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Abstract 
Leukemia inhibitor factor (LIF) is a polyfunctional cytokine that belongs to the IL-6 family which 

mainly signals through the Jak/Stat pathway via the gp130/LIFR-α heterodimer.  

The focus of my research has been to investigate and understand if and how LIF exerts HIV-1 

suppressing activity. We therefore examined the expression of LIF, and its receptors (gp130 and 

LIFR-α) in lymphoid tissue biopsies from primary HIV-1 infected (PHI), chronic HIV-1 infected 

(cHI) individuals and from long term non progressors (LTNP). Furthermore, consecutively 

obtained HIV-plasma samples collected from PHI individuals were analysed for LIF and soluble 

gp130 levels. Our data showed that LIF is one of the mediators of the innate immune response 

during HIV-1 infection. High production of LIF and gp130 were detected both in lymphoid tissue 

and in plasma from individuals with primary HIV-1 infection. Assesment of LIF plasma levels at 

PHI did not predict low levels of HIV-1 viremia after discontinuation of anti-retroviral treatment. 

However, a positive correlation between levels of plasma HIV-1 viral load and the production of 

LIF in lymphoid tissue or in plasma was found. In addition, a positive correlation between plasma 

levels of HIV-1 RNA and IFN-α, TNF-α, IL-1β, MIP-1α and MIP-1β were found in plasma from 

HIV-1 infected individuals that were in the primary phase of infection. After cessation of anti-

retroviral treatment the levels of cytokines, including LIF, and chemokines were reduced as 

compared to the levels seen during primary HIV-1 infection. HIV-1 infected individuals that 

controlled their infection after cessation of treatment showed higher plasma levels of IFN-γ and 

MIP-1β as compared to individuals that did not control their HIV-1 infection. This suggests that 

during primary HIV-1 infection there is not a lack of a certain immune mediator that leads to 

immune failure, it is more like “too much and too many”. However, individuals that do control the 

infection appear to have a recall response to the virus, since they produce IFN-γ and MIP-1β 

which are suggested to be beneficial for the host to be abel to control the HIV-1 replication. 

We also found that even though more than 50% of the total CD4+ cells in lymphoid tissue 

expressed gp130, less than 5% of the total HIV-1 positive replicating cells (p24+) in lymphoid 

tissue were gp130+. Thus, LIF mediated a certain amount of control in CD4+gp130+ cells in 

lymphoid tissue. In addition, treatment of cMAGI cells with LIF prior to HIV-1 infection resulted in 

a dose dependent reduction in HIV-1 infected cells compared to untreated cells. Furthermore, 

both LIF and HIV-1 induced phosphorylation of Stat 3, and LIF pre-treatment resulted in a down 

modulation of the HIV-1 mediated Stat activation. Additionally, Jak/Stat inhibitors as well as 

siRNA against Stat 3 reduced HIV-1 replication. We suggest that the Jak/Stat pathway is 

important for HIV-1 replication and that LIF likely interferes with it. 

In conclusion, LIF like many other cytokine and chemokines, is bifunctional since it has both HIV-

1 suppressive action if present prior to HIV-1 infection, and HIV-1 enhancing activity if present 

after established HIV-1 infection.  
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Human Immunodeficiency virus  

General introduction to HIV-1 infection 

The first medical reports which led to the definition of acquired 

immunodeficiency syndrome (AIDS) emerged in 1981 in California and in New 

York City when a number of young homosexual men displayed symptoms of 

rare diseases normally associated with severely immuno-compromised 

patients1-3. The causative agent, Human Immunodeficiency virus (HIV) was 

identified by Dr. Luc Montangier at Pasteur Institute in Paris and later by Dr. 

Robert Gallo at the National Institutes of Health, USA4, 5 during 1983. Another 

form of HIV, HIV-2, was identified 1986 by Clavel et al6. These viruses were 

found to be spread by sexual contact, by parenteral contact including blood, and 

by vertical transmission from mother to child.  

Phylogenetic evidence showed that HIV originates from the Simian 

Immunodefiency virus (SIV). HIV-1 arose from SIVcpz (chimpanzees) and HIV-2 

from SIVsm (sooty mangabeys), respectively7-10. The virus that is responsible for 

the current HIV-1 epidemic has been estimated to have entered the human 

population between 1915-1940 in Central Africa11. Until today, there have been 

nine HIV-1 subtypes (A,B,C,D,F,G,H,J,K) and several “circulating recombinant 

forms” described12. The HIV-2 groups recognized are A-H13.  
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Figure 1. The graph illustrates how the numbers of HIV-1 infected individuals have risen from 

the onset of the epidemic until year 2005. Adapted from UNAIDS, 2006. 

HIV has caused one of the most devastating epidemics in recorded history. It is 

estimated that more than 60 million people have been infected with HIV 

worldwide and that more than 25 million had died of AIDS by end of 2005 
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(Figure 1)14. HIV/AIDS is the leading cause of deaths and loss of productive life 

years in adults aged 15-59. There were approximately 5 million people who 

became infected and 3 million people who died due to HIV/AIDS only during 

year 200514. 

Properties of the virus 

HIV-1 is a double stranded RNA Lentivirus which belongs to the Retroviridae 

family15. The viral particle is 100 nm in diameter and has a 9.2 kb long genome 

which contains three major structural genes; gag, pol and env that are flanked 

on both sides by long terminal repeats (LTRs), which are the regions that are 

connected to the cellular DNA of the host cell after integration, and serves as the 

promoter region for transcription of the virus.  

 
Figure 2. The molecular structure of HIV-1. 

The gag gene encodes the structural proteins; capsid (p24), matrix (MA, p17) 

and nucleocapsid (p9 and p7). The pol gene encodes reverse transcriptase 

(RT), integrase (IN) and polyprotein processed (PR) protein. These proteins are 

essential enzymes for transcription of viral RNA into DNA, integration of viral 

DNA into the human genome and cleavage of HIV-1 proteins, respectively. The 

env gene codes for the envelope glycoproteins gp120 and gp41 which are 

important for virus binding and subsequent infection of target cells. In addition, 

the HIV-1 provirus consists of six additional open reading frames which code for 

the regulatory proteins (Rev and Tat) and for the accessory proteins (Vif, Vpu, 

Nef and Vpr). Rev and Tat accumulate within the nucleus and bind to defined 

regions of the viral RNA. Rev is involved in regulation of viral gene expression, it 

binds to Rev response elements (RRE) that are found in the env gene, whereas 

Tat is involved in activating transcription; it binds to the transactivation response 
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elements (TAR) within the LTR. The accessory proteins are thought of as 

auxiliary proteins since they are not needed for viral production although they 

facilitate it. Furthermore, they are important targets for the immune response 

against HIV-1 (discussed later). 

 
Figure 3. The genetic structure of HIV-1. 

The viral life cycle 

A dynamic interaction between the virus and the host can be observed at every 

step of the life cycle of HIV-1. Host factors are involved not only in anti-viral 

responses but are also hi-jacked by the virus to perform pro-viral functions or 

are suppressed by the virus to minimize their potential anti-viral functions16. The 

life cycle of HIV-1 (Figure 2) starts with HIV-1 entry into target cells, that is 

mediated by the trimeric form of the env spike glycoproteins, gp120 and gp41, 

on the mature infectious virus particle. gp120 interacts with the appropriate 

receptor (CD4) on the cell surface17, 18. This leads to a conformational change 

that enables gp120 to bind to its co-receptor, usually CCR5 (for CCR5-using 

virus) or CXCR4 (for CXCR4-using virus) in combination with CD419-23 and this 

subsequently results in a conformational change of gp41 into a fusogenic 

state24. Fusion of the virus with the host cell is thought to take place in a pH-

independent manner. The co-receptors are contained within lipid rafts, cellular 

microdomains that are rich in cholesterol, which provide a supportive 

environment for viral fusion and entry since the lipid rafts are of similar 

composition as the lipid bi-layer of the virion envelope25. Apolipo protein B 

mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) is a cytidine 

deaminase (it converts cytosines to urasils) which has been shown to have 

antiviral activities in the early post-entry steps26, 27. However, if the HIV-1 protein 

Vif is present, it binds to ABOBEC3G and targets it for degradation through the 

cellular proteasomes. TRIM5-α is a restriction factor which blocks the early 

replication of retroviruses by preventing the accumulation of reverse 

transcription products28. The next step for the virus is to shed its nucleo-capsid 

and release the viral nucleoprotein machinery into the host cell so that the viral 
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enzyme RT can catalyze the reverse transcription of viral RNA into cDNA 

molecules which thereafter are assembled into pre-integration complexes 

(PICs)29, 30. These large nucleoprotein complexes contain, in addition to viral 

nucleic acid, Intergrase (IN), Reverse transcriptase (RT) and Matrix (MA) 

proteins among other yet unidentified proteins. Phosphorylation of the MA 

protein promotes translocation of the reverse transcriptase complexes from the 

membrane to the cytoplasm and subsequently to the nucleus31. Lentiviruses, 

including HIV-1, have developed means to actively transport PICs through 

nuclear membranes which makes it possible to infect non-dividing cells 

(oncoretroviruses can only gain access to the host genome when the target cells 

undergo mitosis)16, 32, 33. The PICs are integrated to the human genome with 

help of the viral enzyme IN and is assisted by several host factors34, 35.  

 
Figure 4. The HIV-1 life cycle. The virus infects a susceptible cell by binding to CD4 and a co-
receptor (usually CCR5) which results in fusion with the cell membrane. The viral genome is 
reverse transcribed and integrated to the host genome (provirus). This is followed by 
transcription and translation of the viral genome which results in new viral particles that are 
assembled in close vicinity to the cell membrane were the fully mature virions bud off. 
 
