodystrophy (X-ALD), and Refsum’s disease. Refsum’s 

disease was first described in the 1940s by Sigvald Refsum (14) and is biochemically 

identifiable by the accumulation of phytanic acid in plasma and tissues (15). Refsum’s 

disease can be treated by restricting the intake of phytanic acid and its precursors in the 

diet. The most common single peroxisomal disorder however is X-ALD with an 

incidence rate of 1:21,000 males in the USA (16). It is caused by a mutation in ABCD1 

gene (ATP-binding cassette, sub-family D (ALD), member 1) (17), which codes for the 

ABC half transporter ALDP (Adrenoleukodystrophy protein). Mutation of this 

tranporter leads to a deficiency in the uptake of very long-chain fatty acids (VLCFAs) 

into peroxisomes. The consequence of this is that the breakdown of VLCFAs via 

peroxisomal "-oxidation cannot occur (18). X-ALD is biochemically characterized by 

elevated levels of VLCFAs in plasma and tissues, and these are believed to be 

disruptive to the structure and stability of certain cells, especially those associated with 

the central nervous system and the myelin sheath (the fatty covering of nerve fibres).  
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Biogenesis of peroxisomes and peroxisomal protein import 

Peroxisomes are single membrane bound organelles that vary in size from 0.1-1µm 

and in cells their numbers range from less than one hundred to more than one 

thousand per cell (19, 20). The origin of peroxisomes is a controversial issue. The 

discovery that peroxisomal proteins are synthesized on free polyribosomes in the 

cytoplasm and then imported into peroxisomes led to the “growth and division 

model”, with the biogenesis of new peroxisomes coming from pre-existing organelles 

(19). This has been the prevailing concept for the past two decades. In peroxisomal 

biogenesis, 32 proteins have been identified and these are known as peroxins (PEXs). 

PEXs are involved in the recruitment of lipids for peroxisomal membrane formation, 

insertion of proteins into the peroxisomal membrane, import of matrix proteins and 

the fission and inheritance of peroxisomes (for review see (21)).  

Studies in yeast and mammals have recently challenged the “growth and division” 

model. The peroxins Pex3p, Pex16p and Pex19p are required to maintain the 

peroxisomal membrane and loss of function results in the absence of peroxisomes in 

yeast cells. However, when the wild-type genes were reintroduced into yeast strains 

lacking these PEX proteins, peroxisomes reappeared (22-27). This raised the question 

as to where did these new peroxisomes come from? The dictum ‘omnis membrane e 

membrana’ (Günther Blobel, Nobel Prize 1999) says that a membrane system must be 

present that can regenerate the peroxisomes. The above studies and others implicate 

the ER, since Pex3p and Pex19p were observed to initially localize to the ER before 

maturing into import competent peroxisomes, indicating that the ER is the source of 

the newly synthesized organelle (25). Peroxisomes can rapidly adapt to 

environmental changes and cellular demands and this can result in an increase in 

peroxisome number and size. 

 

Fibrates, a group of synthetic ligands that activate the peroxisome proliferator activated 

receptor ! (PPAR!), result in an increase in size and number of peroxisomes and the 

transcriptional induction of enzymes involved in "-Oxidation (28). The PPAR! 

belongs to the nuclear receptor superfamily. Three isoforms have been described so far, 

PPAR!, PPAR-$/" and PPAR%. They were identified in the 1990s in rodents and 

named after their property as peroxisome proliferators (29). The PPARs bind to DNA 

as a heterodimer with the retinoid x receptor (RXR) at peroxisome proliferator response 
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elements (PPREs) (30). PPAR! has been shown to be a key regulator of lipid 

metabolism. PPAR! is expressed in various tissues in rodents and humans such as 

liver, heart, kidney, small intestine and brown adipose tissue (31-33). It is activated by 

both natural and synthetic ligands, and also by conditions such as fasting (34). The 

natural ligands include various free fatty acids (35) and acyl-CoAs (36), whose levels 

can be regulated by the action of the various members of the ACOT family (enzymes 

that hydrolyze acyl-CoAs to free fatty acids and coenzyme A).  

 

Import of peroxisomal matrix proteins 

Peroxisomes do not contain DNA, which means that peroxisomal matrix proteins are 

encoded for by nuclear genes, and are synthesised on free cytosolic ribosomes. A 

striking feature of peroxisomes is their ability to post translationally import these 

fully folded matrix proteins (37). The import of the proteins is based on pathways that 

involve various targeting signals, receptor proteins and import machinery. The whole 

process can be broken down into 4 simple steps – proteins destined for the 

peroxisomal matrix are firstly recognised in the cytosol by a receptor, this then results 

in the docking of the receptor-protein complex on the peroxisomal membrane. The 

complex is then translocated across to the luminal site of the membrane, where it is 

disassembled and the protein is released into the peroxisomal lumen. Finally, the 

receptor is recycled back to the cytosol. The most common targeting signal used is 

the peroxisomal targeting signal 1 (PTS1), which is used by over 90% of peroxisomal 

matrix proteins. It is a carboxyterminal tripeptide sequence of serine-lysine-leucine (-

SKL) or variants thereof [(S/C/A)(K/R/H)L] (38-40). The second targeting signal is 

known as the peroxisomal targeting signal 2 (PTS2), and although it is mainly found 

at the N-terminal, it can function internally. The PTS2 is a bi-partite signal of 

(R/K)(L/V/I) X5 (H/Q)(L/A) (41) and variants thereof (42).  

 

Functions of peroxisomes 

As mentioned above, peroxisomes play an important role in lipid metabolism and one 

of the central features of this organelle is fatty acid oxidation. This thesis will focus 

on the metabolism of fatty acids and bile acids in peroxisomes. It should be noted 

however, that peroxisomes are involved in a number of other pathways, including 

oxygen metabolism, amino acid metabolism and glyoxylate metabolism.  
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!-Oxidation  

The major pathway for fatty acyl-CoA breakdown is via "-oxidation. In yeast and 

plants this pathway is exclusively peroxisomal but in mammals it is peroxisomal and 

mitochondrial. "-Oxidation of fatty acids in both organelles occurs via four recurring 

steps; [1] dehydrogenation, [2] hydration, [3] a second dehydrogenation, and [4] 

thiolysis, yielding as products a 2 carbon chain-shortened acyl-CoA and acetyl-CoA 

(see Fig. 1 for an overview). Both mitochondria and peroxisomes are involved in the 

degradation of medium and long chain saturated and unsaturated fatty acids but the 

two systems differ regarding substrate specificity, enzymology and also energy 

production. The peroxisomal "-oxidation pathway is solely responsible for the 

oxidation of very long-chain fatty acids, long-chain dicarboxylic acids, leukotrienes, 

prostaglandins, carboxylic derivatives of some xenobiotics, isoprenoid-derived fat 

soluble vitamins, bile acid intermediates and pristanic acid (which comes from !-

oxidation of phytanic acid) (for review see (4)). In mitochondria fatty acids are 

completely oxidized, however in peroxisomes, "-oxidation is only partial and most 

substrates only undergo two to three rounds of "-oxidation, resulting in chain 

shortening (43).  

 

Fig. 1. "-Oxidation of fatty acids and bile acid intermediates in peroxisomes. Fatty acids and bile acid 

intermediates are activated to their CoA esters by acyl-CoA synthetases before undergoing "-oxidation in 

peroxisomes. One round of fatty acid "-oxidation, results in an acyl-CoA that is 2 carbons shorter plus acetyl-CoA, 

while in bile acid "-oxidation, the products are CDCA-CoA or CA-CoA and propionyl-CoA. CDCA-CoA, 

chenodeoxycholoyl-CoA; CA-CoA, choloyl-CoA. 
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The first step in peroxisomal "-oxidation is catalyzed by acyl-CoA oxidases (ACOX). 

In mouse and rat peroxisomes there are three ACOXs with different substrate 

specificities. ACOX1 is active on straight chain acyl-CoAs of varying chain length 

(44, 45), ACOX2 is active towards bile acid intermediates and ACOX3 is active on 2-

methyl-branched chain fatty acids (46). In humans there are two ACOXs, ACOX1 is 

active towards a range of straight chain fatty acyl-CoA esters, while the human 

ACOX2 catalyzes the same reactions as mouse ACOX2 and ACOX3 (47). The next 

reactions in the peroxisomal system are a hydration and a second oxidation step, 

mediated by two multifunctional enzymes (MFE), which catalyze the same reaction 

but with different stereospecificity. Two MFEs exist in mammals, an L-specific 

bifunctional protein (LBP), also known as MFE-1 (48) and a D-specific bifunctional 

protein (DBP) also known as MFE-2 (49-51). MFE-2 is important not only for fatty 

acid metabolism but also bile acid synthesis (see below).  

The final reaction of "-oxidation is the thiolytic cleavage of 3-ketoacyl-CoA to 

acetyl-CoA and an acyl-CoA shortened by two carbons, catalyzed by one of three 

ketoacyl-CoA thiolases - thiolase A, thiolase B or sterol carrier protein X (SCPx). 

Thiolase A and B are active on similar substrates - straight chain acyl-CoAs, with the 

main difference being that thiolase A is constitutively expressed, while thiolase B 

expression can be induced by peroxisome proliferators (52-54). SCPx is involved in 

the cleavage of 2-methyl branched chain substrates and is involved in the breakdown 

of pristanic acid and the synthesis of bile acids (55). Humans have two thiolases, one 

is a straight chain thiolase and the other is an ortholog of SCPx. As mentioned earlier, 

peroxisomal "-oxidation acts as a chain shortening system, but what happens to these 

chain shortened acyl-CoAs? It is believed that they may be transferred to carnitine 

and transported to the mitochondria for complete oxidation (56), or that they are 

substrates for other enzymes such as the acyl-CoA thioesterases and nudix hydrolases 

(see below). 

