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Abstract

We investigate the farsighted stable set in a class of strategic games with domi-
nant punishment strategies. In this class of games, each player has a strategy that
uniformly minimizes the other players’ payoffs for any given strategies of other
players. We particularly investigate a special class of the farsighted stable sets
each of which consists of strategy profiles yielding a single payoff vector. We call
such farsighted stable sets as the single-payoff farsighted stable sets. We propose
a concept called the inclusive set that completely characterizes the single-payoff
farsighted stable sets in the strategic games with dominant punishment strategies.
We also show that the set of payoff vectors yielded by the single-payoff farsighted
stable sets is closely related to the strict α-core in strategic games. Further, we
apply the results to the strategic games where each player has two strategies and
strategic games associated with some market models.
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1 Introduction

The first solution concept in games with coalitional behavior is the stable set (von Neu-

mann and Morgenstern, 1944), the definition of which is based on the dominance relation

among the outcomes. Harsanyi (1974) argued the importance of taking the farsighted-

ness of players into account in view of the underlying bargaining process for the stable

set. He proposed the indirect dominance relation that incorporates the farsightedness

of the players. Later, Chwe (1994) formulated the indirect dominance relation and the

farsighted stable set in abstract games. His farsighted stable set can be applied to

strategic games by employing the coalitional or individual contingent threats situation

by Greenberg (1990).

Thereafter, the farsighted stable set has been investigated in various strategic games

associated with economic situations. For example, Masuda (2002) for the average return

game of a production economy; Suzuki and Muto (2005) and Nakanishi (2009) for the

prisoners’ dilemma game with and without coalitional deviation, respectively; Kawasaki

and Muto (2009) for the indivisible public good provision game, Kamijo and Muto

(2010) for cartel formation game; Shino and Kawasaki (2012) for the Hotelling’s location

game; Kawasaki, et al. (2015) for the tariff game, among others.1 In the most of these

literature, the farsighted stable sets each of which yields a single payoff vector were

well-investigated and shown to have nice properties. We will refer such a farsighted

stable set as the single-payoff farsighted stable set. The single-payoff farsighted stable

set also has a nice property from the theoretical aspect. Dutta and Vohra (2016) defined

the farsighted stable set with rational expectations and showed the equivalence to the

farsighted stable set if both are single-payoff sets2.

This paper characterizes the single-payoff farsighted stable set in a general class of

strategic games, called the class of strategic games with dominant punishment strategies.

1The farsighted stable set is also applied to the problems in other forms. For example, Diamantoudi
and Xue (2003) for the hedonic coalition formation problem; Diamantoudi (2005) for the cartel for-
mation problem; Diamantoudi and Sartzetakis (2015) and Benchekroun and Chaudhuri (2015) for the
international environmental agreement formation problems; Page and Wooders (2009) for the network
formation problem; Kawasaki (2010) and Klaus, et al. (2010) for the exchange economy with indivisible
goods under the weak and strong dominance relations, respectively; Klaus, et al. (2011) for the room-
mate problem; Mouleon, et al. (2011) for the two-sided matching markets, and it is extended to a more
general setting by Roketskiy (2012), among others.

2Dutta and Vohra (2016) defined the farsighted stable set with rational expectations for more abstract
games that includes not only the strategic games but also coalitional games and other forms. We can
apply their result to the strategic games and the farsighted stable set due to Chwe (1994).
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The dominant punishment strategy was formulated by Nakayama (1998). In words, a

strategy of a player is called the dominant punishment strategy of that player (against

the other players) if it uniformly minimizes the other players’ payoffs with irrespective

to the strategy choices of other players. The class of strategic games with dominant

punishment strategies includes various games. Indeed, some of the strategic games and

those appropriately associated with the problems in the previously introduced literature

are included. The strategic games with monotone externalities3 and the strategic games

with punishment dominance relation (Masuzawa, 2003) are also the strategic games with

dominant punishment strategies if the strategy sets are compact. See Nakayama (1998)

for more examples.

The main result of this paper is summarized as follows. In a strategic game with

dominant punishment strategies, the set of strategy profiles yielding a single payoff

vector is a single-payoff farsighted stable set if and only if the set satisfies a condition

that will be called the inclusiveness. The dominant punishment strategies are exploited

to obtain the sufficiency of this equivalence, while the necessity can be shown without

the dominant punishment strategies. Also, we will show that the set of the yielded payoff

vectors by the inclusive sets is closely related to the strict α-core. Further, we will apply

these results for the strategic games where each player has two strategies and strategic

games associated with a pure exchange economy and a many-to-many matching problem

with substitutable preferences, respectively.

