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ABSTRACT 
 

Feeding is an essential and complex behavior which aims to provide the energy 
required for maintaining physiological homeostasis. The drive to feed is a powerful 
stimulus arising from metabolic demands, and reinforced by evolutionary pressure. The 
current epidemic in obesity, and associated disorders such as diabetes, makes it clinically 
vital to understand the mechanisms behind the control of energy metabolism. Feeding is a 
process governed by the central nervous system (CNS); particularly through the interplay 
between different hypothalamic nuclei. At the heart of the feeding neuro-circuitry lies the 
arcuate nucleus (ARC) which acts as a metabolic sensor, taking stock of the supply and 
demands of energy in the body, and coordinating food intake and energy expenditure. The 
work in this thesis aimed to explore the neuro-anatomical substrate of metabolic control, 
and the mediators involved.   
 

The ARC contains two distinct sets of functionally antagonistic neurons. One 
group of neurons express the orexigenic peptides, neuropeptide Y (NPY) and agouti gene 
related peptide (AGRP); while the other set expresses the anorexigenic peptides, pro-
opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript. In paper 
V, we describe the histochemistry of NPY/AGRP and POMC neurons with regard to their 
anatomical interrelationship at the cell body and terminal level. A common experimental 
problem is that the ARC NPY cell bodies are difficult to distinguish and visualize in 
electrophysiological experiments and for immunohistochemistry. Therefore, in paper III, a 
novel transgenic mouse which expresses bright Renilla green fluorescent protein in NPY 
neurons was generated. Using this model, a comprehensive map of NPY-expressing cells in 
the CNS was generated and the effects of the satiety-inducing gut-brain bombesin peptides 
on ARC neurons were explored. Bombesin was found to exert powerful depolarizing 
actions on NPY and POMC neurons alike.  
 

Calcium binding proteins (CaBPs) have been used extensively to delineate 
neuronal populations, but the ARC has not yet been subjected to such analysis. In Paper 
IV we show that three major CaBPs (calbindin D-28k, calretinin, and parvalbumin) are all 
expressed in the ARC, but displayed little co-localization with previously described cell 
groups. One exception was POMC neurons, of which distinct subpopulations stained for 
calbindin D-28k and calretinin, respectively. Another CaBP, nucleobindin 2 (NUCB2; also 
known as nesfatin), has recently been proposed as a central anorexigenic mediator. In 
Paper I, the CNS distribution of this protein was shown to include nuclei that participate in 
all three output channels of metabolic control, i.e. behavioral, endocrine and autonomic 
modulation. Our data also suggest that NUCB2 may not act as a cleaved and secreted 
messenger as proposed, but rather may play an intracellular role.   

 
The wide distribution of NUCB2 in the neuroendocrine system prompted us to 

explore this protein in the pancreas (Paper II). We show that NUCB2 is exclusively 
expressed in insulin-producing β cells, and that islet NUCB2 is dramatically decreased in 
the diabetic Goto-Kakizaki rat, an effect that is normalized by fasting. These data indicate 
that NUCB2 may play a role in metabolic control also outside of the CNS.  
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1 INTRODUCTION 
 
1.1 BACKGROUND 

In 1909, Bernhard Aschner in Vienna made the interesting observation that damage to 
the brain region known as the hypothalamus is sufficient to induce obesity in dogs, 
even when the pituitary – which is anatomically located just below the hypothalamus 
on the ventral side of the brain - is left intact during the procedure (Aschner, 1909). 
This concept was novel because although obesity was by then well-known to 
accompany pituitary tumors (Mohr, 1840; Babinski, 1900), it had been assumed to 
result from the hormonal imbalance that follows loss of this important endocrine organ 
(Fröhlich, 1901; Crowe, 1910; Cushing, 1912). Achner’s emerging theory built on 
Jacob Erdheim’s clinical speculation (Erdheim, 1904), that pituitary tumors might 
result in damage in the base of the brain which leads to obesity in patients. The 
hypothalamic elements, whose destruction cause such profound behavioral changes, 
have since attracted intense interest and are the focus of the work in this thesis. 
Defining these brain components, and the circuits they form, is a task that lies at the 
core of understanding human feeding and, in extension, may be relevant to developing 
new therapies for eating disorders and metabolic disease. 
 

Overweight and obesity (defined as a body mass index over 25 and 30, respectively) 
are increasing concerns for modern society (WHO, 2000). Increased body weight is 
often associated with a variety of diseases, which ultimately increase mortality rate 
(Malnick and Knobler, 2006). It has been shown that 80% of obese adults have at least 
one or more co-morbidities, including type 2 diabetes mellitus (T2DM), 
hyperlipidaemia, hypertension, and cardiovascular disease (Must et al., 1999). The 
world-wide increase in T2DM is believed to be directly caused by the increase in 
obesity (Sullivan et al., 2005). Numerous elements contribute to weight gain and 
obesity, including genetic, metabolic, behavioral and environmental factors. In general, 
obesity develops when food intake exceeds energy expenditure over a period of time. 
To combat this, the brain has evolved an intricate system dedicated to the maintenance 
of energy homeostasis. 

 

Following up on the early observations summarized above, lesion studies conducted in 
the 1940s laid down the foundations for studying energy metabolism in the 
hypothalamus. Rodent studies revealed that electrolytic ablation made in the 
mediobasal hypothalamus results in obesity and hyperphagia (Ranson, 1937; 
Hetherington, 1941) similar to the clinical description of the syndrome Fröhlich 
observed in tumor patients, and in line with Aschner’s observation in animals. 
However, at that time, it was not clear why destruction of the basal hypothalamus had 
such dire effects on body weight. This answer emerged only when the circuitry of this 
brain region began to be unraveled with the revolution in histochemistry that began in 
the 1960’s (Hökfelt, 2010), a process that continues to this day. 
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1.2 BASAL HYPOTHALAMUS: THE ARCUATE NUCLEUS 

The basal hypothalamus is a multinucleate area located ventromedially on either side of 
the third ventricle. The most mediobasal aspect of this area is commonly known as the 
arcuate nucleus (ARC; Krieg, 1932; Chronwall, 1985). The neurons of the ARC are 
comprised of a heterogeneous population of which a large proportion are 
neuroendocrine parvocellular neurons, including the growth hormone releasing 
hormone and tuberoinfundibular dopamine neurons cell groups (Everitt et al., 1986). 
While these cells are to a varying extent involved in energy metabolism, the relevance 
of this nucleus to food intake comes primarily from its status as home to two 
functionally antagonistic populations of neurons that extend their projections within the 
brain, rather than down to the portal circulation in the median eminence like the 
neuroendocrine cells (Everitt et al., 1986). One population of neurons co-expresses 
mRNA for the orexigenic neuropeptides, Neuropeptide Y (NPY; Tatemoto et al., 1982) 
and agouti gene-related peptide (AGRP; Ollmann et al., 1997; Shutter et al., 1997), 
while the second population of neurons within the ARC expresses the polypeptide 
precursor pro-opiomelanocortin (POMC; Watson et al., 1977; Bloch et al., 1978; 
Bloom et al., 1978; Jacobowitz and O'Donohue, 1978) which yields anorexigenic 
melanocortin peptides, and cocaine-and- amphetamine related transcript (CART; 
Douglass et al., 1995; Koylu et al., 1997; Koylu et al., 1998). 

 

1.2.1 Neuropeptide Y and Agouti-Gene Related Peptide 

Neuropeptide Y is a 36 amino acid peptide was first isolated in 1982 by Tatemoto and 
Mutt (1982) from the porcine hypothalamus. NPY is expressed in several brain regions 
(Chronwall, 1985; de Quidt and Emson, 1986), and accordingly has numerous roles in 
a variety of physiological processes (Allen et al., 1983). When injected into the cerebral 
ventricle, NPY is the most potent stimulator of food intake known (Clark et al., 1984; 
Levine and Morley, 1984; Stanley and Leibowitz, 1984). NPY signals through 
inhibitory G-protein-coupled receptor subtypes. Levels of NPY are indicative of the 
body’s nutritional status with NPY mRNA expression and release of NPY increasing 
during fasting and decreasing after re-feeding (Sanacora et al., 1990; Swart et al., 2001; 
Swart et al., 2002). Furthermore, a rise in NPY levels precedes hyperphagia (Brady et 
al., 1990; Sahu et al., 1997; Tiesjema et al., 2007; Tiesjema et al., 2009).  

Unlike the widely distributed and expressed NPY, AGRP is expressed exclusively in 
the ARC and there shown to co-localize with NPY (Broberger et al., 1998a; Broberger 
et al., 1998b; Hahn et al., 1998). Similar to NPY, the expression of AGRP is up-
regulated in response to fasting (Hahn et al., 1998; Mizuno et al., 1999; Fekete et al., 
2002; Kaelin et al., 2004; Fekete et al., 2006; Palou et al., 2009). Furthermore, i.c.v. 
injection of AGRP has been shown to induce a potent dose-dependent increase in food 
intake, in which a single dose can increase food intake for a week (Hagan et al., 2000; 
Hagan et al., 2001). Long term administration will ultimately lead to obesity (Rossi et 
al., 1998; Hagan et al., 2000). The importance of NPY/AGRP neurons in orexigenic 
signaling is underscored by the hypophagia and reduced body mass observed following 
the selective ablation of these cells (Bewick et al., 2005; Gropp et al., 2005; Luquet et 
al., 2005; Wortley et al., 2005; Xu et al., 2005).  
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1.2.2 Pro-opiomelanocortin 

The precursor POMC is cleaved into the melanocortin family of peptides: α, β, and γ 
melanocyte stimulating hormone (MSH), as well as several other neuropeptides such as 
adrenocorticotropic hormone (ACTH) and β-endorphin (Mains et al., 1977; Roberts 
and Herbert, 1977). Among the melanocortins, αMSH may be the most prominent with 
regard to the regulation of energy balance in the ARC. Central administration of αMSH 
or agonist ligands has been shown to decrease food intake (Poggioli et al., 1986; Tsujii 
and Bray, 1989; Fan et al., 1997; Kask et al., 1998; Edwards et al., 2000). 
Hypothalamic POMC mRNA expression is also regulated by nutritional status; levels 
are low during fasting, and increase after re-feeding (Swart et al., 2002; Germano et al., 
2007). Melanocortin anorexia is primarily mediated by the melanocortin receptors, 
MC3R and MC4R (Mountjoy et al., 1994; Mountjoy and Wong, 1997; Harrold et al., 
1999). MC3R and MC4R are distributed throughout the CNS, in particular in areas 
associated with the central regulation of energy balance (Gantz et al., 1993; Desarnaud 
et al., 1994; Schiöth et al., 1996; Kishi et al., 2003). Mutations in the MC4R gene in 
humans account for as much as 5% of cases of severe obesity (Vaisse et al., 1998; Yeo 
et al., 1998), and MC4R sequence variants very strongly predict overweight and 
glucose intolerance (Chambers et al., 2008; Loos et al., 2008).The role of the MC3R in 
food intake remains unclear, although MC3R knockout mice have an elevated fat 
content and decreased lean body mass (Chen et al., 2000). AGRP also acts on the 
melanocortin receptors, as it is an endogenous antagonist of MC3R and MC4R (Lu et 
al., 1994; Ollmann et al., 1997; Nijenhuis et al., 2001; Chai et al., 2003; Breit et al., 
2006; Tolle and Low, 2008).  