 

Bile acid metabolism 

Bile acid production is the predominant mechanism to remove cholesterol from the 

body. Approximately 500 mg of cholesterol is converted to bile acids each day in the 

human liver. Bile acid synthesis involves modifications of the cholesterol ring 

structure, "-oxidative cleavage of the side chain and finally conjugation (amidation) to 
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an amino acid. The 17 enzymes involved in this pathway are predominantly expressed 

in liver within different subcellular compartments. The initial steps in the classical 

pathway of bile acid synthesis are involved in the conversion of cholesterol into the bile 

acid intermediates 3!,7!-dihydroxycholestanoic acid (DHCA) and 3!,7!,12!- 

trihydroxycholestanoic acid (THCA) (for review see (57)). To continue along the 

pathway both DHCA and THCA need to be activated to their CoA ester. Two enzymes 

can activate these compounds, the bile acyl-CoA synthetase (BACS), also known as 

FATP5, which is localized in the endoplasmic reticulum and is believed to be 

responsible for activating primary and secondary bile acids (58). The second enzyme is 

the very long-chain acyl-CoA synthetase, which is localized in both the ER and 

peroxisomal membrane (58, 59). The activated DHCA-CoA and THCA-CoA are then 

transported into the peroxisome and here the first step is the conversion of the (25R)-

stereoisomer into the (25S)-isomer by !-methylacyl-CoA racemase (AMACR) (60), 

before undergoing one round of peroxisomal "-oxidation (see Fig.1 for an overview).  

 
In humans, the "-oxidation of bile acid intermediates commences with the branched 

chain acyl-CoA oxidase (BCOX, also known as ACOX2) (47), while in mice and rat, it 

is THCA-CoA oxidase (encoded for by Acox2) that is responible (61, 62). The next two 

steps are catalyzed by the DBP, which contains hydratase and dehydrogenase activities 

and results in the production of 24-keto-THCA-CoA and 24-keto-DHCA-CoA (50). 

These products are cleaved to choloyl-CoA or chenodeoxycholoyl-CoA by SCPx, with 

the release of propionyl-CoA (see Fig. 1). The final step is the conjugation of the bile 

acid to taurine or glycine by another peroxisomal enzyme, the bile acid-CoA:amino 

acid N-acyltransferase (BAAT), which allows for secretion of the conjugated bile acid 

into bile. 

 

Entry of substrates into peroxisomes 

Cell organelles such as mitochondria and peroxisomes allow the cell to 

compartmentalize specific chemical reactions. As mentioned earlier peroxisomes are 

involved in a number of metabolic pathways, and this requires the transport of 

molecules across the peroxisomal membrane, including substrates, metabolites and 

co-factors.  

 



 

 8 

Fatty acid activation 

Fatty acids are “activated” by thioesterification to coenzyme A (CoASH) to form 

acyl-CoAs. The formation of acyl-CoAs allows the otherwise “non-reactive” fatty 

acid to participate in various metabolic pathways, such as "-oxidation. This reaction 

is catalyzed by a group of enzymes known as acyl-CoA synthetases (ACS) (for 

review see (63)). The ACSs can be divided into five sub-families and this is based on 

the chain length of their preferred acyl group – they are short-chain acyl-CoA 

synthetase (ACSS), which activates C2 to C4; medium-chain (ACSM), C4 to C12; 

long-chain (ACSL), C12 to C20; and very long-chain (ACSVL), C18-C26. Members of 

the ACSVL family are also involved in bile acid synthesis (58).  

With regard to the substrates of peroxisomal metabolic pathways, it seems that the 

peroxisomal membrane contains a long-chain and very long-chain ACS. Out of five 

mammalian ACSLs (long chain), ACSL1 is the only member of this family that is 

believed to be peroxisomal but it does not seem to be an intrinsic membrane protein 

(64) and it’s active site faces the cytosol. This suggests that substrates of ACSL1 are 

activated to CoA esters outside the peroxisome and subsequently transported in e.g. 

via the ABC transporters (see below).  

In humans and rodents the ACSVL (very long-chain) family has six members and all 

have been shown to be capable of activating C24 fatty acids but differ in tissue 

expression, subcellular localization and substrate specificities (for review see (63)). 

ACSVL1 is mainly expressed in liver and kidney and has been localized to the ER 

and peroxisomes, and was shown to activate C16 and C24 fatty acids and the branched 

chain fatty acids phytanic and pristanic acid (59). In peroxisomes of HepG2 cells, 

human ACSVL1 was shown to face the peroxisomal matrix suggesting it is involved 

in intraperoxisomal activation of substrates (59).  It can also activate 

trihydroxycholestanoic acid  (THCA), which implicates it in de novo bile acid 

synthesis (58), however, it is unknown whether this occurs in the peroxisome or ER. 

Another member that should be mentioned is the ACSVL6 (also known as BACS, 

VLCS-H2 and FATP5) that is a bile acid-CoA ligase (synthetase) whose expression 

is liver specific. It is found primarily in the ER and its preferred substrates are the 

primary (cholic and chenodeoxycholic acids) and secondary (deoxycholic and 

lithocholic acids) bile acids and the bile acid precursor THCA. This suggests that de 
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novo bile acid synthesis precursors are activated to the CoA ester before being 

transported into the peroxisome.  

 

The peroxisomal membrane and metabolite transport 

The permeability of the peroxisomal membrane has been a subject of controversy for 

more than four decades. It has been speculated that peroxisomes contain non-

selective channels that are freely permeable to solutes or/and they have selective 

membrane transporters (65). Both points of view have experimental support, and it 

was recently shown that that the peroxisomal membrane is permeable to solutes that 

have a molecular mass less than 300 Da (66). This means that the membrane seems to 

restrict the access of larger compounds, such as co-factors which are required for the 

various metabolic processes within the peroxisome e.g. NAD/H, NADP/H and 

CoASH (see below), which suggests that peroxisomes contain their own pool of 

cofactors (66). One peroxisomal transporter that has been widely studied is the yeast 

Ant1p. This protein was first identified in a proteomic screen and showed amino acid 

similarity with a mitochondrial ADP/ATP translocator. Ant1p has been studied 

extensively in vitro and has been shown to be an adenine nucleotide transporter, 

involved in the transport of ATP and AMP in peroxisomes (67, 68). The human 

orthologue of the yeast Ant1p is PMP34 and was shown to have similar catalytic 

activities (68). 

 

The ABC transporters 

A group of proteins that are implicated in peroxisomal metabolite transport are the 

adenosine-triphosphate-binding cassette (ABC) transporters (for review see (69)). 

These are integral membrane proteins that transport a wide range of substrates from 

ions to proteins. The peroxisomal ABC transporters are ABC-half transporters, which 

means that they dimerize into fully functional complexes. Four ABCs have been 

detected in mammalian peroxisomes, although functional roles for all have yet to be 

established. They are ALDP (ABCD1), ALDR (ABCD2), PMP70 (ABCD3) and 

PMP69 (ABCD4), and it is believed that different combinations of these transporters 

may transport different substrates into peroxisomes (69).   

Co-immunoprecipitation studies indicate that there is homodimerization of ALDP, 

heterodimerization of ALDP with PMP70 or ALDRP, and heterodimerization of 
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ALDRP with PMP70 (70). Human ALDP was first identified in 1993 (18) and was 

recently shown to function as a homodimer that is involved in the import of various 

long- and very long-chain acyl-CoAs (including C16, C18:1, C22, C24:6) into the 

peroxisome (71). As mentioned earlier, mutations in the ABCD1 gene, which codes 

for ALDP, are associated with the human disorder X-ALD (17). The function of the 

remaining three transporters remains largely unresolved but it is believed that ALDR 

function overlaps with that of ALDP (72), since overexpression of ALDR in cells 

lacking ALDP results in an increase in the oxidation of C24 and C26 fatty acids (73). 

PMP70 has been implicated in the transport of long-chain acyl-CoAs into 

peroxisomes (74), and it was recently proposed that it is also involved in the transport 

of the bile acid precursors THCA-CoA and DHCA-CoA, and branched-chain fatty 

acids into peroxisomes (75) (see Fig. 2 for an overview). Although PMP69 was 

identified in 1997 there is still no information regarding its physiological role in 

peroxisomes (76, 77).  

 

Fig. 2. Possible transport mechanisms for entry of substrates and cofactors into peroxisomes. Fatty acids and 

bile acid intermediates are activated to their CoA esters by acyl-CoA synthetases. The CoA ester may then be 

transported into the peroxisome via ABC transporters. ATP and AMP can be translocated via PMP34. ATP, 

adenosine triphosphate; AMP, adenosine monophosphate; THCA-CoA, trihydroxycholestanoyl-CoA; DHCA-

CoA, dihydroxycholestanoyl-CoA. 
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Peroxisomal "-oxidation products: their possible fates 

As mentioned earlier peroxisomal "-oxidation acts as a chain shortening system and 

one question raised is what happens to the chain shortened products? It has been 

suggested that they are substrates for various enzyme families, which includes the acyl-

CoA thioesterases (ACOTs), nudix hydrolases (NUDTs), carnitine acyltransferases and 

the bile acid conjugating enzyme, BAAT.  

 

The Acyl-CoA Thioesterases 

The major work of our group for the past decade has focused on the characterization of 

the type I acyl-CoA thioesterase gene family (ACOTs). This gene family contains 

enzymes that are involved in various aspects of lipid metabolism within different cell 

compartments, including the peroxisome, mitochondria and cytosol. 

Acyl-CoA thioesterase activity was first identified in the 1950s (78), and they catalyze 

the cleavage of the thioester bond of acyl groups that are attached to CoASH, to release 

the free fatty acid and CoASH (see Fig. 3).  

 
 

 
 

 

 

 

Fig. 3. Reaction catalyzed by the acyl-CoA thioesterases. ACOTs hydrolyse the CoA ester of various fatty acids 

into the free fatty acid and coenzyme A (CoASH).  