Transcription of the integrated viral DNA, called provirus, is a crucial step in the 

viral lifecycle that involves a highly regulated interplay between the virus and the 

host machinery. A key cellular transcription factor involved in HIV-1 replication is 

nuclear factor (NF)-κB36. After stimulation with mitogens or cytokines, NF-κB is 

activated in the target host cell and is translocated to the nucleus where it binds 

to the specific target sequence of the LTR and activates HIV-1 transcription. 

Transcription initially results in the synthesis of Tat and Rev. Tat enhances HIV-

1 gene expression by binding directly to the TAR region of the LTR with the help 
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of CyclinT1, an essential cellular co-factor. CyclinT1 associates with Tat and this 

results in recruitment of the CDK9 kinase to the TAR sequence37-39. This 

subsequently leads to the formation of a transcription elongation complex that in 

turn results in hyper-phosphorylation of the C-terminus of RNA polymerase II 

needed to get efficient elongation of nascent RNA molecules. Another protein 

that Tat also interacts with in order to enhance transcription is the cellular 

transcription factor Sp1 which can act as an antagonist to Sp3 that is known to 

repress LTR driven transcription in certain cells39, 40. Co-activator proteins such 

as Creb binding protein (CBP)/p300 and pCAF are also involved in the Tat-

induced transcriptional activation of the LTR promoter through the remodeling of 

the HIV-1 containing chromatin structure41. Furthermore, they mediate 

acetylation of Tat and thus promote its transcription activity. The HIV-1 protein 

Rev is important for switching from the early expression of regulatory proteins to 

expression of structural proteins thereby promoting the formation of mature viral 

particles. The pol and gag genes code for precursor proteins which after 

cleavage by the viral enzyme protease, form the nucleus of the mature HIV-1 

particle. The cytoskeleton directs the transport of viral complexes to the inner 

membrane of the cells. The virus assembles within cholesterol-rich lipids rafts at 

the surface of the host cell and new virions bud of from the cell membrane. 

During the budding process, the virus lipid membranes may incorporate various 

host cell proteins such as chemokine receptors that facilitate fusion with the next 

target cell 42. The HIV-1 protein Vpu is important for the viral budding process43. 

HIV-1 pathogenesis 

In general, HIV-1 infection follows three phases (Figure 5). The acute or primary 

phase lasts for about two to three months and it is probably the most dynamic 

phase44. In the first hours or days of infection, virus or infected cells, cross the 

mucosal barrier (if infection occurs through sexual transmission)45-47. A local 

infection becomes established at the point of entry if the virus is “successful”. 

Factors such as; low pH, hydrogen peroxide, innate factors (discussed later), 

entrapment of infected cells and/or virus in the mucus that overlies the 

epithelium limits the chance for the virus to reach its targets cells48, 49. 

Furthermore, the physical barrier of the epithelial lining is crucial since 
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destruction of the barrier integrity will enhance the rate of transmission 

significantly 50-54 

The first cells that become infected are “resting” memory CD4+ T cells mainly 

due to the fact that they are in the right place at the right time (or perhaps more 

correctly; in the wrong place at the wrong time)47, 55-57. Other target cells for the 

virus are activated CD4+ T-cells, Macrophages and Dendritic cells (DC) since 

they all express the main receptors, CD4 and CCR5 or CXCR4, that HIV-1 need 

in order to infect cells47, 58-60. It is mainly CCR5-using isolates that are involved in 

the establishment of primary infection since the cells that are present in the 

submucosa primarily express CCR561-63. CXCR4-using isolates usually emerge 

later in disease progression and are suggested to be more aggressive types of 

virus that is associated with a faster progression to AIDS64, 65. 

The HIV-1 infected cells start to produce and shed viral particles and transmit 

the virus laterally to neighbouring targets. Infected cells and virus carried by DCs 

will also spread to draining lymph nodes and then through the blood stream to 

peripheral lymph nodes, the gastrointestinal (GI) tract and the spleen. At 

approximately one week after exposure, viral RNA can be found systemically66-

69. The milieu in lymphoid tissues (LT); large numbers of susceptible cells in 

close proximity, makes it favorable for the virus to increase to high number and 

to spread. During the acute phase of HIV-1 infection the numbers of CD4+ T 

cells declines rapidly and even though it rebounds, with resolution of the acute 

phase, it rarely returns to baseline levels in the absence of anti-retroviral 

treatment (ART). It is specifically memory CD4+ T cells that are lost and in 

particular those in the GI tract55, 70. The vast majority of T cells in the GI tract 

express CD95 (Fas), and are therefore prone to undergo apoptosis if targeted 

by its ligand, the cell associated trimeric Fas ligand (CD95L). This is thought to 

be a consequence of a normal mechanism to induce tolerance in order not to 

get pathological gut inflammation since the T cells in the GI tract are exposed to 

high doses of antigen daily71, 72. High concentration of viral gp120 triggers 

CD95L expression on the target cells, and binding of trimeric CD95L to CD95 

induces apoptosis73. This may even occur within the same cell. In addition, 

induction of INF-α leads to upregulation of expression of death molecules, such 

as TNF-related apoptosis-inducing ligand (TRAIL) and death receptor (DR)5. 

The TRAIL/ DR5 pathway contributes to the apoptosis of both infected and 
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uninfected cells74-78. Of course the virus will also lyse infected cells due to its 

lytic cycle. The total outcome is a huge depletion of CD4+ T cells within a few 

days, which results in “substrate exhaustion” that is thought to partly be 

responsible for the gradual decline in viral load during HIV-1 infection79, 80. The 

specific immune response; neutralizing antibodies against HIV-1, HIV-1 specific 

CD8+ cytotoxic T lymphocytes (CTL) and HIV-1 specific CD4+ helper cells (all 

discussed later) are also thought to be responsible for the decline of the viral 

load to steady state81, 82. This viral set point is associated with disease 

outcome66, 83. High viral load is associated with a rapid progression and a low 

viral load correlates with better disease prognosis. The primary infection phase 

can be asymptomatic, but usually 50% of infected individuals exhibit fever, oral 

ulcers, maculopapular rash, sore throat, headache and swollen lymph nodes, 

resembling the symptoms of mononucleosis84, 85. 

 
Figure 5. Schematic illustration of the natural course of a typical HIV-1 infection showing viral 
load (red line), CD4+ T cell counts (purple dotted line), CTL reponse (black line) and Ab 
response (grey line). 
 

The chronic stage is usually an asymptomatic phase that can last for many 

years86-88. The viral load is kept low even though there is a persistent viral 

replication going on in the peripheral lymphoid tissues67, 89, 90. The gradual loss 

of CD4+ T cells will eventually lead to dysfunction of the immune system and the 

appearance of opportunistic infections and malignancies that are associated 

with AIDS, the last and final stage of HIV-1 infection. 200 CD4+ T cells/µl blood 

(representing approximately 80% loss of circulating CD4+ T cells) is an important 

cut-off level since below that the appearance of AIDS defining illnesses 

(opportunistic infections, neoplasm and malignancies) occur91.  
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There are a few percent of HIV-1 infected individuals which preserve immune 

function and have normal CD4+ T cell numbers for more that 10-15 years. These 

are termed long-term non-progressors (LTNP). 

Innate immune response  

Innate immunity is the first line of defence against invading pathogens. It is 

rapid, (acts within minutes to hours), is found at mucosal surfaces (the major 

entry point for HIV-1), has no memory and recognize “microbial non-self” by 

pattern recognition receptors (PRRs) which bind to highly conserved structures 

on pathogens. The innate immune response can also detect “altered self” or 

“missing self” that will lead to phagocytosis or lysis, respectively, of the 

cell/pathogen in question92. The innate immune system includes a number of 

different cell types; DC, natural killer (NK) cells, γδT cells, macrophages, 

monocytes and neutrophils and of soluble components; mannose-binding lectin 

(MBL), proteins of the complement system, cytokines, chemokines and 

defensins. They are all important players in the innate immune response with 

capacity to eradicate or at least limit the spread of pathogens and also to 

provide the stimuli and the time needed for the adaptive immune response to 

develop93.  

Innate immune response against HIV-1 

Cells 

Immature DCs are sentinels residing in peripheral tissues that capture antigen; 

they are good phagocytes and express a variety of PRRs, including Toll-like 

receptors (TLRs)94. Upon antigen uptake and/or signalling via PRRs the DCs 

mature to professional antigen presenting cells (APCs) and migrate to LT where 

they primarily interact naïve T cells and provide the stimulus that the T cells 

need in order to become fully mature effector cells. There are two main subsets 

of DCs, myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). mDCs are the 

main producers of IL-12 that are important to induce cell mediated Th1 like 

immune response95, 96 whereas pDCs are the main producers of IFN-α and IFN-

β, which among many other effects can inhibit HIV-1 replication and activate NK 

cells97-99. Thus, DCs are key mediators in the innate immune response and an 

important link between the innate and adaptive immune response against 
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pathogens, including HIV-192, 100. As discussed above, like CD4 T cells, DCs 

express all the major HIV-1 receptors (CD4, CCR5 and CXCR4) and they can 

therefore become infected by HIV-1101-105. In addition, HIV-1 can also bind to the 

cell surface of DCs through binding to the DC-SIGN receptor or other lectin 

receptors and be internalized59, 106, 107. Within the lymphoid compartment DCs 

can form conjugates with adjacent T cells and infectious synapses are formed 

which results in very efficient viral spread108. It is reported that during HIV-1 

infection there is a reduction in numbers of DCs in the blood, mainly in those 

individuals with active viral replication109-112. Numerous studies have observed 

that their function is impaired; DCs migrate to LT during acute HIV-1 infection, 

they express CD40 but the co-stimulatory molecules, CD80 and CD86, are only 

partially upregulated113 and HIV-1 infected DCs to not produce IL-12114. HIV-1 

infected DCs do not undergo maturation, but secrete IL-10 which subsequently 

can lead to T-cell anergy115. The importance of DCs in HIV-1 infection can be 

seen in LTNP which have been reported to have increased numbers of 

functional pDC as compared to progressors and uninfected controls116.  