 

1.2.3 Cocaine-and amphetamine-regulated transcript 

Within the ARC, the majority of POMC neurons express the anorexigenic peptide 
precursor, CART (Elias et al., 1998; Kristensen et al., 1998). The CART gene product 
was initially purified from brain extracts as a peptide of unknown function (Spiess and 
Vale, 1980). It was first identified as a transcript in the striatum, where the mRNA 
expression was dramatically up-regulated after short-term exposure to cocaine and 
amphetamine (Douglass et al., 1995). CART is highly expressed in hypothalamic areas 
and peripherally in the pituitary and adrenal medulla (Koylu et al., 1997). Interestingly, 
CART not only co-localizes with anorexigenic peptides (POMC) but also orexigenic 
peptides (melanin-concentrating hormone; MCH) in the hypothalamus (Broberger, 
1999; Elias et al., 1999; Vrang et al., 1999).  

 

1.3 REGULATION OF THE ARCUATE NUCLEUS 

The ARC is situated at a part of the brain endowed with a relatively permeable blood-
brain barrier (BBB) and therefore constitutes an ideal site for putative brain sensors of 
circulating hormonal and metabolic factors coming from the periphery (Broadwell and 
Brightman, 1976; Broadwell et al., 1983; Norsted et al., 2008). Furthermore, due to the 
close proximity to the third ventricle, the ARC can sense the levels of factors found in 
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the cerebrospinal fluid, which is the main entrance for several peptides and hormones 
into the brain through the blood-CSF barrier (Elmquist et al., 1998a).This allows the 
ARC to sense blood composition and humoral messengers that reflect the metabolic 
state of body. This includes indices of both the supply and demand of energy in the 
tissues, such as leptin, insulin, ghrelin, corticosteroids, and peptide YY; for which 
receptors are expressed in the ARC (Margolis and Altszuler, 1967; Woods et al., 1979; 
Miyachi et al., 1986; Werther et al., 1987; Baura et al., 1993; Zhang et al., 1994; 
Halaas et al., 1995; Banks et al., 1996; Schwartz et al., 1996; Guan et al., 1997; 
Elmquist et al., 1998b; Kojima et al., 1999; Lu et al., 2002). 

1.3.1 Peripheral inputs to arcuate nucleus 

Within the ARC, the antagonistic neuronal NPY and POMC populations are sensitive 
to a number of the aforementioned hormones. Most prominent among these are leptin 
and insulin (Woods et al., 1979; Zhang et al., 1994). Insulin is produced in the 
pancreas, while leptin is secreted from adipocytes (Banting et al., 1922; Zhang et al., 
1994). Insulin secretion is influenced by the glucose level in plasma, while leptin is 
secreted into the blood circulation in proportion to the body fat mass (Rezek, 1976; 
Maffei et al., 1995). Both hormones cross the BBB to access neurons in the ARC to 
effect energy homeostasis (Baura et al., 1993; Banks et al., 1996; Schwartz et al., 
1996). A reduction in insulin or leptin signaling to the brain causes the body to respond 
as if there is a deficient level of glucose and fat, and subsequently stimulate food intake 
and decrease energy expenditure (Ahima et al., 1996; Weigle et al., 1997). Animal 
models have shown that central administration of insulin and leptin reduces feeding and 
body weight (Woods et al., 1979; Pelleymounter et al., 1995; Chen et al., 1996; Levin 
et al., 1996; Seeley et al., 1996; Tang-Christensen et al., 1999).  

Both the ARC NPY/AGRP and POMC neurons contain insulin and leptin receptors and 
are directly regulated by these two hormones (Werther et al., 1987; Marks et al., 1990; 
Marks et al., 1992; Schwartz et al., 1992; Mercer et al., 1996; Hakansson et al., 1998). 
Selective inactivation of the leptin receptor gene in POMC neurons results in an obese 
phenotype (Balthasar et al., 2005). Leptin affects the electrical properties of 
NPY/AGRP and POMC neurons in an opposing manner, inhibiting NPY/AGRP 
neurons while stimulating POMC neurons (Cheung et al., 1997; Baskin et al., 1999; 
Cowley et al., 2001). Insulin receptors can also be found on NPY and POMC neurons 
and has been shown to suppress activity of NPY neurons and stimulate POMC neurons, 
similar to the action of leptin (Benoit et al., 2002; Plum et al., 2006). Insulin receptor 
expression is high in the ARC, with insulin receptor substrate-2, being the main 
constituent for the insulin’s effect on food intake (Marks et al., 1990; Pardini et al., 
2006). 

In addition to leptin and insulin, one group of signal molecules that can also exert 
prominent metabolic effects are the bombesin-related peptides (BRPs; Martin and 
Gibbs, 1980; Kulkosky et al., 1982; Woods et al., 1983; Taylor and Garcia, 1985; 
Johnston and Merali, 1988; Flynn, 1993; Gutzwiller et al., 1994; Himick and Peter, 
1994). Bombesin was originally isolated from skin of the frog, Bombina bombina 
(Erspamer et al., 1970; Anastasi et al., 1971), but in mammals, the dominant BRPs are 
gastrin-releasing peptide (GRP; McDonald et al., 1979), and neuromedin B (NMB; 
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Orloff et al., 1984; Minamino et al., 1988). These peptides are widely distributed in the 
gastrointestinal (GI) tract but are also found in the CNS (Panula et al., 1982; Wada et 
al., 1990; Mikkelsen et al., 1991). BRPs are released from the GI-tract following a 
meal, and may provide feedback inhibition from the gut to the brain to promote satiety 
(Banks, 1980; Gibbs, 1985; King and Hill, 1991), as they decrease meal size and 
duration in rodents and humans when administered peripherally or centrally (Martin 
and Gibbs, 1980; Kulkosky et al., 1982; Johnston and Merali, 1988; Flynn, 1993; 
Muurahainen et al., 1993; Gutzwiller et al., 1994). Intriguingly, obese humans may be 
less sensitive to the satiety effect of bombesin compared to those who are lean 
(Lieverse et al., 1998). Yet, the potential actions of BRPs on ARC neurons had not 
been addressed experimentally. 

While the hypothalamus is the focus for the work described in this thesis, it should be 
stressed that its role as a metabolic sensor is complemented by the brain stem (Berthoud 
and Morrison, 2008).  Classically, the brainstem has been viewed as the recipient of 
feedback information from the alimentary tract, including not only the GI canal, but 
also the mouth and pharynx, where myriad sensory receptors record the presence and 
chemical composition of an ingested meal (Smith, 1996). Information from these 
receptors is relayed to the brain via cranial nerves, in particular the afferent component 
of the vagus nerve terminating in the brainstem nucleus of the solitary tract (NTS; Grill 
and Hayes, 2009). Thus, vagally mediated satiety signals, such as cholecystokinin 
released after a meal (Gibbs et al., 1973), play a major role in meal termination (Smith 
et al., 1981). When food intake is based only on brainstem feedback and the 
hypothalamic component is experimentally removed, as in the chronic decerebrate rat, 
animals are still capable of regulating meal duration in relationship to GI feedback 
(Grill and Norgren, 1978), but fail to adjust their intake in response to changing caloric 
value (Kaplan et al., 1993). One common interpretation of this phenomenon is that 
long-term control of food intake is a task exclusively carried out by forebrain 
(hypothalamic) structures. In recent years, however, it has become clear that many 
hormones such as leptin (Grill et al., 2002) and ghrelin (Faulconbridge et al., 2003) can 
act directly on NTS neurons to affect meal parameters, suggesting distributed actions of 
long- and short-term control of feeding (see also Harris et al., 2006).  

 

1.4 TARGETS OF THE ARCUATE NUCLEUS 

1.4.1 Hypothalamic arcuate nucleus targets 

Functionally, the ARC together with its projection targets act on three output channels 
to maintain energy homeostasis: endocrine, autonomic and behavior (Swanson and 
Mogenson, 1981). Studies have demonstrated that this regulation is accomplished 
through the interplay between multiple distinct nuclei which form the hypothalamic 
circuits, rather than discrete hypothalamic feeding and satiety centers (Baskin et al., 
1988; Unger et al., 1989; Baura et al., 1993). Four hypothalamic nuclei, in addition to 
the ARC, have received particular attention in this regard: the paraventricular 
hypothalamic nucleus (PVH), lateral hypothalamic area (LHA), dorsomedial (DMH) 
and ventromedial (VMH) hypothalamic nuclei. 
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Figure 1: Schematic diagram of a rat brain in sagittal and coronal view 
illustrating the role of the ARC integrating peripheral and central factors 
regulating energy balance. Peripheral factors such as insulin and leptin enter the 
ARC, where they act on NPY/AGRP and POMC neurons and affect food intake 
and energy expenditure. 3V denotes 3rd ventricle. 

 

1.4.1.1 Paraventricular hypothalamic nucleus 

The PVH is situated adjacent to the dorsal tip of the third ventricle. It is an area where 
autonomic functions and endocrine system integrate (Swanson and Kuypers, 1980). 
Neurons in the PVH are considered to be “second order” neurons, since they receive 
both the anorexigenic POMC and the orexigenic NPY/AGRP signals originating from 
the ARC (Cowley et al., 1999). PVH receives input from DMH and orexigenic input 
from LHA (Nambu et al., 1999). There are two main types of neuroendocrine neurons 
in the PVH; the magnocellular and the parvocellular neurons (Sherlock et al., 1975; 
Swaab et al., 1975; Vandesande and Dierickx, 1975). Magnocellular neurons contain 
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oxytocin (OXY) or vasopressin, and they project directly to the posterior pituitary 
(Sherlock et al., 1975; Swanson et al., 1980; Wiegand and Price, 1980). Parvocellular 
neurons are smaller in size and express factors such as corticotrophin-releasing 
hormone and thyrotropin-releasing hormone (Burlet et al., 1979). They project to the 
median eminence, where they deliver releasing factors into the portal circulation which 
then travel to the anterior pituitary to regulate hormone secretion (Harris, 1948; 
Vandesande et al., 1977; Swanson et al., 1980; Wiegand and Price, 1980). Some PVH 
neurons also project centrally, e.g. both OYX and vasopressin project to the brainstem 
and spinal cord mediating autonomic functions (Conrad and Pfaff, 1976; Saper et al., 
1976; Ono et al., 1978).  