 

 

The type I acyl-CoA thioesterases are a gene family of six mouse and four human 

ACOTs (79-86). ACOT1 is localized in the cytosol and is active mainly on long chain 

acyl-CoAs of C12-C18 (81, 82), ACOT2 is localized in mitochondria and also 

hydrolyses long-chain acyl-CoAs (81, 83). In mouse peroxisomes there are four 

ACOTs, ACOT3 which is active towards long chain acyl-CoAs (84), ACOT4 which 

catalyzes the hydrolysis of succinyl-CoA to succinate and CoASH (85), ACOT5, a 

medium chain acyl-CoA thioesterase (84), and finally ACOT6, which hydrolyzes 

pristanoyl-CoA and phytanoyl-CoA to pristanic acid and phytanic acid respectively 

(86) (see Fig. 4).  
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In the corresponding gene cluster in human, there are four genes coding for thioesterase 

proteins, these are ACOT1, ACOT2, ACOT4 and ACOT6. Although, it is not clear if 

ACOT6 translates into a functional protein since it is coded for by a methionine at the 

end of the second exon, resulting in translation of only the third exon. Human ACOT1 

and ACOT2 carry out similar functions to their mouse counterparts, while ACOT4, the 

only human peroxisomal enzyme, catalyzes the reactions of three of the mouse 

enzymes (ACOT3, ACOT4 and ACOT5) (81). 

 

 

 

 

Fig. 4. Localization and substrate specificities of the type I acyl-CoA thioesterases (ACOTs) in the cell. The 

different cellular localizations of members of the ACOTs are shown, with their various substrate specificities. MCA-

CoA, medium-chain acyl-CoA; LCA-CoA, long-chain acyl-CoA; ACOT, acyl-CoA thioesterase. 

 

 

The roles postulated for the peroxisomal ACOTs are as auxiliary enzymes in 

peroxisomal !- and "-oxidation, in the removal of metabolites from peroxisomes as 

free acids and/or the regulation of coenzyme A (CoASH) levels in peroxisomes (for 

review see (87)). Also peroxisomes contain two further acyl-CoA thioesterases that are 

not related to the type-I gene family. ACOT8, hydrolyzes a wide variety of acyl-CoAs 

(88-90) and is one of only two peroxisomal thioesterases regulated by CoASH (88). 

The second thioesterase ACOT12, is an acetyl-CoA thioesterase (short chain) that is 

inhibited by CoASH and ADP (91, 92).  
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Coenzyme A and peroxisomes 

Coenzyme (CoASH) is an indispensable co-factor in living organisms as it is 

involved in over one hundred reactions in intermediary metabolism and required by 

approximately 4% of all cellular enzymes (93). Levels of CoASH in the cell depend 

on its metabolic state and within the cell itself CoASH is compartmentalized in the 

cytosol, mitochondria and peroxisomes. As discussed above, fatty acids are esterified 

to CoASH in order for "-oxidation to proceed. In addition, CoASH is required for the 

final step of "-oxidation, catalyzed by the 3-ketoacyl-CoA thiolases or SCPx to 

produce the chain shortened acyl-CoA and acetyl-CoA or propionyl-CoA. 

Peroxisomes are estimated to contain between 0.23-0.7 mM CoASH (94, 95). As 

mentioned previously, the peroxisomal membrane is impermeable to so called ‘bulky’ 

solutes i.e. over 300 Da, such as CoASH (66), and therefore acyl-CoAs transported 

into the peroxisomal lumen are believed be the source of peroxisomal CoASH. It is 

important in peroxisomes to control the levels of CoASH, especially under times of 

high "-oxidation where there is a change in intra-peroxisomal levels of acyl-CoAs 

and a demand for CoASH, such as during starvation (96) and high fat feeding (97). 

The extent of CoASH sequestration may therefore depend on the size of the CoASH 

pool, the amount and types of lipids in the peroxisomal "-oxidation system, as well as 

certain peroxisomal enzyme activities such as the ACOTs. Another enzyme family 

that has recently been implicated in the regulation of peroxisomal CoASH levels is 

the nudix hydrolases. 

 
The Nudix Hydrolases 

The nudix hydrolases (NUDTs) are a group of widely distributed enzymes whose 

proposed functions include the elimination of potentially toxic endogenous metabolites 

from the cell as well as the regulation of the availability of many different nucleotide 

substrates, co-factors and signaling molecules (98). The majority are nucleotide 

diphosphatases that hydrolyze the diphosphate linkage in a variety of nucleoside 

triphosphates, dinucleoside polyphosphates, nucleotide sugars and related compounds, 

with substrates having the general structure of a nucleotide diphosphate linked to 

another moiety (98).  
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In mammalian peroxisomes two new members of this family have been identified that 

are active on CoASH or CoA derivatives. These are NUDT7! (99) and NUDT19 

(RP2p) (100). These enzymes function as diphosphatases that can cleave CoASH or 

CoA esterified to a fatty acid, with the products being 4’-phosphopantetheine or acyl-

phosphopantetheine and 3’5’-ADP (see Fig. 5). Mouse NUDT7! was first identified in 

2001 and was shown to be active on CoASH, 3’-dephospho-CoA, oxidized CoA, 

acetyl-CoA and succinyl-CoA (99). NUDT19 was found to be active on CoASH and 

oxidized CoA. However, it was also shown that it is active on a range of acyl-CoA 

esters including straight chain acyl-CoAs, methyl branched chain acyl-CoAs and bile 

acid-CoAs (100).  

 

 

Fig. 5. Reaction catalyzed by the nudix hydrolases. The nudix hydrolases (NUDTs) can produce 4’-

phosphopanthetheine or a fatty acid with phosphopanthetheine attached (acyl-phosphopanthetheine) and 3’5’-ADP. 

The arrow indicates the site of hydrolysis.  

 

 

In Sacchraromyces cerevisiae, the PCD1 nudix hydrolase gene was speculated to have 

a role in the removal of potentially toxic oxidized CoA from peroxisomes in order to 

maintain "-oxidation (101). It has a low Km (24 µM) for oxidized CoA (CoASSCoA), 

which is more than ten times lower than the Km for CoA (Km!280 µM), suggesting that 

it removes potentially toxic or non-functional oxidized CoA in peroxisomes (101). The 

corresponding NUDT enzyme in Caenorhabditis elegans (C. elegans) has a Km for free 

CoA of 220 µM, which is similar to that for oxidized CoA at 320 µ&, showing that this 

enzyme has no preference for free or oxidized CoA (102). The mouse homolog of the 
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Pcd1p gene was later identified and named NUDT7! and it was believed that it would 

have a similar role to that of the yeast and C. elegans proteins and indeed both 

NUDT7! and NUDT19 were identified as CoASH metabolizing enzymes (99, 100). 

 

The Carnitine Acyltransferases 

A third peroxisomal enzyme family involved in CoASH regulation are the carnitine 

acyltransferases. These catalyze the reversible esterification of fatty acids to CoASH 

and carnitine. In peroxisomes there are two carnitine acyltransferases - carnitine 

acetyltransferase (CRAT), active on short-chain acyl-CoAs, and carnitine 

octanoyltransferase (CROT) active on medium-chain acyl-CoAs (103, 104). CRAT, 

has highest activity towards butyryl-CoA, propionyl-CoA and acetyl-CoA (105), while 

CROT is active towards straight chain and branched medium-chain acyl-CoAs (105, 

106). Through the production of carntitine esters, the carnitine acyltransferases have 

been implicated in the removal of metabolites of peroxisomal "-oxidation for transport 

to mitochondria for further metabolism.  

 

Bile acid-CoA:amino acid N-acyltransferase  

So far the fate of the fatty acyl-CoAs has been discussed, but as mentioned earlier 

another important pathway in peroxisomes is bile acid synthesis. As previously stated, 

the bile acid precursors undergo one round of "-oxidation with the final step being the 

conjugation (or amidation) of the C24 bile acids, choloyl-CoA and chenodeoxycholoyl-

CoA to the amino acids taurine or glycine (depending on the species). This reaction is 

carried out by the bile acid-CoA:amino acid N-acyltransferase (BAAT) (see Fig. 6) 

(107-111). The conjugation of bile acids plays several important roles, not only does it 

remove cholesterol from the body, it also increases the detergent properties of bile 

acids, which aids lipid and vitamin absorption. 

A homozygous mutation has been reported in the BAAT gene in the Amish community 

and the affected patients have familial hypercholanemia, which is characterized by high 

levels of unconjugated bile acids in serum, itching and fat malabsorption (112). Three 

single nucleotide polymorphisms (SNPs) were recently identified in Japanese 

individuals, however, it is not known if these SNPs affect the function of BAAT (113). 
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Fig. 6. Reaction catalyzed by bile acid-CoA:amino acid N-acyltransferase. The bile acid-CoA:amino acid N-

acyltransferase (BAAT) catalyzes the conjugation (amidation) of bile acids to glycine or taurine, resulting in a 

conjugated bile acid. The above reaction shows the conjugation of choloyl-CoA to glycine to produce glycocholate 

and coenzyme A (CoASH).  

 

 

The enterohepatic circulation of bile acids means that the primary bile acids can be 

deamidated by bacteria in the intestine and converted into various secondary bile acids 

e.g. lithocholic acid and deoxycholic acid. Both primary and secondary bile acids are 

returned to the liver. It is speculated that BAAT is involved in two conjugation 

pathways, one where it is responsible for the conjugation of de novo synthesized bile 

acids in the peroxisome, and a second where it is responsible for the reconjugation of 

deconjugated bile acids recycled from the intestine to the liver, suggesting a dual 

localization in peroxisomes and cytosol (114). However, the localization of BAAT still 

remains controversial and raises the possibility of the existence of more than one 

BAAT enzyme. Human, rat and mouse BAAT all contain conserved C-terminal amino 

acid sequences of –SQL (serine, glutamine, leucine), which is a non-consensus variant 

of the peroxisomal targeting signal 1 (PTS1) and could function in the targeting of 

BAAT to the peroxisome. BAAT has been purified and characterized from human liver 

cytosol (115) but activity and protein have also been localized in rat liver peroxisomes 

(109, 116). Studies using green fluorescent fusion showed that in human skin 

fibroblasts BAAT was cytosolic (110, 117), while in studies using primary hepatocytes 

from rat and human, BAAT was localized in peroxisomes (117).  