NK cells have the capacity to release several molecules that are involved in 

antiviral defense (INF-γ, TNF-α, MIP-1α, MIP-1β, RANTES, perforin and 

granzymes)117. NK cells can kill virus infected cells directly or by antibody 

dependent cellular cytotoxicity (ADCC). They are therefore considered to be the 

main effector cells of innate immunity. NK cells and DCs have been suggested 

to, in part, be responsible for protection against HIV-1 infection in highly 

exposed seronegative individuals (HEPS)118. Furthermore, NK cell function also 

seems to be impaired in HIV-1 infected individuals since both reduced secretion 

of β-chemokines and reduced cytotoxic activity due to downregulation of 

activating receptors on the surface of NK cells have been reported119-121. 

Other cells that play a role in the innate immune response against HIV-1 

infection are γδT cells which are able to lyse virus infected cells and produce β-

chemokines122. Furthermore, the phagocytic oxidative capacity of 

macrophages123 and the superoxide production by neutrophils have also been 

reported to be impaired in HIV-1 infected individuals124.  
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Innate soluble factors 

The CD8+ T-lymphocyte anti-viral factor (CAF), which has not yet been 

identified, is active against HIV-1, HIV-2 as well as SIV125-127. One part of CAF 

action is inhibition of HIV-1 RNA transcription, particularly during LTR-driven 

gene expression. Chang et al have showed that Stat 1 is necessary for CAF-

mediated inhibition of LTR activation and HIV-1 replication. Furthermore, CAF 

induced the expression of interferon regulatory factor 1 (IRF-1), and IRF-1 gene 

induction was shown to be Stat 1 dependent, suggesting that CAF activates Stat 

1, leading to IRF-1 induction and inhibition of gene expression regulated by the 

HIV-1 LTR128. 

MBL and proteins from the complement system have been shown to bind to 

HIV-1 and lyse it directly or work as an oppsonizer thus facilitating viral 

phagocytosis by macrophages129-132.  

HIV-1 infection and replication is influenced by many different soluble factors 

and their effect on HIV-1 can either be stimulatory, inhibitory or both 

(bifunctional). The latter is particularly true for the action of cytokines and 

chemokines which normally form a complex network that is thought to be 

dysfunctional during HIV-1 infection. IFN-α and IFN-β are produced primarily by 

monocytes and pDC. They enhance the cytotoxicity of T cells and NK cells and 

inhibit regulatory T cells133. Furthermore, IFN-α is a potent anti-HIV-1 molecule 

which inhibits multiple steps of the HIV-1 life cycle134-136 and has been reported 

to upregulate expression of the anti-viral factor APOBEC3G137. IFN-γ is 

produced by activated T cells and NK cells and is a bifunctional cytokine. It has 

been shown to inhibit HIV-1 via down regulation of CD4 or alternatively by 

activation of the Jak/Stat signalling pathway138-141. Studies have also shown that 

IFN-γ activates HIV-1 transcription primarily by synergistically potentiate the 

stimulatory effects of TNF-α142-144. IL-12 is produced by macrophages and DCs. 

It stimulates T cells and NK cells to produce IFN-γ and thus polarizes the 

immune systems towards a Th1 like response. It has also been reported that IL-

12 is bimodal; it induces HIV-1 replication145-147 and inhibits HIV-1 replication if 

the cells are pre-treated with IL-12, which is suggested to be due to 

downregulation of CCR5148, 149. IL-15, like IL-12 are produced by macrophages 

and DCs and enhances replication of HIV-1145, 146. Proinflammatory cytokines, 
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such as TNF-α (produced by macrophages, NK cells and T cells), IL-1α and IL-1 

β (produced by macrophages and epithelial cells), IL-6 (produced by T cells, 

marophages and epithelia cells) and IL-18 (produced by macrophages) are 

thought to enhance HIV-1 replication through NF-κB activation and upregulation 

of CCR5 expression150-159. LIF (discussed later) is produced by a variety of cells 

and is a polyfunctional cytokine that belongs to the IL-6 family160. 

Chemokines are produced by DCs, Macrophages, monocytes, NK cells, γδT 

cells and activated T cells161. α-chemokines (SDF-1) are natural ligands for 

CXCR4 while β-chemokines (MIP-1α, MIP-1β, RANTES and eotaxin) are natural 

ligands for CCR5 and have therefore been suggested to compete with HIV-1 by 

binding to CXCR4 and CCR5, respectively, and either block HIV-1 or down 

regulate the receptors22, 162-165. However, chemokines may also mobilize 

CD4+CXCR4+ and CD4+CCR5+cells and thereby increase HIV-1 infection rate.  

Defensins are small cationic peptides with anti-microbial activity that serve as 

important effectors in innate immunity against HIV-1166, 167. So far, six α-

defensins and 28 β-defensins have been identified (six have been 

characterized) in humans and three theta-defensins have been identified in 

rhesus macaques. Both α- and β-defensins exhibit chemotatic activity for T cells, 

monocytes and immature DCs and induce cytokine production168-170. Alpha-

defensins are mainly found in neutrophils but also in NK cells, B cells, γδT cells, 

monocytes, macrophages and epithelial cells171, 172. Alpha-defensins inactivate 

HIV-1 replication in at least two ways; directly by binding to the virus and 

inactivating it in a serum free milieu like the mucosal surface, and indirectly by 

acting on the target cell by blocking HIV-1 infection at the step of nuclear import 

and replication169, 173, 174. β-defensins produced by epithelial cells are suggested 

to be part of the salivary components (mucin, amylase and SLP-1 etc) that play 

an important role in the prevention of HIV-1 transmission in the oral cavity175-177. 

Quinos-Mateu et al have showed that both CXCR4-using and CCR5-using 

viruses induces secretion of β-defensins 2 and 3 from human oral epithelia178. 

Furthermore β-defensins 2 and 3 inhibit viral replication preferentially of CXCR4-

using viruses by acting as antagonists179. Theta-defensins from rhesus bind 

carbohydrate epitopes displayed on viral particles (gp120) and cell-surface 
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glycoproteins (CD4) that are involved in viral entry thereby inhibiting HIV-1 viral 

replication 170, 180-182.  

Adaptive immune response against HIV-1 

The adaptive immune response, in contrast to the innate immune response, is 

“slow”, has memory and can provide specific recognition of foreign antigens in a 

MHC-restricted fashion. HIV-1 infection results in generation of virus-specific 

antibodies, HIV-1 specific T-cells (CD4 helper cells, CTL, and regulatory T cells) 

as well as production of cytokines and chemokines. 

Antibody (Ab) responses develop early in HIV-1 infection and the major targets 

for neutralizing Abs are the envelope proteins gp120 and the external part of 

gp41183-185. HIV-1 mutates and replicates at a high rate and this in combination 

with the fact that the gp120 is heavily glycosylated, and thus poorly 

immunogenetic, makes it hard to achieve a good neutralizing Ab response. The 

impairment of HIV-1 specific CD4+ T cell function occurs early during the acute 

phase186, 187 and is probably due to fact that it is preferentially HIV-1 specific 

CD4+ T cells that are infected with HIV-156, 188.These cells are killed by virus 

induced lysis, by HIV-1 specific CTL, or by ADCC resulting in a huge depletion 

of cells. Several reports demonstrate the importance of HIV-1 specific CD8+ T 

cells during the course of infection189-198. Recently it has been suggested that 

HIV-1 specific CD8+ T cell responses that are polyfunctional correlate inversely 

with viral load199. However, the function of the majority of CD8+ T cells in HIV-1 

infected individuals is impaired since skewed maturation of HIV-1 specific 

memory CD8+ T cells200, down modulation of the CD3 zeta chain201, lack of 

perforin expression202-205 and accumulation of regulatory T cells in LT206 has 

been reported. Furthermore, both HIV-1 and SIV have been shown to induce 

mutations in the genes encoding for amino acid residues important for CD8+ T 

cell recognition subsequently leading to viral escape 198, 207-210. 

Anti-retroviral treatment 

In 1987 the first anti-retroviral drug, a nucleoside analogue called 

azidothymidine (AZT) was approved. During 1995 and 1996 two new classes of 

antiretroviral drugs, non-nucleoside analogues and protease inhibitors were 

introduced. The combinations of these drugs were called highly active anti-

retroviral treatment (HAART) and were shown to be very efficient in reducing the 
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HIV-1 load and to keep viral resistance low211, 212. At first there was hope for 

virus eradication, however, many studies have shown that discontinuation of 

anti-retroviral treatment (ART) led to rapid viral rebound in most infected 

individuals. It has been estimated that more than 70 years of anti-retroviral 

treatment (ART) would be required for virus eradication since latently infected 

cells such as inactive CD4+ T cells, monocytes, macrophages and microglia 

cells serves as reservoirs for HIV-1213-218.  

Today, there are three classes of anti-retroviral drugs; transcriptase inhibitors, 

protease inhibitors and entry inhibitors. There are also new drugs in the pipeline 

which are small molecule inhibitors that target IN and RT which hopefully will 

make treatment even more promising219. 