1.4.1.2 Lateral hypothalamic area 

The LHA is one of the most extensively interconnected areas of the hypothalamus, due 
to its role in integrating an array of functions spanning from cognitive to autonomic 
(Bernardis and Bellinger, 1993, 1996). This ill-defined area is composed of a large and 
diffuse population of neurons, including those expressing the arousal-promoting 
hypocretin/orexin (de Lecea et al., 1998; Sakurai et al., 1998), and the sleep-associated 
melanin-concentrating hormone (MCH; Bittencourt et al., 1992; Bittencourt and Elias, 
1998), although it should be noted that collectively these populations still only account 
for a minority of the LHA neurons (Broberger, 2005). Both of these populations receive 
prominent input from the orexigenic and anorexigenic populations of the ARC 
(Broberger et al., 1998a; Elias et al., 1999; Horvath et al., 1999). The LHA engages in 
behavioral and autonomic output although it does not directly participate in the 
endocrine system.  

 
1.4.1.3 Dorsomedial & ventromedial hypothalamic nuclei 

The DMH (Bellinger and Bernardis, 2002) receives input from other hypothalamic 
nuclei such as the ARC, PVH, LHA and the suprachiasmatic nucleus, but it also 
receives information from the brainstem (Thompson and Swanson, 1998). The 
connection between the suprachiasmatic nucleus and the DMH neurons plays an 
important role in food entrainable rhythms (Chou et al., 2003; Gooley et al., 2006; 
Mieda et al., 2006). Intriguingly, there is also an induction of NPY in neurons in the 
DMH when the body’s energy storage is depleted such as during food deprivation and 
lactation (Smith, 1993). Chemical lesions of VMH cells result in obesity (Marshall et 
al., 1955), suggesting that the nucleus as a complex exerts inhibitory effects on food 
intake. Neurons in this region express leptin receptors (Jacob et al., 1997; Funahashi et 
al., 1999). The VMH also receives input from brainstem nuclei (Fulwiler and Saper, 
1985), as electrophysiological experiments revealed that VMH neurons are sensitive to 
stomach distention (Sun et al., 2006).  
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1.5 CALCIUM-BINDING PROTEINS IN THE ARCUATE NUCLEUS 

1.5.1 Calcium-binding proteins 

Since the seminal demonstration by Gibbs et al in (1973) that administration of 
cholecystokinin, a neuropeptide, resulted in abrupt meal termination, the list of 
neuropeptides and transmitters implicated in food intake has steadily grown. Given the 
complexity of signal transmission in the nervous system, it is not surprising that recent 
years have also revealed important roles for proteins beyond transmitters and peptides 
and their receptors in the central control of body weight, including pro-hormone 
processing enzymes, transmitter transporters, signal cascade proteins and transcription 
factors. A less explored class of signal molecules, though one with an established 
position in neuronal regulation, is calcium-binding proteins (CaBPs). The CaBPs are 
primarily involved in Ca2+ signaling and homeostasis, and have been traditionally 
classified as either “sensors”, which facilitate signal transduction following 
conformational changes upon Ca2+ binding, or “buffers”, whose function is to modulate 
and limit the rise in the intracellular free Ca2+ concentration (Dalgarno, 1984; 
Baimbridge et al., 1992; Heizmann, 1993; Burgoyne, 2007). It is becoming apparent, 
however, that several CaBPs can be involved in both functions and thus, the distinction 
between these groups has blurred (Schwaller, 2009).  

Three particular CaBPs have been studied in the CNS due to their restricted distribution 
patterns, namely: calbindin D-28k (CB; Taylor and Wasserman, 1967; Jande et al., 
1981), calretinin (CR; Rogers, 1987) and parvalbumin (PV; Henrotte, 1952; Celio and 
Heizmann, 1981). These proteins are members of the “EF-hand” family of CaBPs 
which share the structural motif of Ca2+ binding domain known as the EF hand 
(Moncrief et al., 1990; Lee et al., 1991; Nakayama et al., 1992). These CaBPs have 
mainly been used as a tool for histochemical identification of neuronal cell groups 
throughout the brain (Jande et al., 1981; Winsky et al., 1989; Celio, 1990; Baimbridge 
et al., 1992). In the cerebral cortex, CB, CR, and PV are expressed in largely separate 
populations of interneurons (Ascoli et al., 2008). One region of the brain which has not 
yet been described with regards to CaBP expression is the ARC. 

 

1.5.2 Nucleobindin 2 

One CaBP that has recently been implicated in energy homeostasis is nucleobindin2 
(NUCB2). Structurally, NUCB2 is composed of 396 amino acids and contains two EF 
hand motifs, and a DNA binding domain (Barnikol-Watanabe et al., 1994). The 
sequence of NUCB2 is highly conserved in rodents and humans (Barnikol-Watanabe et 
al., 1994). A study in 2006 suggested a possible role for NUCB2 in the regulation of 
food intake (Oh-I et al., 2006). In this paper, it was postulated NUCB2 is a prepro-
protein which is subsequently cleaved by pro-hormone convertase 1 and 3 into 
fragments called nesfatin-1 , -2, and -3 as shown in Fig.2 (Oh-I et al., 2006). This initial 
study suggested that only the putative fragment nesfatin-1 has an effect on suppressing 
food intake (Oh-I et al., 2006). There is much controversy, however, surrounding 
whether NUCB2 is in fact cleaved into nesfatin-1, -2, and -3. There is no study to date, 
where any of the three putative endogenous fragments are detected using western blot. 
Thus, whether NUCB2 is a prepro-protein or not remains elusive. NUCB2/nesfatin has 
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been shown in the Oh-I et al. (2006) study to be expressed in the hypothalamic nuclei 
involved in energy metabolism such as: ARC, LHA, PVH and the supraoptic nucleus 
(SON). However, a detailed location and distribution of the protein and its mRNA 
expression throughout the CNS has not yet been carried out at the onset of this thesis 
work. The expression of NUCB2/nesfatin with other neuropeptides involved in energy 
homeostasis was unknown.  

     Figure 2: Schematic illustration of the 396 amino acid NUCB2. KR, RR, KK 
refers to pairs of proposed cleavage sites for the processing of NUCB2 into putative 
nesfatin fragments nesfatin-1,-2,-3. SP denotes signal peptide. a.a. denotes amino acid. 

 

1.6 ENDOCRINE PANCREAS 

The central regulation of energy balance relies on the brain’s successful detection and 
integration of peripheral signals pertaining to metabolic state. A key component of this 
integrative mechanism is the ability of the hypothalamus to respond to metabolic 
information from the endocrine pancreas. The CNS and the pancreas not only many 
common signaling molecules, including neuropeptides (e.g. Luft et al., 1974), 
transcription factors (e.g. Naya et al., 1995), intracellular signalling mediators (see 
Mountjoy and Rutter, 2007), as well as proteins involved in the secretory process (e.g. 
Jacobsson et al., 1994), but these molecules and their receptors also interact 
intermittently between the two organs to collectively influence food intake and energy 
expenditure. The most prominent hormone is insulin (Banting et al., 1922), which is 
secreted from β-cells in the pancreatic islets of Langerhans when plasma glucose 
increases (typically after a meal). The interaction between insulin and its receptor 
allows cells to take up circulating glucose. In T2DM, the cellular sensitivity to the 
insulin signal is perturbed, and there may also be loss of insulin output from the β-cells, 
abeit not as dramatic as in T1DM (DeFronzo and Tripathy, 2009). These factors lead 
up to glucose intolerance, where patients have high levels of circulating glucose, with 
detrimental effects on the tissues (Deckert et al., 1978; Chase et al., 1989). Thus, 
identifying the signal repertoire of β-cells is relevant not only to understanding insulin 
control of appetite (as described above) but also for the pathophysiology of T2DM.    
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2 AIMS 
 
In the work included in this thesis, I have studied the distribution and connectivity of 
peptides and proteins implicated in the homeostatic regulation of energy metabolism, 
with particular focus on the CNS. Specifically, the aims were to: 
 
 

1. Determine the projections of neurons in the ARC that constitute the metabolic 
sensor 
 

2. Determine the expression pattern of CaBPs in the ARC 
 

3. Characterize the CNS distribution of neurons expressing NPY using a novel 
transgenic mouse 
 

4. Investigate the anatomical and cellular distribution of NUCB2 in the brain 
 

5. Examine the potential distribution of NUCB2 in the pancreas and its 
regulation under different metabolic conditions 
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3 METHODOLOGICAL CONSIDERATIONS 

Detailed descriptions of the experimental procedures for the work in this thesis can be 
found under the Materials and Methods sections of the individual papers. The purpose 
of this section is to provide a methodological overview, considerations, and limitations 
to some of the techniques used.  
 
3.1 IN SITU HYBRIDIZATION HISTOCHEMISTRY (ISH) 

This technique (Pardue and Gall, 1969) is used to detect mRNA expression in tissues 
using labeled nucleotide probes complementary to the mRNA of interest (Young and 
Mezey, 2004). The two main concerns for in situ hybridization (ISH) are specificity 
and sensitivity of the signal. There are a few methods that can control for the 
specificity. The first thing to consider is the probe selection. There are four types of 
probe that are used for ISH: oligonucleotide, single stranded DNA, double stranded 
DNA and RNA probe; and each of these options have certain advantages and 
disadvantages (Wilcox, 1993; Jin and Lloyd, 1997). The following will focus on 
oligonucleotide probes, since the experiments in this thesis were performed using these 
reagents. 