HNF-4! null mice show undetectable expression of BAAT mRNA, yet they still have 

high levels of conjugated bile acids. Even more interesting is that there is also an 

increase in the levels of glycine conjugated bile acids in the gallbladder (118). 

However, mouse BAAT has no glycine conjugating activity (107), suggesting that there 

may be another enzyme that can glycine conjugate bile acids in mouse. It was also 
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recently shown that BAAT conjugates fatty acids to glycine (110) and taurine (O'Byrne 

et al, unpublished data). 

 

Amino acid conjugation and lipoaminoacids 

So far, conjugation has only been discussed in respect to bile acids, however, it is now 

well established that a wide variety of endogenous molecules including carboxylic 

acids and xenobiotics are also conjugated with amino acids in reactions catalyzed by 

various acyltransferase enzymes (119). Amino acid conjugation is a two-step process; 

the first step requires the activation of the carboxylic acid to the CoA ester, which is 

catalyzed by the acyl-CoA synthetases. As mentioned previously, the second step, the 

conjugation reaction, is catalyzed by an acyl-CoA:amino acid N-acyltransferase (EC 

2.3.1). While the conjugation of bile acids and carboxylic acids to taurine and glycine is 

the most common, conjugation to L-asparagine and L-glutamine can also occur (120). 

The conjugation of xenobiotics is a way to remove these compounds from the body. 

Other molecules that can be conjugated to amino acids are lipids, which are known as 

lipoaminoacids and includes the N-acylglycines (NAGs) and the N-acyltaurines 

(NATs). 

 

N-acylglycines (NAGs) 

N-acylglycines (NAGs) are produced in vivo from activated fatty acyl-CoA esters and 

glycine by the mitochondrial enzymes acyl-CoA:glycine N-acyltransferase (ACGNAT) 

(see Fig. 7). This enzyme activity was first identified by Schachter and Taggart in pig 

kidney and bovine liver mitochondria in the 1950s (121, 122), and then in human liver 

in 1986 (123). NAGs can be further metabolized into another class of signaling 

molecules, the fatty acid amides (FAAs). The enzyme peptidyl glycine !-amidating 

monooxygenase (PAM) has been implicated in the production of FAAs via oxidative 

cleavage of NAGs (124). Like many other chemical transmitters, these lipid 

messengers need to be regulated to ensure tight control over their signaling activity and 

the inactivation of NAGs and FAAs is mediated primarily by the enzyme fatty acid 

amide hydrolase (FAAH) (125, 126). 
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Fig. 7. Synthesis and metabolism of N-acyltaurines and N-acylglycines. Fatty acids are first activated to their CoA 

ester by the action of acyl-CoA synthetase (ACS). Then the fatty acyl-CoA is conjugated to an amino acid such as 

taurine by an acyl-CoA:amino acid N-acyltransferase (ACNAT) or to glycine by acyl-CoA:glycine N-acyltransferase 

(ACGNAT). NAGs can be further metabolized to fatty acid amides (FAA) by peptidyl glycine !-amidating 

monooxygenase (PAM). FAAs, NAGs and NATs are inactivated by the enzyme fatty acid amide hydrolase (FAAH), 

which hydrolyzes them to the free fatty acid (FFA). 

 

N-acyltaurines (NATs) 

While the existence of N-acylglycines has been known for a long time, fatty acids 

conjugated to taurine i.e. NATs, were only recently identified. Saghatelain et al used an 

LC-MS based analytical method termed discovery metabolite profiling (DMP) to look 

at the effects of enzyme inactivation in vivo. In this first study they examined the 

metabolite profiles from central nervous tissues (CNS) of wild-type mice and mice 

lacking the enzyme fatty acid amide hydrolase [FAAH (-/-) mice]. They detected a 

group of unknown metabolites elevated in the brain and spinal cord of these         

FAAH (-/-) mice, long-chain fatty acids conjugated to taurine i.e. NATs (127). A 

second study looked further at NAT tissue distribution and levels, and NATs of chain 

length C16-C24 were also detected in liver, kidney and brain (128).  

 
Polyunsaturated NATs such as arachidonoyltaurine (C20:4) have also been identified in 

liver and kidney at levels of 20 pmol/g and 157 pmol/g respectively (128). In mice 

treated with a chemical inhibitor of FAAH, the highest NAT changes in liver and 

kidney were mainly those with polyunsaturated acyl chains, while in brain only 

saturated and monosaturated NATs were increased. The differences in the distribution 

of NATs between liver, kidney and brain suggests two different mechanisms for the 

production of NATs, one in the liver and kidney producing polyunsaturated NATs and 

one in brain producing saturated and monounsaturated NATs. A question raised upon 
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the discovery of NATs was what enzyme is responsible for their production? It was 

suggested that they would be produced in a similar way to the NAGs but by an enzyme 

capable of using taurine as the acceptor molecule instead of glycine (see Fig. 7).  One 

candidate enzyme that was put forward was BAAT (128). However, within mouse 

peroxisomes there are two newly identified genes that are related to Baat that were also 

possible candidates, which have been named acyl-CoA:amino acid N-acyltransferase 1 

and 2 (Acnat1 and Acnat2) (Paper I and II).  

 

 

The Acyl-CoA:amino acid N-acyltransferases 

Using blast searches we have identified two new peroxisomal proteins and named them 

acyl-CoA:amino acid N-acyltransferase 1 and 2 (ACNAT1 and ACNAT2). These 

enzymes show 92% sequence identity to each other, 55% to BAAT and approximately 

43% to the type I ACOTs at amino acid level (see Fig. 8). Baat, Acnat1 and Acnat2 are 

located within 100 kb on mouse chromosome 4 B3. Studies into the gene organisation 

of these three acyltransferases show that they all have a similar genomic organisation. 

The open reading frame (ORF) of each gene is encoded for by three exons, with the 

catalytic site located in the third exon. 

 

The similarity between the BAAT, the ACOTs and the newly identified ACNATs, 

suggested that they are acyltransferases whose substrates could be acyl-CoAs or bile 

acid-CoAs. A similar acyltransferase “cluster”, containing genes for BAAT and 

ACNAT1 can be found in humans on chromosome 9q31.1. However, the ACNAT1 gene 

does not appear to encode a functional protein, and contains several stop codons. 
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Fig. 8. Sequence alignment of ACNAT1, ACNAT2, BAAT and ACOT1. Alignment of the amino acid sequences 

was performed using Clustal X method. ACNAT1 and ACNAT2 have a sequence identity of 92% at amino acid 

level, while they share 55% identity with BAAT an approximately 43% identity with ACOT1. ACNAT, acyl-

CoA:amino acid N-acyltransferase; BAAT, bile acid-coenzyme A:amino acid N-acyltransferase; ACOT, acyl-CoA 

thioesterase. The amino acids of the nucleophilic elbow are boxed and the amino acids of the catalytic triad are 

indicated by circles. 

 

 

The thioesterases and acyltransferases belong to the !/" 

hydrolase protein family 

The work in this thesis has focused on various members of the type I acyl-CoA 

thioesterase/acyltransferase gene family. Initial sequence analysis of four ACOTs, 

ACOT1, ACOT2, ACOT3 and ACOT5 identified these as members of a larger family 

of proteins known as the !/" hydrolase superfamily (80).  

 
The !/" hydrolases are one of the largest families of proteins and have various catalytic 

functions which includes lipid hydrolases, thioester hydrolases and peptide hydrolases 

to name a few. These have all been classified together based on their similar structure – 

an !/" hydrolase fold which contains the catalytic machinery of the enzyme (see Fig. 