The single-payoff farsighted stable set is also investigated in coalitional games. Béal,

et al. (2008) showed the following interesting, but problematic result under a very mild

condition4. In the TU coalitional games, any singleton consisting of an imputation not

in the interior of the core is a farsighted stable set. Ray and Vohra (2015a) pointed out

that this result is due to the unreasonable coalitional sovereignty in the definition of the

indirect dominance relation. To resolve this problem, Ray and Vohra (2015a) introduced

the effectivity of the coalitions to describe explicitly what outcomes a coalition can

induce from a given outcome in coalitional games, which is a missed argument from

Harsanyi’s (1974) indirect dominance relation. Recently, Chander (2015) introduced a

similar indirect dominance relation to the partition function games.

3For example, Milgrom and Roberts (1990, 1996) considered the subclass of the games with strategic
complementarities that also has this property.

4For the NTU coalitional game, Bhattacharya and Brosi (2011) showed the existence of the farsighted
stable set but did not argue its characteristics explicitly.
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Under the new indirect dominance relation, Ray and Vohra (2015a) showed that the

single-payoff farsighted stable set is equivalent to the separable payoff vector, which is

closely related to the coalition structure core of the coalitional game. Also, Chander

(2015) showed that the union of the single-payoff farsighted stable sets is equivalent to

the strong-core. Further, he showed that they lie between the γ-core and the δ-core

in the partition function game with positive or negative externalities. The main result

of this paper is a counterpart of these results in the strategic game. In particular, our

result is closely related to that of Ray and Vohra (2015a) as the inclusive set is a close,

but slightly different concept from the separable payoff, which will be discussed in the

later section.

Another related result is Corollary 1 by Kawasaki (2015). He showed a similar

characterization of the single-payoff farsighted stable set in two-player strategic games

where the minimax payoff coincides with the maxmin payoff for both players. He also

showed that this condition is not sufficient when there are three players. In the strategic

game with dominant punishment strategies, the coincidence of the minimax payoff and

the maximin payoff of each player is guaranteed since the α- and β-coalitional games

coincide with each other. (Nakayama, 1998.) Our result requires a stronger condition

than that of Kawasaki (2015) but applies to n-player games.

The remaining of this paper is organized as follows. In the next section, we introduce

some basic definitions. In section 3, we define two important concepts, the single-payoff

farsighted stable set and the inclusive set. The main results are stated and proved in

section 4. We apply our main results for the strategic game where each player has two

strategies and strategic games associated with certain market models in section 5 and

6, respectively. In the final section, we conclude with a remark.

2 Preliminaries

The following notations are used throughout this paper. For any pair of real vectors

x, y ∈ Rℓ, we denote x = y iff xi = yi for all i = 1, ..., ℓ; x ≥ y iff xi ≥ yi for all

i = 1, ..., ℓ; and x > y iff xi > yi for all i = 1, ..., ℓ, respectively. For each finite set A, let

|A| denote the cardinality of A and 2A denote the power set of A, respectively.

A strategic game is defined by a tuple G = (N, (Xi)i∈N , (vi)i∈N), where N = {1, ..., n}
is the set of players, Xi is the set of strategies for each i ∈ N , and vi :

∏
i∈N Xi → R is
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the payoff function of each i ∈ N . A nonempty subset of N is called a coalition. Let

N = 2N \ {∅} denote the set of coalitions. For each S ∈ N , we denote XS =
∏

i∈S Xi.

For the simplicity, we denote X = XN and X−i = XN\{i} for each i ∈ N . Similarly,

for each S ∈ N , i ∈ N , and x ∈ X, we denote vS(x) = (vi(x))i∈S, v(x) = vN(x), and

v−i(x) = vN\{i}(x). Further, for each S ∈ N \ {N}, i ∈ N , and x ∈ X, we denote

xS = (xi)i∈S and x−i = xN\{i}.

In a strategic game G, x ∈ X is said to be (Pareto) efficient iff there exists no y ∈ X

such that v(y) ≥ v(x) and v(y) ̸= v(x); x ∈ X is said to be weakly (Pareto) efficient iff

there exists no y ∈ X such that v(y) > v(x).