3.1.1 Probe design 

Oligonucleotide probes are produced synthetically, and are commercially available 
unlike RNA probes. The probes are normally 40-50 base-pairs long, compared to other 
types of probes which are often hundreds of base-pairs long (Jin and Lloyd, 1997). An 
advantage of its small size is that it easily penetrates into the tissue. The short probe 
sequence makes it less sensitive than the long RNA/DNA probes. However, one can 
use a cocktail of probes against different regions of the target sequence to enhance the 
signal. We generated oligoprobes using the software program Oligo6, and the 
specificity is verified by a gene BLAST search. One of the considerations to be taken 
into account when generating the probes is the GC content. The G/C base-pair bonds 
are stronger than the A/U bond, thus the variation of GC content would require 
different hybridization conditions. The GC content used in the experiments is 
approximately 52%. Another advantage to using oligoprobes is that they are single 
stranded which eliminates the possibility of re-naturation in the process.  

3.1.2 Tissue preparation 

The treatment of tissue is also very important for the detectability of the mRNA. In 
general, mRNAs are synthesized and degraded at a fast rate. Therefore, it is necessary 
to handle the tissue as quickly as possible. Work by Dagerlind et al showed that freshly 
frozen tissue provides high sensitivity for the detection of mRNAs also without fixation 
(Dagerlind et al., 1992). Therefore, following decapitation, the tissue is rapidly 
dissected out and immediately frozen. It is also important to be aware that all steps 
should be carried out in RNase free environment to avoid degradation. 
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3.1.3 Probe labeling 

In work presented in this thesis, oligoprobes were either radioactively (35S or 33P) or 
enzymatically (digoxigenin) labeled. The highly sensitive photo-emulsion used to 
reveal the signal from the radioactive probes generally gives a higher sensitivity than 
using the enzymatic alternative (Lewis, 1990; Feldman, 1997). However, the 
disadvantage of isotope-labeled probes, beyond the hazards inherent in using 
radioactive material, is the long exposure times required, typically several weeks 
(Woodruff, 1998). The radioactive isotopes emit beta particles, which cause a reduction 
of Ag+ ions to metallic silver in the photographic material. The silver grains which 
accumulate to form a latent image can be developed in order to visualize the expression 
(Buongiorno-Nardelli and Amaldi, 1970).   
 

Digoxigenin (DIG) labeled probes utilize an indirect detection method in resemblance 
of immunohistochemistry, where an antibody directed against DIG and conjugated to a 
fluorophore or chromogenic enzyme is used to detect the presence of DIG labeled 
probes. One advantage of using DIG labeled probes is the higher resolution compared 
to radioactive probes (Panoskaltsis-Mortari and Bucy, 1995). Using the enzymatic 
technique, signal can easily be observed in the cytoplasm, unlike radioactive labeled 
probes where particles are scattered on top of the cell body. The other benefit of DIG 
labeling is the shorter time required to yield a signal; the staining can be revealed one 
day post incubation.  
 

3.1.4 Hybridization 

The main goal of hybridization is for the oligonucleotide to anneal to a complementary 
mRNA strand under the optimal condition. Factors that affect how well the oligoprobes 
will bind to the target mRNAs include: temperature, probe concentration, pH, and ion 
concentration (Jin and Lloyd, 1997). Changing these parameters will influence the 
probe’s affinity for its target sequence, so that higher temperature and pH, and lower 
probe and ion concentration will decrease the probes’ affinity to its target sequence.  

 
Following hybridization, the slides are washed in steps with the purpose of removing 
unbound probes or probes loosely bound to improperly matched sequences. The 
washing step is done in high stringency, at a higher temperature than hybridization. 
This step is a delicate balance where if the condition is too strict, it will result in a loss 
of sensitivity; conversely, a low stringency will give rise to high background and un-
specificity. 
 

3.1.5 Specificity controls 

A crucial part of any experiment is performing proper controls. It is essential to 
determine that the hybridization reaction is specific and that the probe binds selectively 
to the target mRNA sequence. One way to control for specificity of the probes is to 
incubate with an excess (100x) of non-labeled probe in the hybridization cocktail along 
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with the labeled probe. The rationale behind this method is that the non-labeled probes 
will compete out the labeled probes and bind up the binding sites on the tissue, 
resulting in an absence of signal on the tissue. Another method is to hybridize with 
labeled sense probes. In theory, the sense probes identify any non-specific targets it can 
bind to due to the purely chemical (i.e. sequence-independent) properties of the probe. 
Comparing the distribution of multiple probes targeted against different regions of the 
mRNA sequence can also indicate whether the observed pattern is specific or not since 
they should all yield the same pattern. Lastly, performing immunohistochemistry 
targeting the same protein of interest and comparing the distribution pattern also 
suggests specificity of the probes.  

 

3.2 IMMUNOHISTOCHEMISTRY 

Immunofluorescence (IF) is an antibody-based method commonly used to visualize the 
cellular and subcellular distribution of a protein in tissues (Coons AH, 1941; Coons and 
Kaplan, 1950). There are two principal methods for labeling IF; directly and indirectly. 
Direct IF detection entails that the primary antibody is targeted against the protein of 
interest and it is chemically conjugated to a fluorescent dye. The indirect method, 
which is the most common, consists of an unlabeled primary antibody, and the 
visualization requires a secondary antibody conjugated to a fluorescent dye. A benefit 
of using the indirect method is that it allows for amplification of signal since more than 
one fluorochrome-conjugated polyclonal secondary antibody can be attached to a given 
primary antibody; it also allows for a greater range of visualization/detection 
techniques. The drawback of IF, and any antibody-based technique, is the potential for 
cross-reactivity, especially if more than one primary antibodies is used. 

3.2.1 Monoclonal vs. Polyclonal antibodies 

There are two categories of antibodies, mono- and polyclonal. Monoclonal antibodies 
are a homogenous population of immunoglobulin directed against a single epitope 
(Schwaber and Cohen, 1973; Köhler and Milstein, 1975). They are generated by a 
single B-cell clone isolated from the spleen of an immunized mouse and fused to a 
myeloma cell to create a hybridoma, thus they are immunologically identical. 
Polyclonal antibodies are a heterogenous mixture of antibodies directed against various 
epitopes of the same antigen, produced by immunizing a whole animal, thus activating 
several different B-cell clones, and then using more or less purified serum extractions 
for immunochemical purposes. The animal can theoretically be from any species, 
though rabbits are most common. Polyclonal antibodies, which constitute a 
heterogeneous mix of distinct antibodies, are therefore more properly referred to as 
antiserum. In theory, polyclonal antiserum is considered to have a higher sensitivity due 
to its ability to recognize multiple epitopes (Ramos-Vara, 2005). However, the presence 
of antibodies to multiple epitopes can increase the chance for cross-reactivity and 
unspecificity. On the other hand, monoclonal antibodies have a high specificity because 
they only react with a specific epitope on a given antigen. 
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3.2.2 Tissue treatment 

Fixation of tissues results in cross-linking of tissue proteins which preserves the 
antigenicity of the tissue, since there is a finite amount of antigen in the tissue and each 
step of tissue handling may gradually reduce the total antigen pool (Ramos-Vara, 
2005). Fixation helps to prevent antigen degradation and preserve the position of the 
antigen to enable the easy access and binding for the antibody. The composition of 
fixatives and fixation time will influence staining result. For immunofluorescence 
applications, this is of particular importance since aldehydes can contribute inherent 
autofluorescence after reaction with endogenous substances (Corrodi and Jonsson, 
1965). For the experiments performed in this thesis, the animals were transcardially 
perfused with a formalin and picric acid-based fixative (Zamboni, 1967). 

3.2.3 Colchicine pre-treatment 

Colchicine (Pelletier, 1820) is a natural toxin derived from the plant, Colchicum 
autumnale. It inhibits the polymerization of tubulin into microtubules (Eigsti, 1938) 
causing disruption of axonal transport, which results in the accumulation of peptides in 
the cell bodies and enhances visualization by immunohistochemistry (Hökfelt and 
Dahlstrom, 1971). Colchicine is injected into the lateral ventricle of the animal before 
sacrifice. This pre-treatment is necessary for the cellular visualization of certain 
neuropeptides such as ARC NPY and AGRP (de Quidt and Emson, 1986). The 
reservation for this technique is that it alters cell morphology, given that colchicine 
modifies the subcellular structure (Eigsti, 1938) and that the detectablity of dendrites 
and fibers are dramatically apprehended, and may in some cases affect transcription 
(Cortes et al., 1990).   
 

3.2.4 Tyramide Signal Amplification 

In contrast to standard IF procedure, tyramide signal amplification (TSA) can increase 
the sensitivity up to ten fold (Adams, 1992). The TSA method includes an additional 
step of using horseradish peroxidase conjugated with a secondary antibody which 
enables the peroxidase to catalyze the conversion and deposition of fluorophore onto 
the tissue. With this technique, two primary antibodies raised in the same species can 
be used for double staining if it is done sequentially (Broberger, 1999), first performing 
IF with TSA, and then followed by incubating the second primary antibody using 
conventional IF. 

3.2.5 Specificity Controls 

There are a few ways to evaluate the specificity of the antibody (Saper, 2009). One 
approach is to compare the staining patterns of several antibodies raised against the 
same peptide/protein of interest. Another method is to pre-absorb the antibody with 
the purified peptide to which the antibody has been raised against. The pool of 
primary antibodies will thereby be exhausted through binding to the peptide, which 
should abolish the staining. The expression pattern of the mRNAs of the protein of 
interest from ISH can also be used to verify the specificity of the antibody by 
comparing their distribution pattern. Western blotting can be used to identify a band 
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corresponding to the molecular weight of the protein of interest. One drawback to 
Western blotting is that not all antibodies are suitable for this method. Testing the 
antibody on tissue from a knock-out animal which lacks the protein of interest has 
been suggested as the ultimate method to demonstrate the specificity (Saper and 
Sawchenko, 2003). 

3.2.6 Confocal Laser Scanning Microscopy 

Confocal laser scanning microscopy (Egger and Petran, 1967; Carlsson et al., 1985) is a 
commonly used technique for obtaining high resolution images with depth selectivity. 
This technique provides the capacity to optically scan the entire specimen or part of a 
specimen one plane at a time with great resolution. A frequent concern in fluorescence 
microscopy is bleed through or overlap of the fluorescence wave lengths between 
different fluorochromes. Overlap in emission may result in false positive signal for one 
or more fluorophores. One approach to minimize the problem is to scan one laser at a 
time (i.e. sequential scanning) thus exciting one fluorophore. Another method is to 
ensure that the detector band-pass filter for each fluorophore is set at a strict narrow 
range, so that only photons within a particular wavelength are detected. However, if the 
potential for bleed through is a concern, it may be most prudent to perform single-
staining in parallel and compare with results from double-staining. 