M M I Q L I A T P S N A L V - D E P V S I R A T G L P P S Q I V T I K A T V K D E N D N V F Q S Q A 49ACNAT1

M M I Q L I A T P S N A L V - D E P V S I R A T G L P P S Q I V T I K A T V K D E N D N V F Q S Q A 49ACNAT2

M A - K L T A V P L S A L V - D E P V H I Q V T G L A P F Q V V C L Q A S L K D E R K P V - S S Q A 47BAAT

M E A T L N L E P S G R S C W D E P L S I A V R G L A P E Q P V T L R S V L R D E K G A L F R A H A 50ACOT1

F Y K T N E A G E V D L E K T P A L G G D Y V G V H P M G L F F S L K P K K A F H R L M K K D V M N 99ACNAT1

F Y K T N E A G E V D L E K T P A L G G D Y V G V H P M G L F F S L K P K K A F H R L M K K D V M N 99ACNAT2

F Y R A S E V G E V D L E H D P S L G G D Y M G V H P M G L F W S L K P E K L L G R L I K R D V I N 97BAAT

R Y R A D S H G E L D L A R T P A L G G S F S G L E P M G L L W A M E P D R P F W R L V K R D V - Q 99ACOT1

S P F C I C L D L Y D S V N W L E T V R I - P S K A S Q R V Q R W F V G P G V K R E Q I Q E G R V R 148ACNAT1

S P L C I C L D L Y D S V N W L E T V R I - P S K A S Q R V Q R W F V G P G V K R E Q I Q E G R V R 148ACNAT2

S P Y Q I H I K A C H P Y F P L Q D L V V S P P L D S L T L E R W Y V A P G V K R I Q V K E S R I R 147BAAT

T P F V V E L E V L D G H E P D G G Q R L A H A V H - - - - E R H F L A P G V R R V P V R E G R V R 145ACOT1

G A L F L P P G K G P F P G I I D L F G V I G G L V E F R A S L L A S H G F A V L A L A Y F A Y K D 198ACNAT1

G A L F L P P G K G P F P G I I D L F G L I G G L V E F R A S L L A S H G F A V L A L A Y F A Y E D 198ACNAT2

G A L F L P P G E G P F P G V I D L F G G A G G L M E F R A S L L A S R G F A T L A L A Y W N Y D D 197BAAT

A T L F L P P E P G P F P G I I D L F G V G G G L L E Y R A S L L A G K G F A V M A L A Y Y N Y D D 195ACOT1

L P E K L Q E V D L E Y F E E A A N F L L S H P K I Q Q P G I G V I S T S K G A E I G L A M A C Y L 248ACNAT1

L P E K P Q E V D L E Y F E E A A N F L L S H P K I Q Q P G I G V I S T S K G A E I G L A M A C Y L 248ACNAT2

L P S R L E K V D L E Y F E E G V E F L L R H P K V L G P G V G I L S V C I G A E I G L S M A I N L 247BAAT

L P K N M E T M H M E Y F E E A V N Y L R S H P E V K G P G I G L L G I S K G G E L G L A M A S F L 245ACOT1

K Q V I A T V C I N G A T T T T A V P L R Y Q D L V V T P I Q Q A L E R M E V H V S G A V C F R H T 298ACNAT1

K Q V I A T V C I N G P T T I T I F P L R Y Q D L V M T P I H P A L E R I Q V H D S G A L L F R Y T 298ACNAT2

K Q I R A T V L I N G P N F V S Q S P H V Y H G Q V Y P P V P S N E E F V V T N A L G L V E F Y R T 297BAAT

K G I T A A V V I N G S V A A V G N T I S Y K D E T I P P V T I L R N Q V K M T K D G - - - L K D V 292ACOT1

T Q Y L Q N K - - - - - N I L P V E K A Q G K I L F I V G E N D E L L D S K L H A Q R A M D R L R R 343ACNAT1

T Q Y L H N K L - N S Q N I L P V E K A Q G K I L F I V G E N D E C L D S K L H A Q K A M D R L Q R 347ACNAT2

F Q E T A D K - - D S K Y C F P I E K A H G H F L F V V G E D D K N L N S K V H A N Q A I A Q L M K 345BAAT

V D A L Q S P L V D K K S F I P V E R S D T T F L F L V G Q D D H N W K S E F Y A D E I S K R L Q A 342ACOT1

H G R S S G R M L A Y P G A G H L I E P P Y S P L C L A S W Q P V L G R P M C F G G D L M A H A - A 392ACNAT1

H G R S S G R M L A Y P G A G H L I E P P Y S P V C F V A W F P V L G Q P M C F G G D L M A H A - A 396ACNAT2

N G K K N W T L L S Y P G A G H L I E P P Y T P L C Q A S R M P I L I P S L S W G G E V I P H S Q A 395BAAT

H G K E K P Q I I C Y P A A G H Y I E P P Y F P L C S A G M H L L V G A N I T F G G E P K P H A M A 392ACOT1

A Q E H S W R E I Q K F F R K H L L Q S - - - - G S K L                                             416ACNAT1

A Q E H S W R E I Q K F F R K H L L Q S - - - - G S K L                                             420ACNAT2

A Q E H S W K E I Q K F L K Q H L L P D - - - L S S Q L                                             420BAAT

- Q L D A W Q Q L Q T F F H K Q L G S E C L H V S P K I                                             419ACOT1

Decoration 'Decoration #1': Shade (with solid black) residues that match ACNAT1 exactly.
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9). The catalytic triad consists of a nucleophile, a histidine and an acidic residue. The 

nucleophile can either be a serine, a cysteine, an aspartic acid or an asparagine. The 

acidic residue can be glutamic acid or aspartic acid, while the histidine is completely 

conserved. The !/" hydrolase fold is an eight "-stranded mostly parallel !/" structure. 

It has one strand ("2) that is antiparallel to the rest. One of the most notable structural 

features of the !/" hydrolase superfamily is the nucleophilic elbow. This nucleophilic 

elbow, in most cases, contains a serine in a highly conserved motif of Gly-Xaa-Ser-

Xaa-Gly (GxSxG), where Xaa are variable amino acids. As the !/" hydrolase family 

expands, it has become apparent that there are many variations of this motif.  

 

Fig. 9. The !/"  hydrolase fold. It has eight " strands (shown as arrows) connected by six !-helices (shown by 

cylinders). The positions of the nucleophile, the acid and histidine are shown in circles. The nucleophilic elbow is 

located between " strand 5 and ! helix 3. 

 

The members of the thioesterase/acyltransferase family are located in two clusters in 

the mouse and human genomes. ACOT 1-6 are located on mouse chromosome 12 D3 

in a cluster within 120 kb of each other, with a similar human gene cluster of four 

ACOTs on chromosome 14q24.3 (81). The acyltransferase cluster of ACNAT1, 

ACNAT2 and BAAT are located in close proximity (within 100 kb) on chromosome 4 

B3 in mouse (see Fig. 10). 
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Fig. 10. Chromosomal localization of mouse acyl-CoA thioesterases and acyltransferases. Type I acyl-CoA 

thioesterases/acyltransferases are located in two gene clusters. The amino acid sequence of the nucleophilic elbow is 

shown. One of the main features of the !/" hydrolase family is the highly conserved nucleophilic elbow motif; in 

most cases it contains a nucleophilic serine in a GxSxG motif. Baat and the Acnats contain variations of this motif 

(SxCxG and SxSxG respectively). Acot, acyl-CoA thioesterase; Baat, bile acid-CoA:amino acid N-acyltransferase; 

Acnat, acyl-CoA:amino acid N-acyltransferase; G, glycine; S, serine; C, cysteine; x, variable amino acid.  

 

Sequence alignment of the ACOTs, BAAT and ACNATs has identified three variations 

of the !/" hydrolase nucleophilic motif within this gene family (see Fig. 8 and Fig. 10). 

The ACOTs all contain the highly conserved common motif of GxSxG (79-82, 84-86), 

while ACNAT 1 and 2 contain SxSxG (Paper I), and BAAT contains SxCxG (110, 

129). Based on the variations in the nucleophilic elbow in ACOTs, ACNATs and 

BAAT, we hypothesized that subtle changes in this elbow may be important in 

mediating their different activities. Furthermore, the overall structural similarities 

between the ACOTs, BAAT and the ACNATs, and the clustering of the genes in the 

genome suggest a strong evolutionary link between these enzymes.  
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AIMS 

 
The identification of two new members of the acyl-CoA thioesterase/acyltransferase 

gene family in peroxisomes naturally led to the question of the roles of these proteins in 

peroxisomal lipid metabolism. One aim of this project was to characterize ACNAT1 

and ACNAT2 regarding localization, substrate specificity and the regulation of their 

expression. 

 

One area in which the sequence of the acyl-CoA thioesterase/acyltransferase family 

differs is in the nucleophilic elbow motif of their active sites, which is normally highly 

conserved. This study set out to see how important the amino acids in this motif are for 

the various activities of each protein. Mutation studies were employed to identify the 

“optimal” residues in the active sites that are necessary for the respective activities of 

three members of the acyl-CoA thioesterase/acyltransferase family. 

 

Coenzyme A (CoASH) is an obligate cofactor for lipids undergoing "-oxidation in 

peroxisomes but it is not known how the peroxisomal CoASH pool is regulated. The 

acyl-CoA thioesterases have been implicated in controlling peroxisomal CoASH levels, 

together with a second family of enzymes the nudix hydrolases. In this study we set out 

to further chracterize a peroxisomal member of this family, NUDT7!, to elucidate its 

possible role in regulation of CoASH/acyl-CoA metabolism in peroxisomes. 
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RESULTS AND DISCUSSION 

 
Characterization of ACNAT1 and ACNAT2 – Paper I & Paper II 

Blast searches identified two new members of the type I acyl-CoA 

thioesterase/acyltransferase family, ACNAT1 and ACNAT2. Both ACNAT1 and 

ACNAT2 contain the consensus peroxisomal targeting signal 1 (PTS1) of –SKL at 

their C-terminal ends. To test if this PTS1 does indeed target both proteins to 

peroxisomes, ACNAT1 and ACNAT2 were expressed as fusion proteins with green 

fluorescent protein (GFP), leaving the carboxyterminal –SKL accessible. The 

localization studies showed that ACNAT1 and ACNAT2 are both peroxisomal proteins 

(Paper I and Paper II).  

 

Roles for ACNATs in NAT production 

Characterization of recombinant ACNAT1 identified it as an acyltransferase that can 

efficiently conjugate acyl-CoAs of chain lengths C12 to C24 to taurine (see Fig. 11). No 

activity was seen with glycine. The identification of ACNAT1 is the first description of 

a specific fatty acid taurine conjugating enzyme that is a long-chain acyl-CoA:amino 

acid N-acyltransferase. The identification of this activity raised the question as to the 

physiological role of this enzyme in peroxisomal lipid metabolism. 

 

 

Fig. 11. Reaction catalyzed by ACNAT1. ACNAT1 conjugates the CoA ester of various fatty acids to taurine to 

produce N-acyltaurines and coenzyme A (CoASH). Conjugation of palmitoyl-CoA (C16) to taurine is shown above.  

 

At the time when we discovered the activity of ACNAT1, Saghatelian et al reported the 

first identification of the NATs in the brain and spinal cord of mice lacking the enzyme 

fatty acid amide hydrolase [FAAH (-/-)] (127). FAAH is involved in the inactivation of 

the signaling molecules NAGs and FAAs (125, 126). The main NAT species identified 
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were of chain lengths C22, C24:1 and C24 and these were elevated 4-40 fold in the FAAH 

(-/-) mice (127). FAAH also has high expression in rodents in liver, kidney and testes 

(125), and after the initial studies in the central nervous system, the focus turned to 

these tissues. NATs with N-acyl chains of C16 to C24 were found in liver and kidney, 

however, the two most elevated NATs in liver were the polyunsaturated NATs of 

arachidonoyltaurine (C20:4) and docosahexanoyltaurine (C22:6) (128). BAAT, the bile 

acid conjugating enzyme, was put forward as the enzyme responsible for NAT 

production. However, we recently identified ACNAT1 as an enzyme that conjugates 

long-chain and very long-chain fatty acids to taurine (C12-C24) (Paper I). ACNAT1 has 

highest tissue expression in liver and kidney and could be responsible in part for the 

production of some of the NAT species produced, however, ACNAT1 has no activity 

towards mono- or polyunsaturated fatty acids (Paper I).  