Why is HIV-1 infection not cleared? 

As discussed above, HIV-1 infection results in a huge depletion of CD4+ T cells 

and impairment of both CD4+ and CD8+ T cell function that subsequently results 

in a dysfunctional immune system. On top of this, HIV-1 can not only infect 

activated/dividing cells but also non-dividing cells. HIV-1 thus, does not only 

destroy the immune system but can also hide from it. Furthermore, ART is 

unable to affect non-replicating pro-viruses since the drugs today targets the 

event of fusion, the reverse transcriptase enzyme, and the protease enzyme but 

does not target latent proviruses. There is great need for treatment that results 

in immune reconstitution and drugs that target alternative steps within the life 

cycle of HIV-1. 

What should a successful vaccine look like? 

An optimal vaccine against HIV should stimulate the innate immunity, generate 

broadly cross-reactive neutralizing Ab and also induce HIV specific 

polyfunctional CTLs. This should, preferentially, occur not only systemically but 

also at local sites (the mucosa). Furthermore, the vaccine should be safe and be 

available globally. This is a daunting challenge! Despite initial optimism and 

evaluation of more that 30 products in more than 85 trials, the search for an HIV 

vaccine has yet not reached its goal220. Most ongoing trials are testing vaccine 

candidates that are meant to induce HIV-specific cellular immunity. This is 

achieved by using viral vectors (expressing HIV proteins), either alone or in 

combination with DNA used in so called prime boost strategies. Studies in 
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experimental SIV infected monkeys have showed that the use of new vaccine 

adjuvants, such as unmethylated CpG motifs, heat shock proteins (HSP) and 

GM-CSF, results in innate immune activation; production of HIV/SIV-inhibiting 

cytokines and chemokines which are proposed to be important in modulating 

and steering the adaptive immune response221. 

Microbicides 

The term microbicides refers to a broad range of products whose common 

function is to prevent infection by HIV and other sexually transmitted pathogens 

when applied topically in the vagina or rectum. There are several microbicides 

that are in clinical trials and they act by killing or inactivating pathogens; by 

creating physical barriers (surfactants, gels or creams), by strengthening the 

body’s normal defences (pH regulators like the natural occurring Lactobacillis 

bacterium), by inhibiting viral entry (anti-HIV glycans, fusion inhibitors and 

CCR5-based inhibitors) and by inhibiting viral replication (nucleoside 

transcriptase inhibitors and non nucleoside transcriptase inhibitors. 222. 

Microbicides will hopefully be a cost-beneficial prophylaxis available for people 

in developing countries. 

 

Leukemia Inhibitor Factor 
Leukemia Inhibitor Factor (LIF) is a glycoprotein with an approximate molecular 

weight of 20 kDa which consists of a single four α-helix polypeptide chain 223. 

LIF was cloned and characterized by Dr. Donald Metcalfs group during 1987-88 

and was identified as a factor able to induce macrophage maturation and 

terminate self-renewal of the undifferentiated and highly clonogeneic murine 

myeloid leukemia, M1224-227. The combination of these actions suppressed the 

leukemic population, hence the name assigned.  

The LIF gene has three alternative first exons which can be spliced to common 

second and third exons, yielding three transcripts. These transcripts are 

regulated independently by using different promoters. The three transcripts are 

translated into three different protein forms of LIF; LIF-D, LIF-M and LIF-T228-230. 

The LIF-D (diffusible) transcript encodes for an extracellular protein that is freely 

diffusible, the LIF-M (matrix-associated) transcript encodes for a protein which 

can be found intracellularly and can be secreted as an extracellular matrix 
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associated protein. The LIF-T (truncated) transcript encodes for a intracellular 

protein that can not be secreted since the initiation of protein translation is 

downstream of the secretion signaling sequence. Differential promoter usage 

coupled with alternate splicing has also been shown to regulate production of 

intracellular and extracellular localized human IL-15 and IL-1Ra231-233. 

LIF is a polyfunctional cytokine that has a wide array of actions; it is important 

for hematopoesis since it acts as a hematopoietic growth factor and it is also 

used extensively in experimental biology because of its key ability to induce 

embryonic stem cells to retain their totipotentiality234-238. In addition, studies in 

mice have suggested the importance of LIF in successful pregnancy outcome 
239, 240 and studies in humans have shown that endometrium of infertile women 

produces significantly less LIF during the period of receptivity. However, the role 

of LIF in unexplained infertility and implantation failures in humans is not clear241, 

242. Furthermore, LIF has potent pro-inflammatory properties since LIF induces 

synthesis of acute phase proteins and affects cell recruitment into the area of 

damage or inflammation243. LIF is expressed in many different tissues and is 

upregulated after stimulation with IL-1 and TNF-α244-246. Elevated levels of LIF 

has been reported in a variety of inflammatory conditions such as, bacterial 

infections, auto immune diseases, and different forms of cancer 246-248. It is 

proposed that LIF may function as an initial signal for host inflammatory cytokine 

production. In addition to its pro-inflammatory activity, LIF also plays a key role 

in the hypothalamus-pituitary-adrenal (HPA)-mediated stress response249. Thus, 

by inducing corticosteroid synthesis it also has anti-inflammatory properties. 

Perhaps due to its many different functions, LIF has been used in different 

clinical studies and is proven to be relatively nontoxic250, 251.  

LIF signaling 

LIF belongs to the IL-6 cytokine family which consists of IL-6, IL-11, oncostatin 

M (OSM), ciliary neurotropic factor (CNTF) and cardiotrophin (CT-1)160. All 

members of the IL-6 cytokine family signal through the common gp130 receptor 

subunit252. In addition, each member also has a specific receptor. In the case of 

LIF, it is LIF receptor-α (LIFR-α) which LIF binds to with low affinity. Thereafter 

the LIF/LIFR-α-complex associate with the gp130 receptor and a high affinity 

complex is formed, which is needed in order to activate the Jak/Stat signaling 
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pathway (Figure 6). The Jak/Stat signaling pathway was originally identified as 

an interferon-activated transcription factor by Darnell and colleagues253. Today, 

it is known to be used by many different mitogens and cytokines.  

 
Figure 6. Schematic picture of the Jak/Stat signaling pathway. A ligand (for example LIF) binds 
to its receptor (LIFR-α and gp130) which results in dimerization of the receptors and 
phosphorylation of Jaks followed by phosphorylation, dimerization and translocation of Stat 
proteins. Within the nucleus Stat proteins binds to specific recognition sites within the genome 
and transcription of target genes occurs. The Stat signaling pathway is negatively regulated by 
SOCS and PIAS. Adapted from Ward AC, Blood 2000. 
 

Since gp130 lack intrinsic kinase activity it is dependent upon cytoplasmic Janus 

kinases (Jaks) which are associated with the cytoplasmic part of gp130 in the 

absence of ligand. Binding of the ligand causes conformational changes and 

heterodimerization of gp130/LIFR-α which results in auto-phosphorylation and 

activation of Jaks. Phosphorylated tyrosine residues on gp130 and LIFR-α serve 

as specific docking sites for the SH2-domaines of signal transducers and 

activation transcription (Stat) proteins. This subsequently results in 

phosphosrylation of Stat proteins followed by dimerization and translocation of 

the Stat proteins to the nucleus and expression of genes with Stat recognition 

sites. LIF-induced Jak/Stat signaling cascade is negatively regulated by both 

suppressor-of cytokine-signalling proteins (SOCS), which inhibits Jak activity, 

and by protein inhibitors of activated Stat (PIAS) that interact with activated Stat 

and inhibit their binding to specific DNA sequences254. LIF mainly activates Stat 
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1 and 3 and the pattern of Jak/Stat protein activation is cell-type specific. 

Additionally, LIF has also been reported to activate the Ras/MAPK pathway252, 

255. 

LIF and HIV-1 infection 

The first report concerning LIF and HIV-1 infection came in 1994 when Broor et 

al showed that LIF induced a dose-dependent increase of p24 antigen 

production in the chronically infected promonocytic cell line U1256. The 

magnitude and time kinetics of the LIF mediated effects were similar to IL-1, IL-

6, and TNF, other cytokines known to induce HIV replication in this cell line. 

They showed that LIF increased levels of HIV mRNA and they proposed that it 

was due to increased activation of the DNA binding protein nuclear factor (NF)-

kB which plays a major role in the regulation of HIV-1 gene expression36. 

In 2001 Patterson et al showed that expression of placenta derived LIF was 

associated with protection against vertical transmission of HIV-1 from mother to 

child257. Pre-treatment with LIF inhibited HIV-1 replication in vitro in peripheral 

blood mononuclear cells (PBMCs) as well as in placenta and thymus 

organotypic explant models. This inhibitory effect seen when LIF was present 

prior to HIV-1 exposure occurred with at least a 100-fold lower concentration of 

LIF than the inhibitory concentration needed to induce a similar effect with ß-

chemokines (RANTES and MIP-1 α and β)165. The LIF-mediated anti-HIV-1 

activity occurred prior to reverse transcription and was dependent upon cell-

surface expression of the signaling receptor gp130. 
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Aims of this thesis 
The general aim of this thesis was to investigate and understand if and how 

Leukemia inhibitor factor (LIF) exerts HIV-1 suppressing activity. 

 

The specific objectives were; 

 

To investigate if LIF and its corresponding receptors gp130 and LIFR-α had 

potential systemic immunoregulatory effects during the course of HIV-1 infection 

in lymphoid tissue (paper I). 

 

To investigate whether primary HIV-1 infected (PHI) individuals with sustained 

virological control post-cessation of ART had a higher initial LIF response during 

PHI as compared to those individuals who did not achieve a similar control of 

HIV-1 replication (paper II). 