 
3.3 ENZYME IMMUNOASSAY 

Enzyme immunoassay (EIA) or enzyme-linked immunosorbent assay (ELISA) is a 
powerful technique used for quantifying and detecting the presence of an antigen in 
tissue homogenates or plasma and other body fluids (Engvall and Perlmann, 1971; Van 
Weemen and Schuurs, 1971). Different types of EIA/ELISA include, indirect, 
sandwich, reverse and competitive EIA. The work in Paper II was performed using the 
competitive EIA method. Briefly, the basic principle for competitive EIA is as follows, 
the immunoplate is pre-coated with a secondary antibody and the non-specific binding 
sites are blocked. The secondary antibody can bind to the Fc fragment of the primary 
antibody which Fab fragment will be competitively bound by both biotinylated peptide 
and the target peptide in the samples. Therefore, the higher the sample antigen 
concentration, the weaker the signal. The advantage of EIA is that the amount of 
antigen in a sample is quantifiable. However, the limitation is that due to the very small 
volume, even a small deviation of each reagent can have a compounded effect. 
Therefore, samples should ideally be run in triplicates. A few parameters should be 
taken into account when using EIA: accuracy of the measurement, detection limit and 
detectability range of the EIA, and the specificity of the antibodies (Porstmann and 
Kiessig, 1992). Accuracy is crucial because the concentration determined from the 
assay should be similar to the real concentration from the sample. The concentration 
values from the assay should be within the detection limit and range so that the values 
can be accurately extrapolated. Altogether, EIA is a valuable technique which 
complements qualitative method like immunohistochemistry. 
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3.4 EXPERIMENTAL ANIMAL MODELS 

 
3.4.1 Goto-Kakizaki Wistar (GK) Rat 

The Goto-Kakizaki (GK) rat provides a useful animal model in studying T2DM. The 
GK rat was developed by selective inbreeding of Wistar rats with the highest blood 
glucose over many generations (Goto et al., 1975). The rats are non-obese, and develop 
relative stable hyperglycaemia in adult life. Several colonies of GK rats, originating 
from breeding pairs in Japan, exist in the world, including Stockholm (Östenson, 2001). 
Due to the fact that this model is based on inbreeding, rather than a “pure” monogenic 
etiology, there are slight discrepancies between the colonies in their pancreatic islet/β-
cell phenotype and morphology, and islet metabolism (Portha et al., 2009). In general, 
the GK rats at birth have a reduced number of islets (Miralles and Portha, 2001). All the 
experiments in Paper II are performed with the Stockholm GK colony, where there is a 
reduction in β-cell mass compared with the reduced β-cell proliferation. Stockholm 
colony pups are hyperglycemic at the first week after birth (Abdel-Halim et al., 1994). 
The GK model recapitulates key complications seen in human diabetics, e.g. 
nephropathy (Janssen et al., 1999), peripheral neuropathy (Murakawa et al., 2002), and 
retinopathy (Sone et al., 1997). The GK rat is a good non-obese model for studying 
T2DM, where the main defect presumably lies in the β-cell. Moreover, the hereditary 
component of the GK rat reflects the polygenic aspect of human diabetics. Certainly, 
the GK β-cell is not a blueprint for the diseased human β-cell. There are, however, 
valuable similarities to study and understand the aetiopathogenesis of T2DM in this rat 
model. 
 
 
3.4.2 NPY-renilla GFP mouse 

The green fluorescent protein (GFP) was first isolated from the jellyfish, Aequorea 
victoria (Shimomura et al., 1962). The artificial introduction of GFP as a reporter gene 
has enabled the visualization of specific neuronal populations in mammalian cells while 
conducting electrophysiological experiments, including in the hypothalamus (Cowley 
et al., 2001; van den Pol et al., 2004). In Paper III, the GFP gene from the sea pansy 
Renilla reniformis (Morin and Hastings, 1971; Ward and Cormier, 1979) was used to 
construct the novel NPY-GFP mouse. The NPY expression was produced from a 
reporter which was generated using the isolated renilla gene and adapted with human 
codons. Compared to the widely used jellyfish Aequorea victoria enhanced GFP 
(Morise et al., 1974; Chalfie et al., 1994; Spergel et al., 2001), the humanized renilla 
GFP (rGFP) has a lower cytotoxicity, broader pH stability, and is significantly brighter 
than any other known GFPs. Cellular toxicity is a cause for concern because fluorescent 
proteins can generate reactive oxygen species that restrict experimental time to a 
limited window of cell viability (Dixit and Cyr, 2003). The fluorescence of rGFP is 
completely stable over a wide pH range from 5.5-12.6 (Ward et al., 1981), enabling the 
study of various subcellular dynamics under different pH environment. A notable 
advantage of the rGFP is its remarkable brightness. The rGFP absorbs light with a five-
fold higher extinction coefficient than Aequorea GFP, thus enhancing the brightness of 
the fluorescence intensity. Taken together, rGFP proved to be a powerful tool for 
studying the elusive ARC NPY population. 
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4 RESULTS AND DISCUSSION 

4.1 PROJECTION OF ARCUATE POMC AND NPY NEURONS 

In Paper V, histochemistry was used to generate a comprehensive map of the 
projections emanating from the NPY and POMC populations of the ARC. In this study, 
we took advantage of the fact that AGRP in the brain is exclusively expressed in ARC 
NPY neurons and thus the presence of this peptide in somata and terminals can be used 
as a selective marker for the relevant population in lieu of traditional tracing methods 
(Broberger et al., 1998b). We used αMSH as a marker for POMC neurons. It should be 
noted in this context, that this is not as easily interpreted, given the existence of a small 
population of brainstem neurons that also express POMC (Joseph et al., 1983; 
Mountjoy et al., 1994). While these cells are likely to supply only a minority of CNS 
αMSH terminals and may project to similar targets as the ARC cells (Pilcher and 
Joseph, 1986; Joseph and Michael, 1988), the exact origin of a given melanocortinergic 
axon will eventually need to be verified by conventional tracing techniques.  

Our data confirm published observations but also add substantial detail to earlier 
literature, in particular at the subnuclear level. We show a vast, but distinct, innervation 
of other hypothalamic nuclei by ARC NPY/AGRP and αMSH neurons that includes the 
preoptic area, the periventricular nucleus, the PVH, LHA, and DMH, while largely 
sparing e.g. the suprachiasmatic and supraoptic nuclei and the core of the VMH, in 
agreement with other studies (Watson et al., 1977; Bai et al., 1985; Broberger et al., 
1998b; Elias et al., 1998; Bagnol et al., 1999; Haskell-Luevano et al., 1999). In 
addition, we also show a highly targeted innervation of extrahypothalamic areas, 
including the bed nucleus of stria terminalis, the paraventricular thalamus (the only 
thalamic nucleus observed), amygdala, the periaqueductal gray area, and several 
autonomic regions of the brainstem, including the NTS (Paper V). Several major brain 
regions, including the cerebral and cerebellar cortices, the hippocampus, the striatum 
and most of the thalamus, are notably spared from innervation. The extrahypothalamic 
projections, though suggested by early lesion studies (Eskay et al., 1979) and described 
in immunohistochemical investigations (Watson et al., 1977; Dube et al., 1978; 
Jacobowitz and O'Donohue, 1978; O'Donohue et al., 1979; Broberger et al., 1998a), are 
often neglected, but may play important functional roles in coordinating the central 
regulation of energy metabolism. 

With few exceptions (see below), AGRP and αMSH –immunoreactive (-ir) were found 
in parallel distributions in the brain (Paper V; Broberger et al., 1998b). This 
anatomical organization may provide a morphological correlate of the functionally 
antagonistic roles of these systems, allowing transport of agonist (melanocortin) and 
antagonist (AGRP) to the same receptors. Selective abolition of the ARC NPY/AGRP 
neurons leads to the termination of feeding (Bewick et al., 2005; Gropp et al., 2005; 
Luquet et al., 2005) and ultimately death (Luquet et al., 2005). The elimination of one 
cell type promotes the prevalent activity of the other, whereas the elimination of both 
effaces the effect of ARC in the modulation of food intake. In some areas, we also 
noted “braided axons” in the form of intertwined AGRP and αMSH-ir terminals. The 
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generality of this phenomenon remains to be determined, but may indicate a novel level 
of presynaptic regulation within the ARC system.   
 
Adaptive states such as the ingestive state that underlies control of energy balance 
require the parallel activation of behavioural, endocrine and autonomic controlling 
elements (Swanson and Mogenson, 1981). The targets of the projections from the 
metabolic sensor neurons in the ARC include nuclei that participate in all three 
functions (Paper V). The endocrine include parvocellular nuclei such as the 
periventricular nucleus, the PVH and the ARC; the innervation of the thyrotropic PVH 
neurons has been especially well characterized (Legradi and Lechan, 1998; Broberger, 
1999; Fekete et al., 2000). Here, we focused on autonomic and behavioural control 
regions. Interestingly, the pre-autonomic rostral ventrolateral medulla and the 
sympathetic preganglionic cells in the intermediolateral cell column of the spinal cord 
(IML) appear to receive input preferentially from melanocortinergic, but not NPYergic 
fibers Paper V, see also (Saper et al., 1976; Elias et al., 1999). This biased projection 
of POMC neurons may indicate that sympathetic output is mainly controlled by the 
melanocortin system.  
 
For the behavioral aspects, we studied regions implicated in the control of sleep and 
wakefulness since arousal is a necessary component for the execution of goal-oriented 
behavior such as feeding (Stellar, 1954; Swanson and Mogenson, 1981). The wake-
promoting hypocretin/orexin neurons of the LHA (Bonnavion and de Lecea, 2010) 
have previously been identified as a prominent target for the ARC projection 
(Broberger et al., 1998a; Elias et al., 1998). Here, we also found a dense innervation of 
the histaminergic neurons of the tuberomammillary nucleus which play a similar 
physiological role (Vanni-Mercier et al., 1984; Haas and Panula, 2003). In contrast, 
innervation was sparse or absent in brainstem arousal system such as the serotonergic 
cells of the dorsal raphe, the cholinergic cells of the laterodorsal tegmentum and the 
nordadrenergic cells of the locus coeruleus (LC), suggesting that the ARC may 
primarily rely on hypothalamic system to recruit the arousal required to sustain food 
intake. 