 

Since the most abundant species of NATs observed in liver and kidney were 

polyunsaturated NATs e.g. C20:4 and C22:6., and since ACNAT1 has no activity with 

polyunsaturated fatty acyl-CoAs, we speculate that ACNAT2 may be responsible for 

the conjugation of these acyl-CoAs. The sequence identity between ACNAT1 and 

ACNAT2 is 92%, which suggests that ACNAT2 may also have a similar enzymatic 

activity to ACNAT1. Acnat2 mRNA is highest in kidney and is also detectable in liver. 

One of the main differences between ACNAT2 and ACNAT1 is that in ACNAT1 there 

is a deletion of four amino acids (LNSQ) in the region between the nucleophilic serine 

and the aspartic acid of the catalytic triad (Paper II). It should also be noted that most 

of the amino acid differences between ACNAT1 and ACNAT2 occur in the third exon, 

which contains the catalytic machinery (Paper II). Currently, there is no information 

regarding the crystal structures of the members of this acyltransferase family, so we are 

unable to perform modelling studies for ACNAT2. However, it is possible that these 

amino acid differences could result in a change in the structure of the substrate binding 

pocket of ACNAT2 that would allow it to accept more “bulky” substrates than 

ACNAT1, such as unsaturated fatty acids (see Fig. 12). However, we have as yet been 

unable to produce functional ACNAT2 protein in several expression systems, so we 

can only speculate as to its function as an acyltransferase. 

 

The NAGs are normally minor components of blood and urine, however, under certain 

conditions and diseases such as medium chain acyl-CoA dehydrogenase deficiency, 

their levels increase (130). A similar situation could exist regarding fatty acids within 
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peroxisomes, since it appears that the levels are low under normal conditions and it 

may be that ACNAT1 and ACNAT2 are involved in the removal of fatty acids in bile 

under conditions when levels could become toxic. Preliminary data from our group 

identified NATs of chain length C14 to C24 in mouse serum; this is also a relevant 

finding regarding the possible transport of these NAT molecules between various 

tissues.  

 

 

Fig. 12. Roles for ACNATs in peroxisomes. ACNAT1 conjugates saturated long-chain fatty acids to taurine to 

produce N-acyltaurines (NATs). These NATs could then be removed from peroxisomes for excretion in bile or 

transported in blood as signaling molecules. ACNAT2 may have a role in the conjugation of mono- and 

polyunsaturated fatty acids to taurine, which may also represent an excretory pathway for these molecules or they 

could also be involved in cell signaling. ACNAT2 may also conjugate de novo synthesized bile acids to taurine 

and/or glycine for excretion in bile. ACNAT, acyl-CoA:amino acid N-acyltransferase; THCA-CoA, 

trihydroxycholestanoyl-CoA; DHCA-CoA, dihydroxycholestanoyl-CoA; CA, cholic acid; CDCA, chenodeoxycholic 

acid; CoASH, coenzyme A. 

 

Since, NAGs and their derivatives, the fatty acid amides, function as signaling 

molecules it was hypothesized that perhaps NATs served a similar function. Fatty acid 

amides have been identified as ligands for various receptors including cannabinoid 

receptors (131), PPAR! (132) and members of the transient receptor potential (TRP) 
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family of cation channels (133, 134). It is also well known that various fatty acids serve 

as natural ligands for the PPARs (35, 135, 136). Studies with NATs did not reveal any 

activation with cannabinoid receptors or PPAR!, however, they did serve as ligands for 

two members of the TRP family, the transient receptor potential vanilloid 1 (TRPV1) 

and TRPV4 (128). TRPV1 has roles in various functions in the body such as 

inflammation, thermoregulation, satiety (137), hearing modulation (138) and 

gastrointestinal motility (139). TRPV1 has also recently been implicated in the 

prevention of adipogenesis and obesity (140). TRPV4 is believed to be involved in the 

regulation of thermogenesis (141), pain signaling (142), osmoregulation (143) and 

hearing (144). Arachidonoyltaurine was also identified as a substrate of the 

lipoxygenases (LOX), 12S-LOX and 15S-LOX, and was shown to be rapidly taken up 

by murine resident peritoneal cells and enter the lipoxygenase pathway. This may 

represent another pathway to terminate the action of NATs, together with the actions of 

FAAH, or it may represent a new pathway to synthesize signaling molecules (145). 

12/15-LOX are expressed in mammals in monocytes and macrophages and have 

important roles in inflammatory diseases, including atherosclerosis, cancer and diabetes 

(for review see (146)). ACNAT1 and ACNAT2 could be involved in the production of 

ligands for the TRPV receptors or substrates for the lipoxygenases, and therefore be 

indirectly involved in the regulation of various cellular processes.  

 

A peroxisomal BAAT? 

As mentioned earlier, the localization of BAAT is still controversial, with activity 

identified in cytosol and peroxisomes in humans (114, 115), rats (116) and mouse 

(147). The chromosomal localization of Acnat1 and Acnat2, together with their similar 

amino acid sequence identities, led to the hypothesis that one of these gene products 

may be a novel peroxisomal BAAT. ACNAT1 can catalyse the conjugation of bile 

acids to taurine (see Fig. 13), which suggests that it may have a role in de novo bile 

acid biosynthesis, however, its ability to conjugate bile acids occurs at a very low level, 

which implies that ACNAT1 may only have a minor role in bile acid biosynthesis.  

ACNAT2 is however also a candidate enzyme for the conjugation of bile acids. 

Hepatocyte nuclear factor 4! (HNF4!) is a member of the nuclear receptor hormone 

superfamily that is mainly expressed in liver, kidney, intestine and pancreas (148, 149) 

and is involved in the regulation of many genes involved in lipid homeostasis (150). In 

a recent study, mice lacking hepatic HNF4! had an increase in unconjugated bile acids 
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but they also had increased levels of glycine conjugated bile acids in gallbladder bile, 

even though there was a strong decrease in the expression of BAAT mRNA (118). This 

is interesting considering the fact that mouse bile normally contains only taurine 

conjugated bile acids and mouse BAAT has no glycine conjugating abilities (107).  In 

HNF4! knockout mice there is an increase in the mRNA levels of a “BAAT homolog” 

that corresponds to ACNAT2 (118), which implies that it could be involved in bile acid 

conjugation to glycine. 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

Fig. 13. ACNAT1 conjugates bile acids. Recombinant ACNAT1 (20 µg) was incubated with 50 µM 

chenodeoxycholoyl-CoA in the presence (A) or absence (B) of 50 mM taurine. The peak at 498.05 corresponds to N-

chenodeoxycholoyltaurine, the peak at 391.07 is chenodeoxycholic acid and the peak at 407 is the internal standard 

cholic acid. 

 

Another study in mice involving deletion of the fatty acid transport protein 5 (FATP5) 

helps to strengthen this hypothesis. FATP5 null mice have an impaired activation of 

recycled bile acids to the CoA ester but still produce primarily conjugated bile acids, 

presumably in peroxisomes (151). However, unlike mice lacking HNF4!, these 

animals had no glycine conjugated bile acids, and examination of the “BAAT 

homolog” (i.e. ACNAT2) that is upregulated in the HNF4! studies showed that it is 

downregulated in these animals (151). Together the results from these two studies 

suggest a possible role for ACNAT2 in the conjugation of the primary bile acids to 

glycine and/or taurine. 

 

m/z ratio m/z ratio 

-Taurine  +Taurine 

               N-chenodeoxycholoyltaurine 
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Mouse Acnat2 is upregulated at mRNA level by various treatments including the 

peroxisome proliferator Wy-14,643, the bile acid CDCA, cholesterol and the 

cholesterol lowering drug atorvastatin (Paper II). Liver X receptor ! (LXR!) acts as a 

cholesterol sensor and feeding mice with elevated levels of cholesterol results in an 

upregulation of CYP7A1 expression, the rate-limiting enzyme in the classic pathway of 

bile acid synthesis (152). This results in an increase in bile acid synthesis and therefore 

a need to increase the rate of bile acid conjugation. The farnesoid X receptor (FXR), 

however, functions as a nuclear receptor for bile acids and when bound to bile acids 

inhibits their synthesis by repressing CYP7A1 synthesis (153-155). However, studies in 

rat liver show that both the bile acid CoA synthetase (BACS) and BAAT are induced 

by FXR in response to natural and synthetic FXR ligands (156). Acnat2 mRNA 

expression is increased by treatment with cholesterol and CDCA, and both of these 

treatments would result in a need to remove excess cholesterol and bile acids. If 

ACNAT2 is indeed a peroxisomal bile acid conjugating enzyme then its upregulation 

would aid in cholesterol and bile acid clearance, however, this remains to be 

determined.  

 
Statins are a group of compounds that are used in the treatment of hypercholesterolemia 

and they exert their effects by inhibiting the rate-limiting enzyme in cholesterol 

biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA 

reductase). Atorvastatin treatment resulted in a nine-fold increase in Acnat2 mRNA 

expression levels in liver, however this effect was seen only in male mice. In female 

mice Acnat2 mRNA levels remain unchanged. An increase in Acnat2 mRNA upon 

atorvastatin treatment could result in an increase in the conjugation of bile acids and 

help in the removal and lowering of cholesterol. Atorvastatin has been shown to 

activate transcription of PPAR! target genes via inhibition of the RhoA signaling 

pathway (157, 158). It is therefore possible that statins inhibit this signaling pathway in 

a gender-specific manner. In humans the cytochrome P450 3A4 (CYP3A4) was shown 

to be the major P450 responsible for atorvastatin metabolism (159). CYP3A4 is 

expressed predominantly in female mouse liver (160, 161) which suggests that in 

female mice, atorvastatin may be metabolized more quickly than in males, and could 

have an effect on the regulation of Acnat2 expression. 
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The active sites of the acyl-CoA thioesterases and 

acyltransferases defines their activity – Paper III 

 

Divergent evolution is the development of proteins with different functions from a 

common ancestor and members of a family often share a characteristic functional 

feature, such as a common binding property or mechanistic strategy in catalysis. Nature 

it seems has opted for stable protein cores and folds and has “fine tuned” enzyme 

function through amino acid substitutions or deletions, which leads to enzymes with 

diverse catalytic functions with apparently only a few changes, such as the !/" 

hydrolase superfamily (162). Enzymes with an !/" hydrolase fold provide an example 

of a superfamily that has conserved mechanistic features but that can also catalyse an 

array of functions, including amongst others carboxylic acid ester hydrolase, lipid 

hydrolase, thioester hydrolase, peptide hydrolase and haloperoxidase (163). The !/" 

hydrolase fold has been preserved because it is a simple, stable and effective way of 

building a variety of different catalytic triads which can catalyze hydrolysis reactions 

(164). The conservation of structural and catalytic features in the acyl-CoA 

thioesterase/acyltransferase family strongly suggests that the enzymes arose via 

divergent evolution from a common ancestor to accept different substrates and to 

catalyze different reactions.  