 

To investigate the pattern of immunoactivation by studying secretion of 

cytokines and chemokines during PHI and in the chronic phase of HIV-1 

infection, after antiretroviral therapy termination (paper III). 

 

To investigate the potential involvement of Stat proteins in the LIF induced anti-

HIV-1 effect (paper IV). 
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Material and methods 
For details about the material and methods used in this thesis, see respective 

paper. 

cMAGI cells and MAGI assay  

cMAGI (multinuclear activation of galactosidase indicator) cells are CXCR4 

expressing HeLa cells transfected with CD4, CCR5 and HIV-LTR-β-

galactosidase and function as a reporter system for HIV-1 replication 

(Chackerian B, J Virol. 1997;71:3932-3939). β-galactosidase is transcribed 

when the MAGI cells are infected with HIV. Addition of X-galactosidase, which 

reacts with β-galactosidase, subsequently results in a bluish staining of infected 

cells. The MAGI assay was performed as outlined in paper IV. 

Ethical clearance 

The studies included in thesis were performed after approval from the 

Institutional Review Boards and Ethical Committees at each participating site. All 

subjects included in the study gave their signed informed consent prior to study 

enrolment. 

Statistical analysis 

For details about the statistical analysis used in this thesis, see respective 

paper. 
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Results & Discussion 

Background - potential role for LIF in HIV regulation in vivo 

The focus of my research has been to investigate and understand if and how LIF 

exerts HIV-1 suppressing activity. When I started this project, Patterson et al, 

had just presented in vivo and in vitro work that showed that the expression of 

placenta-derived LIF was associated with protection from transmission of HIV-1 

from mother to child. Furthermore, they showed that LIF inhibited HIV-1 

replication in vitro in PBMC as well as in placenta and thymus explant models. 

We then though that it would be interesting to investigate if LIF could also play a 

cell-protective role in individuals already infected with HIV-1, and if LIF could be 

detected in other tissues than the placenta. We began with the lymphoid tissue, 

since that is where the majority of HIV-1 replication occurs and where most of 

the mediators in the immune system can meet and interact with each other. We 

also aimed to analyse plasma samples from HIV-1 infected indivduals since that 

may reflect LIF regulation at the systemic level. 

Enhanced expression of LIF and its receptors, gp130 and LIFR-α, in 

primary HIV-1 infection. 

In paper I, we investigate whether LIF and its receptors, gp130 and LIFR-α, had 

immunoregulatory effects during the course of HIV-1 infection, by looking at LT 

biopsies (tonsils and lymph nodes) from patients with PHI, chronic HIV-1 

infection (cHI), long-term non-progressors (LTNP) and HIV-1 seronegative 

controls. LIF, gp130, LIFR-α and HIV-1 replicating cells were identified at the 

single cell level by immunohistochemistry and quantified by computerised in situ 

imaging in infected tissue and in healthy controls.  

The frequency of LIF, gp130 and LIFR-α expressing cells in the extra follicular 

area of LT were significantly increased in PHI when compared to HIV-1 

seronegative controls (Figure 7). Furthermore both the expression of gp130 and 

LIFR-α, but not LIF, were significantly increased in cHI as compared to HIV-1 

seronegative controls. However, the LTNP-group showed a significantly 

decreased expression of LIF, gp130 and LIFR-α, as compared to HIV-1 

seronegative controls. In addition, real-time RT-PCR data showed that LIF 

mRNA levels were elevated in LT sections from the PHI group while cHI, LTNP 
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and HIV-1 seronegative controls showed comparable amounts of LIF mRNA 

(Figure 7f).  

 

 
Figure 7. Immunohistochemically stained sections from LT biopsies illustrating LIF expressing 
cell (stained brown) in a) and c) and gp130 (stained brown) in b) an d). a) Note the high 
numbers of cells expressing LIF and gp130 in primary HIV-1 infection a) and b) as compared to 
HIV-1 seronegative control tissue c) and d). Cells were counterstained blue with hematoxylin. e) 
LIF expressing cells in LT at different stages of HIV-1 infection and in HIV-1 seronegative 
controls assessed by in situ imaging presented as median values of the percentage of stained 
area out of the total cellular area. f) LIF mRNA copies/200 000 GAPDH copies in LT cellular 
extract from different stages of HIV-1 infection and in HIV-1 seronegative controls as assessed 
by RT-PCR. Incidences of lymphoid cells expressing g) gp130 and h) LIFR-α in LT as assessed 
by in situ imaging, and expressed as median values of the percentage of stained area out of the 
total cellular area. Statistical differences between the differerent groups were assessed by a two-
tailed Mann-Whitney test and are indicated by * (p<0.05) and ** (p>0.01), respectively. gprimary 
HIV-1 infection (PHI), tchronic HIV-1 infection (cHI), ulong-term non-progressors (LTNP) and 
♦HIV-1 seronegative controls. 
 

In paper II we assessed the concentration of LIF and of the soluble form of 

gp130 (sgp130) in consecutively obtained HIV-plasma samples collected during 

the PHI phase and after cessation of ART from HIV-1 infected individuals that 

were included in the QUEST study, the first placebo controlled treatment trial in 

acutely HIV-1 infected258. The QUEST cohort is very unique since the patients 

were enrolled very early after exoposure to HIV-1, the first sample was taken 

approximately 11 days from onset of PHI symptoms. We selected a group of 

”controllers” defined as subjects with a viral set point of <1000 HIV-1-RNA 

copies/ml plasma 6 months post-stopping ART (> 1 year after the onset of 

infection) and a group of ”non-controllers” who were defined as those with a 

corresponding viral set point of >9000 copies of HIV-1-RNA copies/ml plasma 6 

months post-stopping ART (>1 year after onset of infection). There was a 

significant difference in viral load between the two groups already at onset of the 

study. We investigated whether the “controllers” showed higher initial LIF levels 
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when compared to “non-controllers”. Plasma from acutely symptomatic EBV-

infected subjects and from a group of HIV-1-seronegative healthy individuals 

served as controls. 

LIF was significantly increased during the PHI phase (day 1 to week 28) in HIV-1 

infected individuals when compared to HIV-1-seronegative healthy controls 

(Figure 8a). However, there was no significant difference in the LIF plasma 

concentration between ”controllers” and ”non-controllers”, although the median 

value showed a trend towards a higher LIF concentration in ”non-controllers” 

when compared to ”controllers” from day minus 7 to day 1 post initiation of ART. 

Overall the kinetic response pattern was comparable between the two groups. 

 
Figure 8. Distribution and mean a) LIF plasma levels and b) sgp130 levels during PHI. 
Differences in levels between HIV-1 infected subjects and uninfected healthy controls or HIV-1 
infected subjects and acutely EBV infected individuals were assessed by Wilcoxon Rank test 
with 95% CI, statistically significant differences are indicated by * (p<0.05), ** (p>0.01) and *** 
(p<0.001), respectively. 
 

Soluble gp130 was significantly increased in HIV-1 infected individuals between 

day 14 and week 28, during the PHI phase, as compared to HIV-1-seronegative 

healthy controls (Figure 8b). No significant difference between ”controllers” and 

”non-controllers” was found. Furthermore, the median levels of sgp130 

increased between day one and day 14 during the PHI phase while the 

detectable levels of LIF were decreasing during the same time period. 

Together these two studies (paper I and II) showed that induction of LIF 

occurred early in the PHI phase and that it was a part of an early virally induced 

pro-inflammatory response rather than an adaptive immune response against 

HIV-1. In fact, LIF protein expression was upregulated in one patient as early as 

2 days after onset of anti-retroviral syndrome (paper I) and the peak of LIF in the 

plasma occurred already at day 7 before initiation of ART to day 1 post initiation 
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of ART (paper II). Plasma levels of both LIF and of sgp130 were significantly 

reduced during the ART cessation phase (Figure 8) which implicated that the 

viral reactivation occurring after treatment interruption did not induce the same 

magnitude of pro-inflammatory response as in PHI. This proposes a role for LIF 

in the innate immune response against HIV-1. Furthermore, the induction of LIF 

did not seem to be HIV-1 specific, since there were no significant differences in 

the LIF plasma concentration between acute EBV and PHI patients at day minus 

7 to day 14 post initiation of ART (Figure 8).  

The expression of gp130 and LIFR-α in LT correlated with the expression of LIF 

at various stages of HIV-1 infection with the exception of the chronic phase 

(paper I). This may be due to the persistent pro-inflammatory milieu present in 

LT throughout the course of HIV-1 infection259 which may explain the 

upregulation of LIF receptors in cHI in contrast to LTNP which is associated with 

reduced inflammation 260. Furthermore, it is not only LIF which utilizes gp130 

and LIFR-α; all members of the IL-6 cytokine family [IL-6, IL-11, oncostatin M 

(OSM), ciliary neurotropic factor (CNTF) and cardiotrophin (CT-1] signal via the 

gp130 receptor. OSM, CNTF, and CT-1 causes hetereodimerisation of 

gp130/LIFR-α and a third cytokine specific receptor subunit which results in 

signal transduction. LIF binds to LIFR-α and this complex dimerize with gp130 

which generates a high affinity complex needed to induce cell signalling160.’ 

The median detectable levels of plasma LIF were decreasing between day one 

and day 14 during the PHI phase while the median levels of sgp130 increased at 

day 14 (Paper II). One may therefore speculate that sgp130 is released into the 

circulation to block and neutralize systemically released LIF, in order to regulate 

the biological activity of LIF261, 262 

Positive correlation between viral load and LIF expression in lymphoid 
tissue. 