4.2 CELLULAR INTERACTION OF ARCUATE POMC AND NPY NEURONS 

The competition between the anorexigenic POMC and orexigenic NPY exists not only 
in target nuclei, but also on a cell body level. In Paper V, we further examined the 
relationship between ARC POMC/αMSH and NPY/AGRP.  In the ventromedial 
portion of the ARC, we observed that αMSH and AGRP-ir cell bodies are in close 
proximity of each other, however, no examples of double-labeled cell bodies were 
observed. AGRP-ir terminals were often seen in close apposition to αMSH-ir cell 
bodies with and without colchicine pretreatment, in line with earlier observations 
(Csiffary et al., 1990; Horvath et al., 1992; Broberger et al., 1997; Fuxe et al., 1997). In 
contrast, no αMSH-ir terminals were observed on AGRP-ir cell bodies; though 
examples of putative POMC neurons auto-innervation were observed. Functionally, in 
Paper III, it was also shown that melanocortin agonists have little effect on the 
electrical properties of NPY neurons; similar results have been obtained by Roseberry 
et al. (Roseberry et al., 2004) who did, however, find a prominent hyperpolarization of 
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POMC neurons by NPY. This apparent unidirectional anatomical interaction may have 
a biological significance. This suggests that when NPY/AGRP neurons are active, there 
is a tonic inhibition of POMC cells, given that these cells also contain GABA as a 
transmitter (Horvath et al., 1997) and that the Y1 receptor expressed on POMC neurons 
(Fuxe et al., 1997; Broberger et al., 1997) is inhibitory (Herzog et al., 1992; 
Larhammar et al., 1992). Since there is no direct feedback mechanism from the POMC 
cells to disengage the NPY/AGRP neurons, this advocates that the feeding circuitry is 
wired to favor food intake.   

4.3 EXPRESSION AND POTENTIAL ROLE OF CALCIUM-BINDING 
PROTEINS IN THE ARCUATE NUCLEUS 

In Paper IV, we examined if CaBPs can be used as histochemical markers for specific 
ARC populations, similar to the way these proteins have been used to delineate 
populations in other brain regions, most notably cortical and striatal microcircuits 
(Celio and Heizmann, 1981; Celio, 1986, 1990). We focused on the distribution and co-
localization pattern of three CaBPs: CB, CR, and PV.  In-situ hybridization and IF 
revealed that CB, CR, and PV are all expressed in the ARC. Among these, PV was the 
CaBP found in the fewest number of ARC cells, in accordance with the very restricted 
expression of this protein in the hypothalamus reported previously (Celio and 
Heizmann, 1981; Celio, 1986, 1990). Notably though, these cells may represent a not 
previously described group of ARC neurons, as they did not co-localize with any of the 
markers included in the present study. With the exception of POMC neurons (see 
below), CR, and CB were also not found to co-localize with the neuronal markers 
included in the study, i.e. neurotensin, growth hormone releasing hormone, tyrosine 
hydroxylase, AGRP, galanin, dynorphin, enkephalin, and somatostatin. Although we 
used an extensive battery of antisera, expected to cover most of the known cell groups; 
it should be noted that this is a nucleus of great cellular heterogeneity (Everitt et al., 
1986) and the complete repertoire of ARC peptides was not examined. The findings of 
the three CaBPs with relative little co-localization with the other ARC neuronal 
population was surprising, given that a lot of ARC populations have been already 
identified.  

 
In other areas of the brain, such as the cerebral cortex, the CaBPs often identify distinct 
populations of interneurons (Celio, 1986; Kosaka et al., 1987; Rogers, 1987; 
Demeulemeester et al., 1988; Celio, 1990; Van Brederode et al., 1990). There is to date 
little morphological or physiological evidence for interneurons in the hypothalamus, 
using the classical definitions of such cells employed in “higher” brain regions. The 
traditional grouping of cells into projection/principal cells and interneurons may be less 
relevant in the hypothalamus where single cells may play both roles of “message 
provider” and “circuit organizer”, respectively. 

The functional role of CaBPs in ARC neurons is at present unclear. These proteins have 
been linked to the maintenance of intracellular Ca2+ homeostasis. For example  PV is 
often found in fast-spiking neurons and may play a role in quickly restoring 
[Ca2+]intracellular after the elevations that follow a train of action potentials (Freund et al., 
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1992; Vreugdenhil et al., 2003). An interesting observation emerged from CaBP 
knockout mice, in which the absence of a specific CaBP is not compensated by another 
EF-hand family member (Schwaller, 2009). This indicates that neurons once designated 
to express a certain CaBP, are either incapable of turning on the expression of another 
EF-hand family member with similar Ca2+ binding properties or that the distinct 
properties of any other CaBP would not suffice to restore normal Ca2+ homeostasis 
(Schwaller et al., 2002). Future investigations will need to determine the relationship 
between CaBP expression and functional properties of ARC cells. It will also be of 
interest to see if CaBP expression changes under certain metabolic challenges. 
 

4.4 DUAL ARCUATE POMC POPULATIONS 

Interestingly in Paper IV, we observed that CB- and CR-like immunoreactivity is 
found in distinct groups of POMC populations (as shown by αMSH and CART 
staining). Recent accumulating evidence indicates that there exist several pools of ARC 
melanocortin neurons that can be differentiated based on several criteria. Thus, there is 
evidence for distinct GABAergic and glutamatergic melanocortin neurons (Hentges et 
al., 2009), and subgroups of POMC cells stain for the neuropeptide, pituitary adenylate 
cyclase-activating polypeptide (PACAP; Dürr et al., 2007), and cholinergic markers 
(Meister et al., 2006). Studies have shown that rostral ARC neurons project caudally to 
autonomic areas, whereas the more caudal ARC POMC project primarily within the 
hypothalamus (Swanson et al., 1980; Barker et al., 1989b; Elias et al., 1998; Elias et 
al., 1999). Moreover, the rostral ARC POMC neurons have been implicated in the 
response to insulin, while caudal ARC POMC cells display preferential sensitivity to 
leptin (Williams et al., 2010). The present findings identify another method for 
subdividing melanocortinergic neurons based on their expression of either CB or CR. It 
remains to be determined if this dichotomy correlates to the other means of 
differentiating POMC cells or if such divisions follow no obvious organizational 
principle.  

4.5 VISUALIZATION OF HYPOTHALAMIC NPY NEURONS 

One of the original goals– though one that was not met with success- for the study in 
Paper IV was to see if any CaBP could serve as a specific marker for NPY/AGRP 
neurons for post-hoc staining in electrophysiological experiments. Given the rapid 
axonal transport of the peptide messengers in these cells, these peptides themselves 
cannot be used for identification following intracellular or patch clamp recording, as 
colchicine treatment is not compatible with viability in recording. Yet, even under ideal 
circumstances of histochemical staining and visualization, post-hoc staining is very 
laborious and often requires recording from a large number of cells to yield a 
meaningful sample from the population of interest. An elegant solution to this problem 
is provided by mice genetically engineered to express fluorescent marker molecules 
such as GFP in specific molecularly defined neuronal populations (see Methodological 
considerations; (Spergel et al., 2001). A novel transgenic mouse expressing strongly 
fluorescent renilla GFP (rGFP) in NPY neurons was generated in Paper III, and this 
animal model was then used to map out the CNS populations expressing NPY in the 
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mouse and to determine the physiological characteristics and response to bombesin 
peptides in ARC NPY neurons. 

Using immunohistochemistry, we validated that the rNPY-GFP mouse in Paper III 
faithfully express endogenous NPY. The rNPY-GFP shows similar physiological 
characteristics in line with other NPY-GFP lines in previous studies (Roseberry et al., 
2004; Acuna-Goycolea et al., 2005). A comprehensive mapping of the rNPY-GFP 
illustrates that the distribution pattern mirrors that of the preproNPY mRNA expression 
from Allen Brain Atlas (www.brain-map.org), and agrees with previous NPY mapping 
studies done in rat (Chronwall, 1985; de Quidt and Emson, 1986). For example, the 
rNPY-GFP detected cells in the reticular thalamic nucleus, which is a population that is 
hard to identify with IF. Furthermore, rNPY-GFP can also distinguish the NPY 
population in the LHA and DMH, which is normally evident only under certain 
metabolic challenges and during development (Smith, 1993; Singer et al., 2000; Grove 
et al., 2003). Moreover, strongly fluorescent rNPY-GFP expression was found in 
olfactory ensheathing cells in the olfactory nerve, and in the nucleus of the solitary tract 
(de Quidt and Emson, 1986; Ubink et al., 1994). 
 
The validity of the rNPY-GFP in the ARC was also confirmed using IHC stained with 
NPY, and αMSH. The rNPY-GFP co-localized with the NPY-LI, whereas it did not co-
localize with the αMSH cell population in the ARC; PCR experiments corroborated this 
finding (Paper III). By comparing the distribution of NPY from IHC, and previous 
findings, the novel rNPY-GFP does faithfully express NPY.   

4.6 EFFECT OF BOMBESIN-RELATED PEPTIDES ON NPY AND POMC 
NEURONS 

As described in the Introduction, peripherally administered bombesin and associated 
mammalian peptides can provide a powerful satiety effect. In Paper III, the rNPY-
GFP mouse was used for whole cell patch-clamp recordings in ARC slice preparations 
to investigate the potential response of NPY and POMC ARC neurons to BRP’s. A 
powerful depolarization was elicited by application of bombesin, NMB and GRP, also 
at low doses. Through pharmacological isolation and ion substitution protocols, this 
response was found to involve activation on non-selective cation channels and the 
Na+/Ca2+ exchanger. The excitatory actions of the BRPs was impressive not only for its 
amplitude (which was substantially larger than known depolarizing agents ghrelin and 
hypocretin/orexin), but also because the effect was similar on both the orexigenic ARC 
NPY neurons and the anorexigenic POMC neurons. The result is quite surprising given 
that most neuromodulators exert opposing effects on these populations. For example, 
ghrelin excites NPY neurons while inhibits POMC neurons (Cowley et al., 2003); the 
opposite has been reported for leptin (Cowley et al., 2001; Coll et al., 2007). This 
excitatory effect of BRPs on both ARC populations suggests that it might be implicated 
in a broad activation of the ARC homeostatic circuitry.  
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4.7 DISTRIBUTION AND EXPRESSION OF NUCB2/NESFATIN IN CNS 

In Paper I, we studied the expression and distribution of NUCB2 mRNA and nesfatin-
immunoreactive (ir) neuronal populations in the CNS using ISH and IF. The expression 
of NUCB2 mRNA corresponded rather well with the distribution of the nesfatin-ir cell 
bodies, although the IF signal was stronger and revealed more cell bodies than that of 
ISH. In the CNS, NUCB2/nesfatin expression was localized to distinct nuclei of the 
hypothalamus and to a restricted set of other brain regions. The expression of 
NUCB2/nesfatin was observed in neuronal populations that are traditionally implicated 
in energy metabolism (Fig 3). Accordingly, double IF revealed a co-localization of 
NUCB2/nesfatin with several neuropeptides implicated in the control of energy 
balance. For example, in the ARC, NUCB2/nesfatin co-localized with the POMC 
population, but not the NPY population. Functionally, i.c.v. injection of both 
melanocortins (Poggioli et al., 1986; Fan et al., 1997) and nesfatin-1 (Oh-I et al., 2006; 
Stengel et al., 2009b) leads to decreased food intake.  