 

Importance of the active site residues in the thioesterase and 

acyltransferase family 

The nucleophilic elbow in !/" hydrolases is usually made up of the highly conserved 

motif of GxSxG, although as the family expands more variations of this motif have 

been identified.  Sequence analysis of the six ACOTs revealed that all contain the 

“consensus” GxSxG motif and in this study ACOT1 was chosen as the representative 

thioesterase. ACOT1 is active towards acyl-CoAs of chain length C12-C20 and also 

unsaturated acyl-CoAs e.g. C14:1 and C18:2. Mutation of its active site motif to the motifs 

seen in the acyltransferases (i.e. ACNATs SxSxG or BACATs SxCxG) resulted in a 

decrease of thioesterase activity when incubated with C14-CoA. There was a 60% 

decrease in thioesterase activity when the GxSxG motif was mutated to the ACNAT1 

motif of SxSxG and a 98% decrease with the BAAT motif (SxCxG) (Paper III). Wild-

type ACOT1 is unable to conjugate fatty acids or bile acids to glycine or taurine and 
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mutation of the active site to those seen in the acyltransferases did not result in an 

enzyme that could conjugate fatty acids. However, the SxSXG and SxCxG mutants 

resulted in enzymes that could conjugate the bile acid CDCA-CoA to glycine (Paper 

III). The fact that the SxSxG motif can conjugate CDCA-CoA to glycine is interesting, 

since this finding in a way suggests that ACNAT2, which has the SxSxG motif in its 

active site, could function as a glycine conjugating enzyme.  

 

The active site of human wild-type BAAT allows the protein to conjugate not only bile 

acids to taurine and glycine, but also fatty acids, although at about 20% of the bile acid 

conjugating activity. In the absence of glycine and taurine, BAAT can also hydrolyze 

the CoA esters of these substrates to the free bile acid or free fatty acid and CoASH, 

although with a much lower activity. Mutation of the BAAT nucleophilic elbow 

(SxCxG) to that in ACNAT1 (SxSxG) and ACOT1 (GxSxG) generates proteins that 

have higher thioesterase activity and lower conjugation activity than the wild type 

enzyme (Paper III). Both of these mutants lose the ability to conjugate CDCA to 

glycine but can still conjugate CDCA to taurine. This is intriguing considering that 

ACNAT1 contains the SxSxG motif and can only conjugate bile acids to taurine 

(Paper I). 

 

ACNAT1 (SxSxG) shares characteristics of both the ACOT1 and BAAT active sites, it 

has a serine nucleophile like ACOT1 and, similar to BAAT, it has a serine in place of 

the first glycine in the nucleophilic elbow. ACNAT1 is an efficient acyltransferase that 

can conjugate fatty acids to taurine. Mutation of its active site (SxSxG) to the ACOT1 

(GxSxG) and BAAT (SxCxG) active sites resulted in proteins that showed a decreased 

ability to conjugate C16-CoA to taurine, showing that the SxSxG active site is optimal 

for fatty acid conjugation to taurine (Paper III). Generation of the ACOT1 motif in 

ACNAT1 had no effect on its bile acid conjugating ability, however, mutation to that 

seen in BAAT resulted in a protein that conjugated bile acids approximately three times 

more efficiently than the wild-type protein (Paper III). This suggests that the SxCXG 

motif is optimal for bile acid conjugation. 

It can be seen from these protein engineering studies that each of the three chosen 

members of the thioesterase/acyltransferase family- ACOT1, ACNAT1 and BAAT 

have evolved in a way that small differences in the amino acids of their active sites 

have resulted in proteins that are optimal for the reactions that they catalyse and also 

mediate substrate specificity. 
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Evolution of the acyl-CoA thioesterase/acyltransferase gene family 

Based on the sequence identity and chromosomal localization it can be assumed that 

the members of the type-I acyl-CoA thioesterase/acyltransferase gene family have 

evolved by gene duplications, possibly from a common ancestor. Jensen said that new 

enzyme functions are established most easily and most commonly by recruitment of 

proteins already catalyzing analogous reactions (165). One question raised by having 

three such motifs in a small gene family is which one of these motifs was the common 

ancestor?  

To answer this question we turned to the codon usage of the amino acids in the 

nucleophilic elbow, mainly those used for the nucleophilic residues, which are cysteine 

in BAAT and serine in ACOT1 and ACNAT1. Sydney Brenner in his 1988 paper, “The 

molecular evolution of gene proteins: a tale of two serines”, said that essential serine 

residues within proteases show that there have been two lines of descent for the codons 

used and that the codons used for serine (UCN and AGY) are connected by two other 

codons, ACN for threonine and TGY for cysteine. Brenner concludes by saying that 

modern serine enzymes are likely to have arisen from cysteine precursors (166). If we 

use the hypothesis put forward by Brenner and apply it to our family of enzymes, this 

would suggest that BAAT is the common ancestor from which the ACOTs and the 

ACNATs evolved. The two sets of serines codons used by the ACOTs and ACNATs 

could have arisen from single mutations in the BAAT cysteine codon (see Table I). 

 

However, if we look through the codons used by various orthologs in different species 

it would seem that in the acyl-CoA thioesterase/acyltransferase family that Brenners’ 

hypothesis does not apply. If we look in bacteria, the elbow motif in the “putative” 

bacterial thioesterase ortholog is GxSxG. This suggests that the ancesteral gene is 

bacterial and codes for an esterase with a GxSxG motif, such as that seen in ACOT1, 

therefore suggesting ACOT1 is the common ancestor that evolved to give rise to the 

acyltransferases. Several amino acids have multiple codons but serine is unique in that 

it has two sets, UCN and AGY, and these cannot be interconverted into each other by 

single nucleotide changes, as was seen in mammalian mitochondrial genomes (167). 

This means that the serine in ACNAT1 coded for by AGC could not have arisen from a 

single mutation of the serine codon in ACOT1 (UCC). Another study that analyzed 

sequence databanks for Escherichia coli, Sacchromyces cerevisiae and Bacillus subtilis 
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revealed a codon bias for some amino acids at conserved positions, and that the 

primordial codon for serine is TCN and that the AGY codon appeared later (168), such 

as serine used in the ACOTs (UCC). Therefore, taken together this data suggests that 

the thioesterase/acyltransferase gene family evolved from ACOTs, to a cysteine 

nucleophile such as that seen in BAAT and further to the serine nucleophile seen in the 

ACNATs (see Table 1). This is further supported by our finding that the AGY codon 

appears late in evolution (see Table III in Paper III). 

 

 

Table 1. The codon usage of the nucleophilic residues of the mouse Type I acyl-CoA thioesterases and 

acyltransferases. The codons used for the nucleophilic residues in ACOT1, BAAT and ACNAT1 are shown. The 

arrows show the single mutations that could have occurred in the serine codon in ACOTs to give rise to the cysteine 

used by BACAT, which then could have resulted in the serine seen in ACNAT1. 

 

NUDT7! and peroxisomal coenzyme A homeostasis – Paper IV 

Although much of this project was mainly focused on novel acyltransferase enzymes in 

peroxisomes that conjugate the CoA esters of fatty acids or bile acids to glycine or 

taurine, we were also interested in the fate of the CoASH in peroxisomes. The current 

dogma is that CoASH enters peroxisomes as CoA esters but it is still unknown how 

CoASH exits the organelle. To date three enzyme families have been identified in 

peroxisomes that release CoASH from acyl-CoAs, namely the ACOTs, the carnitine 

acyltransferases (CRAT and CROT) and the acyltransferases (BAAT, ACNAT1 and 

ACNAT2). In this regard we therefore studied the nudix hydrolase, NUDT7!, which 

has been proposed to metabolize CoASH into smaller molecules that may exit the 

peroxisome. The mouse NUDT7! was first characterized in 2001 and expression of 

recombinant protein showed that this enzyme hydrolyzed CoASH, 3’-dephospho-CoA, 

oxidized CoA (CoASSCoA), acetyl-CoA and succinyl-CoA (99). NUDT19 is a further 

peroxisomal nudix hydrolase with activity towards CoASH, oxidized CoA and a wide 
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range of CoA esters, including bile acid-CoAs and branched chain acyl-CoAs (100). In 

the initial studies of NUDT7!, the enzyme was only characterized with CoASH and a 

limited set of acyl-CoAs, and since NUDT19 showed activity towards a large range of 

CoA esters, it was decided to perform a more in-depth study on the activity of 

NUDT7!. 

 
Nudix Hydrolases and CoASH regulation 

Nudt7" shows highest tissue expression in liver, followed by brown adipose tissue, 

heart and white adipose tissue. Its co-expression with straight-chain "-oxidation 

enzymes in liver and brown adipose tissue points to a role for this enzyme as an 

auxiliary enzyme in "-oxidation. Activity measurements with CoASH and various acyl-

CoAs at a fixed concentration of 200 µM showed a very broad specificity, with lower 

enzyme activity with longer chain acyl-CoAs, with the best substrates being medium 

chain acyl-CoAs, CA-CoA and THCA-CoA (Paper IV). Kinetic studies show that the 

Km values are highest with CoASH and short-chain acyl-CoAs, with substantially lower 

Km for medium to long chain acyl-CoAs. Also, the Vmax values are much higher with 

medium-chain acyl-CoAs (C6-C12-CoA), suggesting that these acyl-CoAs are indeed 

the best substrates for NUDT7! (Paper IV). 