The following concept formulated by Nakayama (1998) and its strict modification

will play important roles in this paper.

Definition 1 Let G be a strategic game and i ∈ N .

• A strategy di ∈ Xi is said to be a dominant punishment strategy of i (against

N \ {i}) iff for any xi ∈ Xi and any x−i ∈ X−i, v−i(x) ≥ v−i(di, x−i).

• We say the dominant punishment strategy di of i is strict if for any xi ∈ Xi \ {di}
and any x−i ∈ X−i, v−i(x) > v−i(di, x−i).

We say a strategic game G is a strategic game with dominant punishment strategies

iff there exists the dominant punishment strategy of each i ∈ N . Similarly, G is a

strategic game with strictly dominant punishment strategies iff there exists the strictly

dominant punishment strategy of each i ∈ N .

Following Aumann and Peleg (1960), we define the α-coalitional game associated

with a strategic game. In what follows, we denote uS = (ui)i∈S for each S ∈ N and

u ∈ Rn. Given a strategic game G = (N, (Xi)i∈N , (vi)i∈N), the α-coalitional game

associated with G is defined by Γ =
(
N, V G

α

)
, where V G

α : N ↠ Rn is a characteristic

correspondence such that for each S ∈ N ,

V G
α (S) =

{∪
xS∈XS

∩
zN\S∈XN\S

{
u ∈ Rn|uS ≤ vS

(
xS, zN\S

)}
if S ̸= N ;∪

x∈X {u ∈ Rn|u ≤ v(x)} if S = N.

Let G be a strategic game, Γ be the α-coalitional game associated with G, and u ∈ Rn

be a payoff vector. In Γ, u is said to be (Pareto) efficient iff u ∈ V G
α (N) and there exists

no u′ ∈ V G
α (N) such that u′ ≥ u and u ̸= u′; u is said to be weakly (Pareto) efficient iff
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u ∈ V G
α (N) and there exists no u′ ∈ V G

α (N) such that u′ > u. Further, u is said to be

in the strict α-core of G iff u ∈ V G
α (N) and there exists no S ∈ N and u′ ∈ V G

α (S) such

that u′
S ≥ uS and u′

S ̸= uS; u is said to be in the relative interior of the strict α-core of

G iff u is in the strict α-core and u /∈ V G
α (S) for all S ∈ N \ {N}. Note that any payoff

vector in the strict α-core is efficient by definition.

Remark 1 We summarize the following well-known properties of the α-coalitional game

Γ associated with a strategic game G.

(a) Γ satisfies the superadditivity, that is, V G
α (S) ∩ V G

α (T ) ⊂ V G
α (S ∪ T ) for any

S, T ∈ N with S ∩ T = ∅. To see this, let S, T ∈ N with S ∩ T = ∅ and u ∈
V G
α (S) ∩ V G

α (T ). Then, there exist xS ∈ XS and xT ∈ XT such that uS ≤ vS(xS, zN\S)

for any zN\S ∈ XN\S and uT ≤ vT (xT , zN\T ) for any zN\T ∈ XN\T . By S ∩ T = ∅,
uS ≤ vS(xS∪T , zN\(S∪T )) and uT ≤ vT (xS∪T , zN\(S∪T )) for any zN\(S∪T ) ∈ XN\(S∪T ).

Hence, u ∈ V G
α (S ∪ T ). In particular,

∩
S∈P V G

α (S) ⊂ V G
α (N) for all partition P of N .

(b) If u ∈ Rn is efficient in Γ, then there exists some x ∈ X such that u = v(x).

To see this, let u ∈ Rn be an efficient payoff vector in Γ. By u ∈ V G
α (N), there exists

some x̂ ∈ X such that u ≤ v(x̂). The equality must hold by the efficiency of u and

v(x̂) ∈ V G
α (N). On the other hand, this statement may fail for the weakly efficient

payoff vector.

3 The farsighted stable set and the inclusive set

We introduce the concept of (coalitionally) farsighted stable set in strategic games due

to Chwe (1994). We begin with defining the inducibility and the indirect dominance

relation between two strategy profiles. Let x, y ∈ X and S ∈ N . We say y is inducible

from x via S, denoted by x →S y, iff xN\S = yN\S. We say y indirectly dominates x,

denoted by y ≻ x, iff there exist a sequence of strategy profiles z0, ..., zm with z0 = x and

zm = y, and a sequence of coalitions S1, ..., Sm such that for all h = 1, ...,m, zh−1 →Sh zh

and vSh(y) > vSh(zh−1).