A positive significant correlation between levels of plasma HIV-1 viral load and 

the expression of LIF (Figure 9a) in LT (paper I) as well as a positive significant 

correlation between levels of plasma HIV-1 viral load and plasma LIF 

concentration (Figure 9b) were found (paper II). This suggests that it is the viral 

dissemination, which drives the LIF production.  
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Figure 9. Positive correlation between viral load and LIF. Plasma viral load is plotted as a 
function of a) LIF protein expression in LT from HIV-I infected individuals and b) plasma levels of 
LIF from HIV-I infected individuals. 

HIV core antigen expression was limited to CD4+gp130- cells in lymphoid 
tissue. 

Multiple fluorescent staining, in LT from PHI patient, was used to identify the 

phenotype of HIV-1 replicating cells (paper I). Confocal microscopy revealed 

that HIV-1 core antigen (p24) was evident mainly in CD4+ cells but there was 

also a few percent that were CD4-. However, significantly fewer cells expressing 

gp130 (both CD4+ and CD4-) expressed HIV-1 core antigen. Despite the fact 

that more than 50% of the total CD4+ cells expressed gp130, less than 5% of the 

total HIV replicating cells in LT were gp130+ (Figure 10). Furthermore, we could 

not demonstrate signs of HIV-1 replication in LIF expressing cells. This 

implicates that LIF mediates a certain control of HIV-1 replication via gp130 and 

LIF may limit the ability of HIV-1 to replicate in gp130+ cells that have received 

LIF signalling.  

 
Figure 10. a) Incidence of HIV-1 replicating cells (p24)/4000 µm2 LT. Note that both p24+/CD4-

/gp130+ cells and p24+/CD4+/gp130+ cells express significantly less HIV-1 core antigen as 
compared to p24+/CD4+/gp130- cells (p<0.05). b) Confocal images of LT sections from a PHI 
patient illustrating staining of HIV-1 core antigen (green, top left panel), CD4 (red, top right panel) 
and gp130 (blue, lower left panel). Overlay of all three stainings demonstrating that none of the 
HIV-1 core antigen expressing cells co-stained for gp130 (lower right panel).*p<0.05 
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Phenotypic characterization of cells expressing LIF, gp130 and LIFR-α.  

Two-colour staining in LT showed that LIF, gp130 and LIFR-α were present on 

CD3+, CD4+ and CD8+ cells (paper I). LIF was expressed in approximately 10 to 

50 % of all CD3+, CD4+  or CD8+ cells whereas gp130 or LIFR-α was expressed 

on approximately 10 to 60 % of all CD3+, CD4+ or CD8+ cells in LT. To further 

characterize the phenotype of cells expressing gp130 and LIFR-α, PMBCs, 

separated from healthy blood donors were stained for different cell-surface 

markers. Flow cytometry analyses revealed that gp130 was expressed on 

approximately 65 % of all CD3+CD4+ T-cells (47-80%), 63% of all CD3+CD8+ T-

cells (50-76%) and on almost all CD4+CD14+ monocytes (70-100%). 

Furthermore, gp130 was expressed on very few if any CD3-CD19+ B-cells and 

CD3-CD56+-NK-cells. This is in agreement with data from Oberg et al showing 

similar frequency of gp130 expression in blood cells263. LIFR-α was expressed 

to a much lower extent then gp130; approximately 5% of CD3+CD4+T-cells, 35% 

of CD3+CD8+ T-cells and 65% of CD4+CD14+ monocytes. This suggests that, in 

blood, it is mainly monocytes that are sensitive to the anti-HIV-1 effect of LIF.  

Since our data showed that HIV-1 core antigen (p24) was significantly less 

expressed in CD4+/gp130+ cells as compared to CD4+/gp130- cells and since 

CD4+ T cells are among the main HIV-1 target cells in vivo, we went on to 

further characterize CD3+CD4+gp130+ cells in blood (Figure 11). It was however, 

not possible to further characterize CD4+CD14+ cells because the expression of 

gp130 was down-regulated on these cells when they were put in culture.  

The CD3+CD4+gp130+ cells did primarily express CXCR4, but a few percent 

expressed CCR5. They were mainly CD45 RA than CD45RO positive and did 

not express CD25, CD69 (activation markers). Nor did they express CD57 (a 

marker for replicative senescence). They expressed CCR7 and CD62L, which 

allow them to “home”/enter lymph nodes, and the co-stimulatory molecules 

CD27 and CD28. Thus, it was mainly naïve cells that expressed gp130 in blood. 

It would be interesting to find out if the expression of gp130 is altered in blood 

from HIV-1 infected individuals and if gp130 expressing cells are “protected“ 

from HIV-1 infection in blood as has been shown in LT. We are hoping to be 

able to answer these questions in the near future. 
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Figure 11. The graph shows facs analysis of PBMCs. a) A gate was sent on PBMCs based on 
size and granularity, thereafter a CD3+ cell-gate was set followed by a CD4+gp130+ cell-gate 
(gray) and a CD4+gp130- cell-gate (black line). The cells were further caracterized for b) CXCR4, 
c) CCR5, d) CD45RA, e) CD45RO, f) CD25, g) CD69, h) CD56, i) CCR7, j) CD62L, k) CD27 
and l) CD28 expression. The blue line corresponds to unstained cells. 
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It is not the lack of proinflammatory cytokines and chemokines during PHI 
that is the problem in HIV-1 infection. 

In paper III we further investigated the pattern of immunoactivation during PHI 

as well as after cessation of antiretroviral therapy, in the same cohort that was 

used in paper II. Cytokine and chemokine levels in plasma from the two different 

groups, “controllers” and “non-controllers” (termed responders and non-

responders, respectively in the paper) were analyzed by Luminex. “Non-

controllers” had significantly higher levels of IFN-γ, TNF-α, IL-1β, IL-10 and 

Eotaxin, respectively, than “controllers” during the PHI phase. Furthermore, 

there was a positive correlation between HIV-1 RNA and IFN-α, TNF-α, IL-1β, 

MIP-1α and MIP-1β, respectively. On the contrary, “controllers” had significantly 

higher levels of IFN-γ, MIP-1β and MCP-1 than “non-controllers” after cessation 

of ART (Figure 12). This suggests that the problem during PHI is not lack of a 

certain immune mediator as seen in many other infections. For example, during 

the acute phase of measles infection there is lack of IL-12264, 265 whereas EBV 

infection produces virally engineered IL-10 to trick the immune system266. Thus 

for HIV-1 infection it looks like there are too much and too many mediators. 

However, those individuals that do control the infection seem to have a recall 

 

 
Figure 12. The graph shows the area under the a) IFN-γ curve and b) MIP-1β curve during the 
post-stopping antiretroviral treatment phase. Concentration of IFN-γ and MIP-1β were 
significantly higher in “controller” as compared to “non-controller” *p<0.05. 
 

response to the virus, since they produce IFN-γ and chemokines. This can be 

compared to in vitro studies where PMBCs from HIV-1 infected individuals 

produce multiple cytokines and chemokines at the single cell level after 

restimulation in vitro with HIV-1 peptide pools. Therefore a polyfunctional CD4+ 

and CD8+ induced HIV specific response is associated with better control of 
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HIV-1 infection as compared to CD4+ and CD8+ T cells producing one single 

cytokine or chemokine199. Furthermore, the viral events during PHI seemed to 

determine the viral set-point determined after more than 2 years, despite an 

immediate initiation of ART. Thus initial virus-immune system interaction seems 

to regulate the long term viral replication level and thereby the disease related 

prognosis. 

LIF inhibited HIV-1 infection and decreased uptake of HIV-1 antigen in 
cMAGI cells. 

In paper IV we went on to study the mechanism of the LIF anti-HIV-1 activity 

seen in earlier studies. We used CXCR4- and gp130-expressing cMAGI cells 

transfected with CD4, CCR5 and HIV-LTR-β-galactosidase as a model system 

to investigate the potential involvement of Stat proteins in the anti-HIV-1 effect of 

LIF. The advantage of using these cells was that they did not require activation 

prior to HIV-1 infection and that it was a robust, reproducible model system that 

could be used to measure HIV-1 infectivity267-269. This was in contrast to primary 

naïve CD4+ T cells which required activation in order to become susceptible to 

HIV-1 infection in vitro. Activation of CD4+ T cells with anti-CD3, anti-CD28 

stimulation resulted in down regulation of gp130. Furthermore, anti-CD3, anti-

CD28 stimulation as well as PHA stimulation resulted in Stat phosporylation270.  

 

 
Figure 13. a) Dose dependent inhibition of HIV-1 in LIF treated cMAGI cells. Treatment of 
cMAGI cells with Genistein (a protein kinase inhibitor) or AG490 (a Jak inhibitor) prior to 
exposure of HIV-1 resulted in significant inhibition of HIV-1 infection. ** p<0.01 and *** p<0.001. 
b) The picture shows HIV-1 infected cMAGI cells (blue). β-galactosidase is transcribed when the 
cMAGI cells are infected with HIV-1 and addition of X-galactosidase results in a bluish staining of 
infected cells when X-galactosidase reacts with β-galactosidase.  
 