Outside of the hypothalamus, NUCB2/nesfatin can be observed in the thalamic 
parafascicular nucleus, the Edinger-Westphal nucleus (EW), LC, nuclei raphe obscurus 
and pallidus, NTS, and the IML. This distribution may hint at broader actions for 
NUCB2, but it should be noted that all stained nuclei have been implicated in the three 
aspects of adaptive state, i.e. behavior, endocrine (see below) and autonomic regulation 
(see Fig.3 and 4; Swanson and Mogenson, 1981). For instance, NUCB2/nesfatin-ir co-
localized with MCH in neurons in the LHA and the LC, two nuclei implicated in 
arousal. Yosten et al (2009) recently showed that i.c.v. injection of nesfatin-1 fragment 
resulted in an increase in locomotor activity, follow by behavioral inactivity. 
Furthermore, the presence of NUCB2/nesfatin in various autonomic nuclei implies that 
it may be involved in adaptive stress response. Recent studies have shown that acute 
stress can trigger an increase in NUCB2/nesfatin expression the EW (Okere et al., 
2010). Moreover, nesfatin-1 administration can increase the mean arterial pressure 
under stressful conditions (Yosten and Samson, 2009). 

4.8 CO-LOCALIZATION OF NUCB2/NESFATIN WITH CART 

One interesting observation from the double IF of NUCB2/nesfatin and neuropeptides 
in Paper I was the high degree of co-localization with CART throughout the CNS. 
These proteins have many shared features, such as: their anorexigenic effect; they are 
both cleaved from larger precursor proteins, and no receptor has been identified either. 
Possible functional implications underpinned by these similarities require further 
investigation.  
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Fig 3: Schematic summary of the distribution of NUCB2/nesfatin-ir in the rat 
brain. Coronal templates of the rat brain taken from atlas of Paxinos and Watson, 
2007. Drawings are arranged from rostral (A) to caudal (F) orientation. 

4.9 ANOREXIGENIC ACTIONS OF NUCB2/NESFATIN 

The mechanism by which NUCB2/nesfatin elicits satiety has been investigated in 
several studies. The data in Paper I showed the co-localization of NUCB2/nesfatin 
with OXY neurons in the PVH. Later studies have suggested that anorexia induced by 
NUCB2/nesfatin involves the PVH OXY pathway (Maejima et al., 2009). The study 
showed that NUCB2/nesfatin requires functional OXY receptors, since pre-treatment 
with an OXY receptor antagonist reversed the food and water intake effects of 
NUCB2/nesfatin, and abolish the anorexigenic effect of αMSH (Maejima et al., 2009; 
Yosten and Samson, 2010). The downstream target of the NUCB2/nesfatin OXY 
pathway might be the brainstem POMC neurons. Administration of nesfatin-1 has been 
demonstrated to activate the brainstem POMC population (Maejima et al., 2009; 
Shimizu et al., 2009). Double IF from Paper I showed that the NUCB2/nesfatin in the 
brainstem co-localized with CART; if this is also the POMC population remains to be 
determined. Taken together, the catabolic actions of NUCB2/nesfatin have been 
suggested to include activation of the melanocortin system which consequently 
stimulates the central OXY system resulting in the inhibition of food and water intake. 
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4.10 ENERGY EXPENDITURE EFFECTS OF NUCB2/NESFATIN? 

The original study by Oh-I et al. (2006) focused on the regulation of food intake and 
showed that chronic infusion of nesfatin-1 decreases food intake and suppresses body 
weight gain over a 10 day period. However, while there was a slow desensitization of 
the anorexigenic effect during chronic nesfatin-1 treatment, the relative decrease in 
body weight gain during this period actually increased. This discrepancy may indicate 
that non-feeding effects, e.g. increased energy expenditure, may underlie the continued 
relative weight loss. Moreover, a study on the effect of single i.c.v. injection of 
nesfatin-1 revealed that nesfatin-1 does not modulate the 24hr cumulative food intake, 
yet still resulted in reduced body weight 24hr following the injection (Stengel et al., 
2009a). In Paper I, we identified a series of novel areas involved in afferent and 
efferent autonomic control, including the parafascicular nucleus, the EW, caudal raphe, 
the NTS and the IML, in addition to the ARC, that express NUCB2. These 
histochemical findings may offer anatomical substrates for NUCB2 actions on fuel 
utilization in metabolic control.   

4.11 NUCB2 SECRETED OR MESSENGER MOLECULE? 

The subcellular distribution of NUCB2/nesfatin differed from that of any other feeding 
regulating molecules. Firstly, nesfatin-LI is absent from terminals, and primarily 
observed homogenously in the cytoplasm and proximal dendrites. Secondly, Oh-I et al. 
(2006) suggested that NUCB2 is cleaved into the three nesfatin fragments, based on the 
existence of pairs of basic amino acids that may form substrates for proteolytic 
processing. The molecular weight for the entire NUCB2 precursor is around that shown 
by Oh-I et al (2006). However, a western blot analysis from Paper I demonstrated that 
antiserum targeted against nesfatin-1 yields a major band at 43kDa, not dissimilar from 
47.5kDa weight of the intact NUCB2 protein: a similar result was shown by Oh-I et al 
(2006) who also failed to detect an endogenous band at the predicted nesfatin-1 size of 
ca. 9.7 kDa. These findings suggest that NUCB2 might not be cleaved at the putative 
processing site into nesfatin-1, -2, and -3 as originally proposed. Moreover, antisera 
targeted against all three putative nesfatin fragments resulted in the same anatomical 
distribution pattern throughout the brain and pancreas (Paper I). Taken together, our 
data argue against further processing of NUCB2 and the secretory role of nesfatin 
fragments. As shown when it was first discovered, NUCB2 contains a signal peptide on 
the N-terminal, a DNA binding protein, putative cleavage sites, and two calcium-EF 
hands (Barnikol-Watanabe et al., 1994). It is therefore possible that NUCB2 functions 
as an intracellular signal molecule. This interpretation is not uncomplicated. A recent 
study using immunoelectron microscopy revealed that nesfatin-1-LI in PVH is 
localized in the secretory vesicles around the Golgi complex, and changes in electrical 
properties have been reported in magnocellular neurons and the ARC following 
application of nesfatin-1 fragment (Price et al., 2008a;b).  
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4.12 NUCB2/NESFATIN IN THE ENDOCRINE PANCREAS 

In Paper I, we found a strong expression of NUCB2/nesfatin-1 in almost all 
hypothalamic neuroendocrine populations and in the anterior pituitary gland, which 
lead us to investigate the connection to the endocrine system in Paper II. Given the 
similarities between the signaling molecule repertoire in the brain and the pancreas, we 
anticipated the presence of NUCB2/nesfatin-1 in the islets of Langerhans. In pancreatic 
islets, NUCB2/nesfatin-LI was distributed uniformly over cell bodies and was absent in 
the nucleus; similar to the staining pattern observed in the CNS. Double IF in Paper II 
revealed that NUCB2/nesfatin was present exclusively in insulin expressing cells (β-
cells) in both human and rat islets, but the subcellular staining pattern between the two 
peptides was partly non-overlapping. The slight discrepancy between the insulin and 
NUCB2/nesfatin-LI within the β-cell suggests that they might share the same cellular 
compartment. Electron microscopy may be required to determine the precise 
subcellular localization of NUCB2. The other islet cells did not contain NUCB2-LI. 
The finding of NUCB2-LI in insulin producing β-cells, lead us to investigate the 
relationship between the two proteins in vivo. 

4.13 ISLET AND SERUM IMMUNOREACTIVE NUCB2/NESFATIN LEVEL  

We measured the level of NUCB2-LI in isolated rat islet homogenates, islet perifusates 
and serum by enzyme immunoassay (EIA), in control Wistar and GK rats under 
different metabolic conditions. In islet homogenates, no difference was found between 
ad-lib feeding and fasting in Wistar control rats; this is in contrast to the hypothalamus 
where fasting decreases NUCB2 expression (Oh-I et al., 2006). In islets from GK rats, 
however, a significantly lower level of NUCB2-LI was seen compared to controls, 
which, intriguingly, normalized following fasting. The reason for the decreased 
NUCB2 is unclear at present, but a role in GK diabetogenesis cannot be ruled out. This 
is an all the more compelling issue, as levels were restored by fasting, considering that 
many metabolic parameters can be improved in diabetic patients by dietary 
modification.  

We next investigated whether NUCB2 could be released from the endocrine pancreas 
by glucose challenge, since glycaemia is the main factor controlling the secretory 
activity of β-cells. Isolated islets from Wistar control and GK rats were incubated in 
two concentrations of ambient glucose, 3.3 and 16.7 mM. The experiment revealed that 
NUCB2-LI levels were modestly, but significantly, increased following glucose 
stimulation in control Wistar rats; no differences were observed in GK rats. This 
change (+23%) was, however, over a magnitude less than glucose-induced increase in 
release of the prototypical hormone produce of β-cells, insulin (+717%). This 
experiment thus suggests that pancreatic release of NUCB2, at least under 
hyperglycaemic conditions, is minor at most. 