In this paper, we will concentrate on a special class of the farsighted stable set, called

the single-payoff farsighted stable set. Define [x] = {y ∈ X|v(y) = v(x)} for any x ∈ X

that will be sometimes called single-payoff strategy set.

Definition 2 Let G be a strategic game.
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• We say K ⊂ X is a farsighted stable set (FSS) in G iff K satisfies the following

two stabilities:

Internal stability: for any x, y ∈ K, x ≻ y does not hold;

External stability: for any x ∈ X \K, there exists some y ∈ K such that y ≻ x.

• We say K is a single-payoff farsighted stable set (SP-FSS) in G iff K is a FSS

and K = [x] for some x ∈ X.

In coalitional games, Ray and Vohra (2015a) showed that the set of outcomes yielding

a single payoff vector is a SP-FSS defined by their indirect dominance relation if and

only if the payoff vector is separable. Here, we give the definition of the separable payoff

vector in terms of the α-coalitional game. Let Γ = (N, V G
α ) be an α-coalitional game

associated with a strategic game G. A payoff vector u ∈ Rn is said to be separable in

Γ iff (i) u is efficient in Γ;5 (ii) for any T ∈ N \ {N} and any partition P(T ) of T ,

if u ∈ V G
α (T ′) for all T ′ ∈ P(T ), there exists some nonempty S ⊂ N \ T such that

u ∈ V G
α (S). We introduce a corresponding concept for the single-payoff strategy set,

called the inclusive set.

Definition 3 Let G be a strategic game and x ∈ X. We say [x] is an inclusive set in G

iff for any S ∈ N and any yS ∈ XS, vS(yS, zN\S) ≥ vS(x) for any zN\S ∈ XN\S implies

yS = x′
S for some x′ ∈ [x].

Given x ∈ X, a single-payoff strategy set [x] is called an inclusive set if it includes

any strategy profile such that a coalition can guarantee for themselves the payoffs at

x by taking the part of the strategy profile. The definition of the inclusive set can be

restated as follows in a strategic game with dominant punishment strategies.

Remark 2 Let G be a strategic game with dominant punishment strategies and x ∈ X.

For each i ∈ N , let di denote the dominant punishment strategy of i. We say [x] is an

inclusive set in G iff for any S ∈ N and any yS ∈ XS, vS
(
yS, dN\S

)
≥ vS(x) implies

yS = x′
S for some x′ ∈ [x].

5In Ray and Vohra (2015a), the definition of the efficiency of a payoff vector in a (possibly not
superadditive) coalitional game (N,V ) is slightly different from ours as follows: u is efficient iff u ∈∩

S∈P V (S) for some partition P of N and there exists no partition P ′ of N and u′ ∈
∩

S∈P′ V (S) such
that u′ ≥ u and u′ ̸= u. This definition is equivalent to that in the present paper for the α-coalitional
games by its generic superadditivity as mentioned in Remark 1(a).
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Ray and Vohra (2015a) argued the close relationship between the separable payoff

vectors and the coalition structure core in coalitional games. We show that the inclusive

set also has a close relationship with the strict α-core in strategic games.

Proposition 1 Let G be a strategic game and x ∈ X.

(a) If v(x) is in the relative interior of the strict α-core of G, then [x] is an inclusive

set in G.

(b) If [x] is an inclusive set in G, then v(x) is in the strict α-core of G.

Proof. Let Γ =
(
N, V G

α

)
be the α-coalitional game associated with a strategic game G

and x ∈ X.

(a) Assume that v(x) is in the relative interior of the strict α-core of G. By the

efficiency of v(x), v(y) ≥ v(x) implies v(y) = v(x) and y ∈ [x] for any y ∈ X. By

v(x) /∈ V G
α (S) for any S ∈ N \ {N}, there exists no T ∈ N \ {N} and yT ∈ XT such

that vT (yT , zN\T ) ≥ vT (x) for any zN\T ∈ XN\T at all. Thus, [x] is an inclusive set in G.