Treatment of cMAGI cells with LIF prior to HIV-1 exposure resulted in 

significantly lower numbers of HIV-1 infected cells as compared to non-treated 
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cells (Figure 13) In addition, fluorescent staining of LIF treated and/or HIV-1 

exposed cMAGI cells showed that treatment with LIF prior to HIV-1 exposure 

resulted in a statistically significant decrease in the number of HIV-1 p24 

expressing cells that indicated a LIF mediated diminished uptake of HIV-1 

particles. This observed phenomenon was not due to alteration in expression of 

the main HIV-1 receptors (CD4, CCR5 and CXCR4) nor to any major changes in 

the expression levels of the LIF receptors, (gp130 and LIFR-α) as determined by 

flow cytometry. In addition, cells treated with LIF did not induce or suppress 

production of IL-1β, IL-6, TNF-α, RANTES, MIP-1α, MIP1-β or SDF-1, as 

determined by assessment of cell culture supernatatnts by Luminex or ELISA. 

One can therefore conclude that the anti-HIV-1 effects detected in this study 

were not due to release of the above mentioned cytokines or chemokines which 

are known to have suppressive or inducing effects on HIV-1 replication 20, 161, 271, 

272. A transduction assay with murine amphotropic retroviral particles containing 

the MSCV-IRES-GPF expression vector was used to study whether the ability of 

LIF to affect the uptake of HIV-1 particles could be generalized to other 

retroviruses. However there were no differences in uptake between LIF treated 

and untreated cells, indicating that LIF did not have a general retroviral activity, 

but might have had a selective anti-retroviral activity since LIF affected the 

uptake of HIV-1 (paper IV) and it also affected the uptake of feline 

immunodeficiency virus (Patterson unpublished data).  

LIF and HIV-1 induced phosphorylation of Stat 3 in cMAGI cells. 

Western blot analysis performed on lysed cMAGI cells exposed to HIV-1 and/or 

treated with LIF revealed that Stat 3 (Figure 14) but not Stat 1 or Stat 5 was 

phosphorylated. Furthermore, if the cMAGI cells were treated with LIF prior to 

HIV-1 exposure, the HIV-1 mediated Stat 3 phosphorylation was down regulated 

(Figure 12). We used the Jak inhibitory agent, AG490 and the tyrosine kinase 

inhibitor, Genistein, to confirm the effect of LIF on the Jak/Stat signaling 

pathway. Reduced phosphorylation level of Stat 3 was evident in both AG490 

and Genistein treated cells as compared to untreated cells. As for now, we do 

not know the exact mechanism behind this interference with the Jak/Stat 

pathway. However, one can speculate that there are downstream effects of the 

LIF-mediated signalling that block the HIV-1 mediated signalling. LIF induced 
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Stat 3 phosphorylation might compete for co-activators needed to complete the 

HIV-1 replication cycle.   

The HIV-1 regulatory protein Tat is very important to enhance gene expression 

in the infected host cells. Tat binds directly to the TAR region of the LTR and 

also associates with other cellular co-factors like CyclinT1, SP1, CREB-binding 

proteins (CBP)/p300 and pCAF. Furthermore, CBP/p300 and pCAF have been 

shown to associate with both Stat proteins and with Tat41. Stat 1 binds to 

CBP/p300 both with its N- and C-terminus ends. The C- terminus end contains 

the transactivation domain which also binds to the Adenovirus oncoprotein E1A. 

IFN-γ decreases early adenovirus mRNA levels, which are dependent upon the 

adenovirus E1A protein. The antiviral effect of IFN-γ is thought to be a 

consequence of competition for binding to CBP between activated Stat 1 and 

E1A273, 274. LIF induced Stat 3 phosphorylation might compete for co-activators 

such as CBP/p300 in a similar way as demonstrated in the Adenovirus system. 

LIF thus affected HIV-1 infection rate via reduced Stat 3 phosphorylation that 

might in turn lead to lack of important co-activators needed to complete the HIV-

1 replication cycle. 

 
Figure 14. Western blot performed on lysed cMAGI cells revealed that both a) HIV-1 and b) LIF 
phosphorylated Stat 3 in a time dependent manner. c) Pre-treatment with rhLIF down regulated 
the HIV-1 mediated Stat 3 phosphorylation after both 20 and 40 min of HIV-1BaL exposure. d) LIF 
activated IRF-1 expression in a time dependent manner, ranging from 30 min to 4 h, with a peak 
at 2 h of LIF stimulation. Tubulin and unphosphorylated Stat 3 was used as loading control. 
 

In this study we also showed that cMAGI cells treated with LIF induced 

expression of the transcription factor IRF-1 (Figure 14). The anti-HIV-1 effects 
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seen by CAF and IFN-γ have been proposed to partly be mediated by enhanced 

expression of IRF-1128, 275. Expression of IRF-1 can be greatly enhanced by virus 

infection and by several cytokines276-278. Within the 5’ region of the HIV-1-LTR-

region there is a binding site for IRF-1275. Furthermore, HIV-1 induces IRF-1 

expression prior to Tat production and IRF-1 can activate transcription of Tat, 

which in turn amplifies LTR-directed gene expression. Marsili et al have 

suggested that HIV-1 may have evolved a strategy to turn on the activation of 

IRF-1 before massive IFN-and IFN-stimulated gene activation occur thereby 

counteracting the host immune defence279. One may speculate that the kinetic 

response of IRF-1 induction may also be crucial for LIF mediated anti-HIV-1 

effect. If LIF induces IRF-1 expression prior to HIV-1 infection, this might in turn 

alter HIV-LTR transcription. However, if HIV-1 exposure induces IRF-1 

expression prior to LIF induction, HIV-1 may counteract the antiviral effect of 

LIF. This goes hand in hand with the observations that LIF has to be present 

prior to HIV-1 in order to have a suppressive effect on HIV-1 replication.  

Stat 3 siRNA reduced p24 production in PBMC. 

We next investigated if HIV-1 replication was affected by blocking the Stat 3 

signaling pathway in primary cells. PBMCs were transfected with siRNA 

oligonucleotides directed against Stat 3 or scrambled siRNA prior to HIV-1 

infection. Silencing of Stat 3 resulted in significantly less viral replication as 

determined by p24 production in cell culture supernatants (Figure 15). In order 

to calculate the relative changes in Stat 3 mRNA with siRNA treatment, we 

determined the threshold cycle numbers (Ct) where the fluorescence intensity of 

the PCR probes exceeded background levels (Figure 14, horizontal broken line) 

and by using the 2-∆∆Ct equation, previously described 280, we showed a 34-fold 

and a 55-fold drop of Stat3 mRNA in cells transfected with Stat 3 siRNA prior to 

HIV-1 infection as compared to non-transfected but HIV-1 infected cells. 

Together, this shows that the Jak/Stat signaling pathway is important for the 

HIV-1 replication cycle and that LIF interferes with it.  
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Figure 15. a) The graph illustrates that PBMCs transfected with Stat 3 siRNA for 6 h prior to 1 h 
exposure to HIV-1 BaL or HIV-1LAI  expressed significantly less HIV p24 antigen, on day 7, as 
compared to non-transfected HIV-1 infected cells. There were no significant differences in p24 
expression between non-transfected and scrambled transfected cells. *p<0.05 b) Confirmation of 
Stat 3 mRNA silencing was determined using quantitative real-time RT-PCR for Stat 3 mRNA. 
The threshold cycle numbers (Ct) were determined,and by using the previously described 
equation 2-∆∆ we showed a 34-fold and a 55-fold drop of Stat3 mRNA in cells transfected with 
Stat 3 siRNA for 6 hours prior to HIV-1BaL (broken line----) or HIV-1LAI (solid line _____) infection, 
respectively, as compared to non-transfected but HIVBaL (dash and dotted line .-.-.) or HIV-1LAI 
(dotted line…..) infected cells. 
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Concluding remarks 
 
1) High expression of LIF, gp130 and LIFR-α was observed in lymphoid tissue 

(LT) biopsies from individuals with PHI. A positive correlation between plasma 

viral load and LIF expression in LT was found. Even though more than 50% of 

the total CD4+ cells in lymphoid tissue expressed gp130, less than 5% of the 

total HIV replicating cells (p24+) in lymphoid tissue were gp130+. Significantly 

less HIV-1 viral replication (identified by HIV core antigen/p24 expression) was 

observed in CD4+ cells expressing gp130 in LT as compared to CD4+gp130- 

cells.  

 

• LIF is expressed early in the acute phase of HIV but not in the chronic 

phase of HIV, nor in lymphoid biopsies from LTNP. The fact that LIF 

expressing cells could be demonstrated in LT already 2 days after onset 

of acute retroviral syndrome suggets that LIF is a mediator of the early 

immune response against HIV-1. HIV-1 replication was less pronounced 

in cells expressing the LIF signalling receptor, gp130, indicating that LIF 

could mediate a certain control of HIV-1 infection in CD4+gp130+ cells in 

LT 

 

2) Increased levels of LIF and sgp130 were found in plasma samples from HIV-1 

infected patients during the PHI phase. No significant differences in the LIF 

plasma concentrations between ”controllers” (<1000 HIV-1-RNA copies/ml 

plasma 6 months post-stopping ART) and ”non-controllers” (>9000 HIV-1-RNA 

copies/ml plasma 6 months post-stopping ART) were found. The median value 

showed a trend towards a higher LIF concentration in ”non-controllers” when 

compared to ”controllers” in the acute phase of HIV-1 infection from day minus 7 

to day 1 post initiation of ART. However, ”non-controllers” had higher levels of 

viremia when compared to ”controllers” during the same time period. 

Furthermore a positive correlation between plasma viral load and LIF plasma 

levels from samples taken during the PHI phase was found.  

 

• High levels of LIF were thus seen at the initial stages of PHI associated 

viral dissemination. This suggests that LIF may be a part of the early 
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virally induced immune response. However, LIF plasma levels during PHI 

did not predict low levels of HIV-1 viremia after discontinuation of ART (> 

1 year after the onset of infection). Furthermore, LIF was not increased 

following ART interruption. 