 

The identification of NUDT7 and NUDT19 seemed to provide a simple explanation of 

what happens to CoASH in peroxisomes i.e. that it is broken down into two smaller 

molecules, 4’-phosphopantetheine and 3’,5’-ADP (see Fig. 5), which could be 

transported out of the peroxisome. It is possible that the 4’-phosphopantetheine is 

transported out of peroxisomes and may be reused in CoASH synthesis. CoASH 

synthesis occurs in five enzymatic steps and the final two steps involve the transfer of 

an adenyl group from ATP by phosphopantetheine adenylyltransferase to 4’-

phosphopantetheine to form dephospho-CoA followed by phosphorylation by 

dephospho-CoA kinase to obtain CoASH. In mammalian cells, proteins located in the 

cytosol catalyze the first three steps of the CoASH synthesis pathway (169-171), while 

the last two take place on the outer mitochondrial membrane (172). The fate of the 

3’,5’-ADP produced is unknown - it may be that it could be reused within the 

peroxisome, or it could be transported out of the peroxisome to be reused within the 

cell. In yeast and human two adenine nucleotide transporters Ant1p and PMP34, 

respectively, have been identified that could transport 3’,5’-ADP out of the peroxisome 
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(67, 68). The 3’,5’-ADP produced by the NUDTs could also result in the inhibition of 

the acetyl-CoA thioesterase ACOT12 (92), which suggests a role for the ADP produced 

in peroxisomes in the regulation of acetate formation.  

 

So many enzymes, so few substrates? 

In peroxisomes various CoA esters, such as the chain shortened products of "-

oxidation, are substrates for not only the NUDTs, but also the ACOTs, the carnitine 

acyltransferases and even the newly identified ACNATs (see Fig. 14). The presence of 

so many enzymes within peroxisomes that are active towards the same substrates raises 

the question of competition for substrates and which enzyme system prevails at any one 

time? This is especially relevant when considering the metabolic status of a cell at a 

given time and the affinity of the various members of these protein families for their 

substrates. The Km of the peroxisomal ACOTs for acyl-CoAs is lower than that of the 

NUDTs, NUDT19 and NUDT7! have Km-values of !80 µM and 22 "M for lauroyl-

CoA respectively (100) and Paper IV, while ACOT3 and ACOT8 have Kms of 7.6 µM 

and 2.8 µM respectively (84, 88), which suggests that the ACOTs may preferentially 

hydrolyze acyl-CoAs over the NUDTs. It is important to remember though that the 

ACOTs cannot cleave CoASH (only acyl-CoAs), and that NUDT activity on acyl-

CoAs will result instead in formation of acyl-phosphopanthetheine and 3’,5’-ADP, 

which could be produced in parallel with the products of ACOT activity. 
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Fig. 14. Routes for excretion of fatty acids from peroxisomes. Very long-chain fatty acid CoA esters undergo "-

oxidation in peroxisomes, which results in a chain shortened CoA ester plus acetyl-CoA. There are a number of 

potential pathways for these chain shortened products. These include esterification to carnitine by CRAT and CROT, 

conjugation to taurine by the ACNATs and hydrolysis to the free fatty acids, acetate or succinate by the ACOTs or 

acyl-4’-phosphopantetheine by the NUDTs. CRAT, carnitine acetyltransferase; CROT, carnitine octanoyltransferase; 

ACNAT, acyl-CoA:amino acid N-acyltransferase; ACOT, acyl-CoA thioesterase; NUDT, nudix hydrolase. 

 

 

The question of which enzyme activity prevails at any one time in peroxisomes can 

also be partly explained by a study performed by Westin et al, which looked at the 

tissue expression of various enzymes involved in peroxisomal lipid metabolism (173). 

The tissue expression of mRNAs for the carnitine acyltransferases Crat and Crot, and 

the acyl-CoA thioesterases, Acot12 and Acot5 were examined. This study showed that 

the enzymes, which have similar substrate specificities i.e CRAT and ACOT12 (active 

on short chain acyl-CoAs), CROT and ACOT5 (active on medium chain acyl-CoAs), 

actually have different tissue expression profiles (see Fig. 15).  

This suggests that that carnitine acyltransferases and acyl-CoA thioesterases do not 

compete with each other for acyl-CoA substrates in peroxisomes, but that they actually 

represent complementary systems for the production of metabolites to be transported 

across the peroxisomal membrane (173).  
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Fig. 15. Tissue expression of the acyl-CoA thioesterases and carnitine acyltransferases in mouse. The mRNA 

expression levels are shown for Acot5, Acot12, Crat and Crot. Prox. I. E.; proximal intestine epithelium, Prox. I. M.; 

proximal intestine muscle, Dist. I. E.; distal intestine epithelium, Dist. I. M; distal intestine muscle, BAT; brown 

adipose tissue, WAT; white adipose tissue. Westin et al 2008, Cell Mol Life Sci. 

 

Nudt7" has highest tissue expression in liver, brown adipose tissue and heart (Paper 

IV), while Nudt19 has highest tissue expression in kidney with lower levels in brown 

adipose tissue and heart (see Fig. 16). It would be interesting to see if a similar system 

exists regarding the NUDTs, i.e do they compete for acyl-CoAs with other enzyme 

families or represent an alternative pathway for acyl-CoA and/or CoASH metabolism 

in other tissues. It would be of interest to compare the levels of each of the various 

members of the NUDT, ACOT, ACNAT and carnitine acyltransferase families in 

various tissues under various metabolic states relative to each other. 
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Fig. 16. Tissue expression of NUDT19. The mRNA expression levels are shown for Nudt19 in various mouse 

tissues. Prox. I; proximal intestine, Dist. I; distal intestine, BAT; brown adipose tissue, WAT; white adipose tissue. 

 

As mentioned before the PPAR! is a key regulator of lipid and conditions such as 

fasting and fibrate treatment activate the PPAR!. It has been reported that these 

conditions result in an increase of peroxisomal total and free CoASH levels, perhaps 

through the upregulation of the ACOTs. Nudt7! is downregulated by Wy-14,643 

treatment at mRNA level in a PPAR!-dependent manner, and activity is decreased by 

clofibrate treatment in purified peroxisomes (Paper IV). This suggests that during 

conditions of high requirement for CoASH in peroxisomes e.g. when "-oxidation 

activity is high, NUDT7 activity is decreased. This decrease in activity would result in 

an increase of peroxisomal CoASH as the downregulation of Nudt7! would preserve 

the CoASH in peroxisomes, which can then be used in the thiolase reaction of "-

oxidation.  
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FUTURE PERSPECTIVES 

 

The acyl-CoA thioesterase/acyltransferase gene family has nine members (seven 

peroxisomal) and work by our group has answered many questions as to the roles of 

each of the various members in peroxisomes. However, in science, as is the case with 

many things in life, we tend to answer questions with even more questions, and with 

the acyl-CoA thioesterase/acyltransferase family there are still a lot of questions to be 

answered. 

 
One of the most important stories to complete in this project is to identify the activity of 

ACNAT2 - we have speculated as to what that could be but it is necessary to obtain 

functioning soluble protein so that its role in peroxisomal lipid metabolism can be 

established. The presence of so many enzymes in one organelle that are active towards 

the same substrates is interesting and raises the question of why do we need so many 

enzymes? A study has been planned that will look at the mRNA expression of not only 

peroxisomal enzymes but also mitochondrial enzymes in various mouse tissues under 

various metabolic conditions, and it is hoped that this study will give more insight into 

their physiological functions. To establish the in vivo physiological roles of the 

thioesterases and acyltransferases, the creation of knockout mouse models would 

provide valuable insights. 

 

It would be really interesting to perform an in-depth study on the evolution of the acyl-

CoA thioesterases and acyltransferases, especially since the human ACNAT1 appears 

to be a pseudogene and in human there is one peroxisomal thioesterase, ACOT4, which 

can catalyze the reactions of three mouse proteins (ACOT3, ACOT4 and ACOT5 ). 

Evolutionary studies would provide insights into when these “extra” activities were 

lost. The crystallization of any of the proteins in this gene family would give structural 

and functional information and allow modelling studies to be performed. 
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POPULAR SCIENCE 

 

The human body contains many different organs, such as the heart, lung, and kidney, 

with each organ performing a different function. By the time a human reaches 

adulthood, his or her body consists of close to 100 trillion cells. The majority of 

processes of life take place within these cells, which is why they are often called the 

building blocks of life. Cells also have their own set of "little organs," called organelles, 

which are specialized in carrying out specific and vital functions. One such organelle is 

the peroxisome. 

 

The human body can be considered or thought of as a machine that needs energy. Some 

of this energy comes from fats that we eat in food. The peroxisome together with 

another cell organelle, the mitochondria, is responsible for helping to get the energy the 

body requires from these fats.  Peroxisomes are very important for the body to function 

normally. They are so important that people who have no peroxisomes or peroxisomes 

that are defective, suffer from developmental delay, mental retardation and vision and 

hearing problems. In the more severe cases, patients will usually not survive beyond 

their first year. It is therefore important that research is done to increase our 

understanding of peroxisome functions and these disorders so that we can find ways to 

prevent, treat, and cure them.  

 

The work of the peroxisome is carried out by proteins, many of which are known as 

enzymes. Without enzymes, many of the important processes of life could not happen. 

In peroxisomes, over half of the fifty enzymes are involved in fat metabolism (these are 

the chemical reactions that occur in order to maintain life). Some of these enzymes are 

indirectly involved in helping to extract the energy from fat. Our group found a new 

family of enzymes in peroxisomes and our work has focused on finding out what the 

functions of these enzymes are.  This thesis has focused mainly on two of these new 

enzymes, known as acyltransferases. They take fats (acyl) that are in peroxisomes and 

attach them (transferase) to another compound - an amino acid. By doing this they 

allow fats to be transported out of peroxisomes for use elsewhere in the cell e.g. for 

energy production in mitochondria or they may act as signaling molecules in the body, 

with roles in pain signaling and hearing. 
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