 
Finally, we performed an intraperitoneal glucose tolerance test (ipGTT) to measure the 
plasma NUCB2-LI concentration in control Wistar and GK rats. Both groups of 
animals showed statistically similar baseline levels of plasma NUCB2-LI, and a similar 
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NUCB2 response to glucose fluctuations. This finding argues against β-cells as a major 
contributor of plasma NUCB2, given that GK rats had decreased islet levels of this 
protein (see above). For both rat strains, the NUCB2-LI level decreased half an hour 
after i.p. glucose injection, and returned to basal level after two hours. Interestingly, the 
NUCB2-LI level was inversely correlated to blood glucose level. These data indicate 
that though plasma NUCB2-LI level may be unresponsive to fasting, it can be 
influenced by acute hyperglycaemia. The drop in NUCB2-LI that accompanied glucose 
injection is somewhat paradoxical in comparison to the anorexigenic role ascribed to 
the protein in the CNS; it may well be that NUCB2 has functionally distinct roles 
across organs. Given the current uncertainties summarized above regarding 
mechanism-of-action, the “what?” and “how?” of the physiological contribution of 
NUCB2 in metabolic control remain rather speculative.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The distribution of NUCB2/nesfatin is in shown to include nuclei which 
participate in all three output channels of metabolic control, i.e. behavioral, 
endocrine and autonomic modulation. 
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5 CONCLUDING REMARKS 

In the work presented here, we show that the two antagonistic ARC populations, 
NPY/AGRP and POMC, have a very close neuranatomical interrelationship, in which 
they project widely throughout the CNS in a similar pattern. Noted exceptions are the 
melanocortin projections to the caudal autonomic control regions. The projection 
patterns also suggest that the ARC primarily contacts hypothalamic arousal centers to 
recruit the wakefulness necessary to sustain feeding behavior. On the cell body level, 
there appears to be a biased relationship, in the form of a unidirectional innervation 
from NPYergic neurons to the melanocortinergic neurons. Given that the ARC NPY 
neurons are difficult to visualize, a novel transgenic mouse expressing fluorescence 
Renilla GFP under the NPY promoter was generated. The validity of the rNPY-GFP 
mouse was confirmed by immunohistochemistry, and an extensive mapping of the 
NPY population in the CNS was performed. Using the rNPY-GFP mouse, 
electrophysiology experiments were conducted to examine the effect of appetite 
regulating peptide (bombesin) on the ARC NPY and POMC populations. Surprisingly, 
bombesin have a stimulatory effect on both ARC NPY and POMC neurons. The 
presence of several CaBPs was demonstrated in the ARC, and while these proteins 
showed relatively little coexistence with other known markers of ARC populations, 
differential expression of calretinin and calbindin-D28K could be used to differentiate 
two separate populations of POMC neurons. NUCB2/nesfatin is another CaBP, which 
has been implicated in the regulation of food intake. Based on the neuroanatomical 
distribution we describe, the protein may be involved in behavioral, autonomic, and 
endocrine regulation of energy balance, broadening the role from food intake alone. 
Moreover, our data suggests that NUCB2 may play an intracellular role, as opposed to 
acting as a secreted messenger. The distribution and expression of NUCB2 is not 
limited to the CNS, but it is also found in the insulin producing β-cell of the pancreas. 
Our data shows that the level of NUCB2 is lower in the β-cell of a T2DM animal 
model. While NUCB2 is released from β-cell under glucose stimulation, the level is 
significantly lower than the level of insulin release. Finally, NUCB2 can be detected in 
the plasma where it is influenced by glycaemic state. These data suggest a role in 
endocrine regulation which merits further investigation.  
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6 THERAPEUTIC IMPLICATIONS 
Obesity poses a major threat to global health (WHO, 2000). While it is encouraging to 
note that the prevalence of adult obesity appears to have reached a plateau (Flegal et al., 
2010), and may even be decreasing in children (Ogden et al., 2008), being overweight 
and its associated disorders presents a clinical challenge of staggering proportions. 
There are in fact fewer anti-obesity drugs on the market than there were five years ago, 
while more money has been invested into research for drug development. It is unclear 
whether any of the drugs currently on the market are clinically or economically cost-
effective as a strategy for weight loss and long-term weight management. Diet regimes 
for the overweight have a very high relapse and failure rate. 

The discovery of leptin a decade and a half ago (Zhang et al., 1994) raised hopes that 
this hormone could be used to treat obesity. Initially discouraging results (Heymsfield 
et al., 1999), coupled with the demonstration that obesity may represent a state of 
resistance to the anorexigenic effects of leptin (Maffei et al., 1995), however, 
dampened expectations. Yet, recent years have seen several promising applications of 
leptin substitution in leptin-deficient conditions such as lipodystrophy and 
hypothalamic amenorrhea (see Friedman, 2009). It may also be too early to abandon 
hope for its application in obesity; a sub-population of obese patients respond with 
significant weight loss to leptin injections (Heymsfield et al., 1999). Intriguingly, 
administration of a low dose of leptin during dieting may increase the chance to reach 
the weight goal and prevent relapse in obese patients by reversing some of the 
metabolic changes that occur during weight loss (Rosenbaum et al., 2002). The 
decrease in leptin level acts as a negative feedback signal which increase food intake 
and decrease energy expenditure, ultimately gaining back the lost weight (Rosenbaum 
et al., 2002).  

Currently, bariatric surgical treatment is the most effective method for sustainable 
weight loss (Bueter et al., 2009) and has dramatic and immediate effects on improving 
hyperglycaemia and insulin sensitivity in obese diabetics (Pories et al., 1995). 
However, the inherent complications of operative procedures and anaesthesia, 
especially in the severely obese, limit the broad applicability of this procedure in 
weight management. The precise mechanism of the success behind the surgical 
treatment remains unknown, but it has been proposed that the procedure modulates the 
endogenous signals from the GI tract by elevating the level of satiety-inducing gut 
hormones (Bueter et al., 2009). Such hormonal changes have so far been difficult to pin 
down, but if successful may inform new pharmacological obesity therapies. 

Specific in- and out-patient behavioral intervention therapies for obesity are showing 
early promise (Ford et al., 2010; McCrady-Spitzer and Levine, 2010). Behavioral 
intervention include dietary modification but also combating a sedentary lifestyle with 
a focus not just on increased exercise but also on thermogenesis associated with 
everyday activities, such as the fuel burned to maintain posture (Levine, 2004). 
However, long-term weight-loss through lifestyle modification is not easily 
accomplished, as anyone who has tried can attest to. Pharmacotherapy would thus be a 
very welcome adjuvant to the above-mentioned treatment strategies. What 
considerations are relevant for the development of such therapies? 
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The regulation of body weight is often thought of as a homeostatic system. This is 
likely only partly correct. A true homeostatic system maintains a controlled variable at 
a fixed value (Cannon, 1932). The objective of the body energy system, however, 
appears to be to conserve energy; forage for food in times of need; and accumulate 
energy in times of plenty. There has been little evolutionary pressure to reduce food 
intake once energy stores are filled up, or to burn off excess calories as heat due to the 
fact that there was a general shortage of food and that the lifespan was shorter. 
Therefore, this system is biased towards weight gain and storage of fat, with few 
mechanisms that encourage weight loss. Given the large number of potential signals 
involved in the regulation of energy balance, a complex integrating circuitry has 
evolved, with the hypothalamus playing a central role. In the heart of this circuitry lies 
the primary energy sensors in the ARC, which co-ordinate the metabolic needs to the 
demands of the internal milieu. However, the feeding circuit does not regulate within a 
narrow range, but it is rather an adaptable controller that adjusts to ever-changing 
environmental conditions. 

The CNS contains multiple potential targets for the treatment of obesity. Although 
there are numerous peptides and neurotransmitters implicated in energy balance; they 
proved to be difficult to translate into viable drugs. One explanation is the substantial 
redundancy and compensation in the feeding circuitry, which may explain the normal 
body weight of the NPY knockout mouse model (Erickson et al., 1996). The biased 
nature of the homeostatic systems will restrict the efficacy of some of these approaches. 
There is also the challenge of developing orally bioavailable molecules that are agonists 
or antagonists acting on peptide receptors. Given that feeding is such an essential 
behavior, tampering with one component of this network might impinge on other 
homeostatic systems such as reproduction and sleep wake cycle, as well as the 
autonomic nervous system. Various anti-obesity drugs (i.e. Fen-phen, Rimonabant, 
Sibutramine) over the years have been taken off the market due to adverse 
cardiovascular and psychiatric side effects. Pharmacologically, a prospective drug 
target should take advantage of the body’s own network and reinforce or manipulate 
the existing internal feedback signals to short circuit over feeding. It can be expected 
that more potential drug targets will be identified in the years to come, but 
pharmacological intervention alone will not suffice in the fight against obesity.  

Any obesity therapy with aspirations on success will, however, need to take into 
account the fact that food intake in humans (and likely in most higher animals) is not a 
purely homeostatically driven process. In fact, it has been argued that under normal 
circumstances, with ready availability of high-calorie foods as is typical of modern 
society, the influence of homeostatic feedback is, at best, minor (see de Castro and 
Plunkett, 2002). While this observation may be true, it does not invalidate the 
importance of understanding the basic mechanisms of deficit-driven adaptive behaviour 
in metabolic control. Such mechanisms may also be relevant for anorexia, a common 
and deleterious condition that accompanies many inflammatory and neoplastic diseases 
and is often seen in the elderly. But knowledge of hypothalamic circuits will now need 
to be synthesized with greater knowledge of the non-homeostatic factors that drive 
human eating. Such factors include emotions, previous experience and the incentive 
stimulus value of various foods (Berthoud and Morrison, 2008). The feelings of 
satisfaction and pleasure generated by eating will in turn reinforce the compelling drive 
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to engage in this behavior again. Therefore, the reward value and aspect of certain 
enticing food for an individual should not be under estimated. Consequently, it is not 
surprising that the cortico-limbic systems which are responsible for generating that 
reward feeling can hijack the behavioral and metabolic effector mechanisms to dictate 
our food intake. The candidates which link the homeostatic system with the limbic 
system include leptin and insulin. Not only do they act on the ARC NPY and POMC 
neurons, they can also act directly on the mesolimbic dopamine neurons to modulate 
the “wanting” aspect of food (Figlewicz, 2003; Fulton et al., 2006; Hommel et al., 
2006).Taken together, it is essential to understand how the metabolic need is converted 
into behavior and highlight the importance of crosstalk between homeostatic and 
reward systems involved in regulating food intake. An effective anti-obesity treatment 
should consist of combining pharmacological therapies with behavioral interventions.  

A comprehensive strategy to combat obesity will also need to take into account the 
developmental aspects of this condition. It was first proposed by Barker (Barker et al., 
1989a) that intrauterine conditions could have severe consequences on adult disease 
incidence. This appears to be particularly true in the metabolic realm; offspring to both 
obese or diabetic mothers have increased risk of inheriting these conditions later in life 
(Levin and Govek, 1998; Dabelea et al., 2000). Recent data have revealed that this is 
accompanied – and very possible caused – by changes in hypothalamic wiring (Bouret 
et al., 2004; Grayson et al., 2006; Glavas et al., 2010). Preventive measures at the 
prenatal and early postnatal stage may thus offer a low cost-high benefit strategy for 
combating metabolic disorders.  
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