 

3) A positive correlation between plasma levels of HIV-1 RNA and IFN-α, TNF-

α, IL-1β, MIP-1α and MIP-1β was found in plasma from HIV-1 infected 

individuals who were in the primary phase of infection. “Non-controllers” had 

significantly higher plasma concentration of HIV-1 RNA, IFN-γ, TNF-α, IL-1β, IL-

10 and Eotaxin, respectively, than the “controllers” during PHI. After cessation of 

ART, the levels of cytokines and chemokines were reduced as compared to the 

levels seen during the PHI phase. HIV-1 infected individuals that controlled their 

infection after cessation of ART had higher plasma levels of IFN-γ and MIP-1β 

as compared to individuals that did not control their HIV-1 infection.  

 

• A high level of immune activation during PHI is associated with high HIV-

1 RNA levels rather than a better control of the viral replication. In 

addition, patients with better control of the virus after cessation of ART 

might have a recall response to the virus, since they produce IFN-γ and 

MIP-1β, which are suggested to be beneficial for the host to control the 

HIV-1 replication93. The viral interaction with initial immune response 

during PHI seemed to determine the viral set-point after more than 2 

years, despite an immediate initiation of ART. 

 

4) Treatment of cMAGI cells with LIF prior to HIV-1 infection resulted in a dose 

dependent reduction in numbers of HIV-1 infected cells when compared to 

untreated cells. Additionally, Jak/Stat inhibitors as well as siRNA knockdown of 

Stat 3 reduced the numbers of HIV-1 infected cells and reduced the production 

of HIV-1 core antigen/p24 when compared to untreated cells, respectively. 

Furthermore, both LIF and HIV-1 induced phosphorylation of Stat 3 while LIF 

pre-treatment resulted in a down modulation of the HIV-1 mediated Stat 

activation. LIF also induced expression of IRF-1, a transcription factor known to 

be important for HIV-1 replication and involved in the anti-HIV-1 effects seen by 

IFN-γ and CAF128, 275, 279. 
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• LIF had suppressive effects against HIV-1 infection if present prior to 

infection and we propose that this effect was mediated by interferance 

with the HIV-1 mediated Jak/Stat activation. The Jak/Stat signalling 

pathway is crucial for the HIV-1 replication cycle and many studies have 

shown the involvement of the Jak/Stat signalling pathway during the 

course of HIV-1 infection138, 184, 281-285. 

 

In conclusion, LIF is one of the players of the innate immune response during 

HIV-1 infection and is, like many other cytokines, bifunctional. LIF showed HIV-1 

suppressive action, if present prior to HIV-1 infection, and enhanced viral 

activity, if present after established HIV-1 infection. This is in agreement with 

data presented by both Broor et al and Patterson et al256, 257. LIF is not a 

potential systemic immunoregulator but may act locally to prevent HIV-1 

infection if present prior to HIV-1 infection. Moreover LIF has gone through 

Phase I/II trials where it has been shown to be non toxic even in very high 

concentrations251. Therefore, LIF has a potential to function as a microbicide.  

Since there are many steps within the life cycle of HIV-1 that are dependent 

upon phosphorylation and since the Jak/Stat signaling pathway has been 

proposed by us and others to play an important role during HIV-1 infection it 

would be very interesting to pin-point exactly where/how the Jak/Stat signaling 

pathway is crucial for the life cycle of HIV-1. Perhaps the results from such 

studies could gain information about new potential target sites for novel anti-

HIV-1 drugs. 
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Populärvetenskaplig sammanfattning 
I min avhandling har jag kartlagt Leukemia Inibitor Factors (LIF’s) betydelse för 

prognos och sjukdomsprogress vid HIV-1 infektion.  

LIF är ett cytokin, en slags signalsubstans som immunceller producerar i syfte 

att kommunicera med varandra. LIF upptäcktes av Dr Metcalf år 1987. Han och 

hans medarbetare visade att LIF kunde förhindra cancerceller att dela på sig 

genom att få dessa att mogna ut (differentiera). Idag vet man att LIF medverkar i 

många olika processer i kroppen. LIF reglerar tex tillväxt och differentiering av 

embryonala stamceller, blodceller, nervceller och fettceller. LIF är även en viktig 

molekyl i immunförsvaret, där den kan fungera antingen pro- eller anti-

inflammatoriskt beroende på hur omgivningen ser ut.  

När jag började med detta projekt hade Dr Bruce Patterson just visat att celler 

från moderkakan hos HIV-infekterade kvinnor som inte överförde viruset till sina 

barn uttryckte mer LIF än celler från de kvinnor som överförde viruset. 

Dessutom visade han att om cellerna behandlades med LIF i provrör innan de 

infekterades med HIV så förhindrade LIF virus-replikation. Vi ville därför 

undersöka om vi kunde detektera LIF även i andra vävnader, om LIF kunde 

förhindra virus-replikation i celler som redan var HIV-infekterade och vi ville 

dessutom försöka förstå hur LIF hämmar virus-replikation. Eftersom HIV främst 

replikerar i lymfoid vävnad valde vi att undersöka denna. Vi undersökte även 

plasma från HIV infekterade patienter under den akuta HIV fasen samt efter 

behandlingsavbrott, för att få svar på hur det ser ut systemiskt. 

Uttrycket av LIF och dess receptorer (gp130 och LIFR-α) var förhöjt i lymfoid 

vävnad från individer i den akuta fasen av HIV jämfört med lymfoid vävnad från 

friska individer. De celler som vanligtvis blir infekterade av HIV uttrycker 

ytmolekylen CD4 som viruset använder för att ta sig in i målcellen. Vi såg att de 

CD4+ celler som också uttryckte gp130 på sin yta inte i lika stor utsträckning blev 

infekterade av HIV som de CD4+ celler som inte uttryckte gp130. Vi tror därför 

att LIF kan skydda celler, som uttrycker gp130, från HIV-infektion.  

Koncentrationen av LIF och lösligt gp130 var också mycket högre i plasma från 

HIV-infekterade individer som var i den akuta HIV-fasen jämfört med friska 

individer och även med de nivåerna vi detekterade i plasma från kroniskt HIV-

infekterade individer under behandlingsavbrott. Vi såg ingen skillnad i LIF-

nivåerna i plasma hos de individer som kontrollerade sin HIV infektion jämfört 
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med dem som inte kontrollerade sin infektion. Vi såg ett positivt förhållande 

mellan virusmängd och LIF-uttryck vilket troligen betyder att det är viruset som 

driver utsöndring av LIF.  

Vi har också analyserat dessa plasmaprover för andra cytokiner och kemokiner 

(signalsubstanser som är viktiga i immunförsvaret) och såg att under den akuta 

fasen av HIV-infektion var nästan alla dessa signalsubstanser avsevärt förhöjda 

jämfört med nivåerna under behandlingsavbrotts-fasen. Mängden av de flesta 

av dessa signalsubstanser korrelerade även positivt med virus nivån. Problemet 

vid HIV-infektion verkar således inte vara att det saknas någon specifik cytokin 

eller kemokin. Snarare finns det för många substanser i för hög koncentration 

och denna miljö verkar gynna HIV. Emellertid såg vi att de individer som 

kontrollerade sin infektion efter behandlings-avbrottet producerade IFN-γ och 

MIP-1β, en cytokin respektive en kemokin som tidigare också har visats vara 

viktiga vid kontroll av HIV infektion.  

Vi undersökte också hur LIF påverkar virus replikation. Vi såg att celler som 

förbehandlats med LIF före HIV-exponering blev infekterade i lägre grad jämfört 

med obehandlade celler. Vi undersökte också om den signaleringsväg som 

innefattar proteinerna Jak och Stat var viktig i detta sammanhang. Vi fann att 

både LIF och HIV aktiverar denna signalväg, samt att förbehandling av cellerna 

med LIF ledde till minskad HIV-aktivering av Jak/Stat signalvägen. Därnäst 

behandlade vi cellerna med preparat som blockerar denna signalväg och fann 

att de inte blev infekterade i samma grad som de obehandlade cellerna. Vi drog 

då slutsatsen att Jak/Stat är viktig för HIV-replikation och att LIF interfererar med 

HIVs förmåga att aktivera Jak/Stat signalvägen.  

Sammantaget tyder dessa resultat på att LIF uttrycks/utsöndras i den tidiga 

fasen av HIV och därför kan vara en av många proteiner som tillsammans utgör 

det naturliga medfödda immunförsvaret. LIF verkar både ha en positiv och en 

negativ roll i immunförsvaret mot HIV. När HIV infektionen redan är etablerad 

har LIF förmodligen en negativ inverkan genom att aktivera replikation av HIV, 

men om LIF finns där innan HIV-infektion kan LIF förhindra upptag av HIV samt 

blockera virus-replikation via störning av HIVs förmåga att aktivera Jak/Stat 

signalvägen. Vi hoppas därför att LIF ska kunna fungera som en microbicid. 

Microbicider är ett samlingsnamn för produkter såsom geler, krämer och 

suppositorium som utvecklats för att förhindra lokal överföring av HIV och andra 
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sexuellt överförbara sjukdomar när de appliceras i vagina eller ändtarm. Det 

råder stort hopp om att microbicider ska bli tillgängliga för individer i områden 

där HIV-infektion är vanligt förekommande.  

Det skulle dessutom vara intressant att undersöka exakt var och när under HIVs 

replikationscykel som Jak/Stat signalvägen är viktig. Detta skulle 

förhoppningsvis kunna leda till att man hittar nya angreppspunkter för HIV-

behandling.  
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