(b) Assume that [x] is an inclusive set in G. Suppose that v(x) is not in the strict

α-core of G. Then, there exist some S ∈ N and u′ ∈ V G
α (S) such that u′

S ≥ vS(x)

and u′
S ̸= vS(x). Let j ∈ S such that u′

j > vj(x). By u′ ∈ V G
α (S), there exists some

yS ∈ XS such that vS
(
yS, zN\S

)
≥ u′

S for any zN\S ∈ XN\S. Thus, for any zN\S ∈ XN\S,

vj
(
yS, zN\S

)
≥ u′

j > vj(x). Hence,
(
yS, zN\S

)
/∈ [x] for any zN\S ∈ XN\S, contradicting

that [x] is an inclusive set. ■

Therefore, the union of the payoff vectors yielded by the inclusive sets is very close to

the strict α-core. We also point out that the inclusive sets in a strategic game is related

to the separable payoff vectors by Ray and Vohra (2015a) in the associated α-coalitional

game.

Proposition 2 Let G be a strategic game, Γ be the α-coalitional game associated with

G, and x ∈ X. If u = v(x) is separable in Γ, then [x] is an inclusive set in G.

Proof. Let G be a strategic game, Γ be the α-coalitional game associated with G, and

x ∈ X. Assume that u = v(x) is separable in Γ.

Fix arbitrary S1 ∈ N and x∗
S1

∈ XS1 such that vS1(x
∗
S1
, zN\S1) ≥ uS1 for any zN\S1 ∈

XN\S1 . Then, u ∈ V G
α (S1). If S1 = N , then v(x∗) = u follows from the efficiency of u,

and thus x∗ ∈ [x]. Therefore, assume that S1 ̸= N .
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Since u is separable in Γ, there exist some S2 ∈ N such that S2 ⊂ N \ S1 and

u ∈ V G
α (S2), and some S3 ∈ N such that S3 ⊂ N \ (S1 ∪ S2) and u ∈ V G

α (S3), and

so on. Eventually, there exists a partition {S1, ..., Sk} of N such that u ∈ V G
α (Sh) for

all h = 1, ..., k. Then, for each h = 2, ..., k, there exists some x∗
Sh

∈ XSh
such that

vSh
(x∗

Sh
, zN\Sh

) ≥ uSh
for any zN\Sh

∈ XN\Sh
. Therefore, v(x∗) ≥ u. By the efficiency of

u, v(x∗) = u. Thus, x∗ ∈ [x], and [x] is an inclusive set in G. ■

Note that neither Proposition 1 nor 2 requires the dominant punishment strategies.

On the other hand, the converse of Proposition 2 does not hold even in a strategic game

with dominant punishment strategies. We show this fact by employing the lumpy public

good game due to Taylor (1987), the FSS of which was investigated by Kawasaki and

Muto (2009).

The lumpy public good game is a strategic game, where Xi = {C,D} for all i ∈ N

and the payoff functions are defined as follows. Let g : {C,D} × {0, ..., n− 1} → R be

a function such that

g(C, h) =

{
B −K if h ≥ r∗ − 1;

−K if h < r∗ − 1;

g(D, h) =

{
B if h ≥ r∗;

0 if h < r∗,

where 0 < K < B and r∗ = 1, ..., n− 1 is a constant. Then,

vi(x) =

{
g(C, |C(x)| − 1) if xi = C;

g(D, |C(x)|) if xi = D,

where C(x) = {i ∈ N |xi = C}. Note that D is the dominant punishment strategy of

each player.

Define x∗ ∈ X be a strategy profile such that x∗
i = C for all i = 1, ..., r∗ and x∗

i = D

for all i = r∗ + 1, ..., n. It can be easily confirmed that [x∗] = {x∗} is an inclusive set.

Note that vi(x
∗) = B−K for all i = 1, ..., r∗ and vi(x

∗) = B for all i = r∗ +1, ..., n. Let

R∗ = {1, ..., r∗}. Then, v(x∗) ∈ V G
α (R∗), but v(x∗) /∈ V G

α (S) for all nonempty S ⊂ N \R∗

since either the payoffs of at least r∗ members in S are at most B −K (when |S| ≥ r∗)

or any member in S obtains at most the payoff 0 (when |S| < r∗), while vi(x
∗) = B for

all i ∈ N \R∗. Hence, v(x∗) is not separable.

In some strategic games, on the other hand, any inclusive set turns out to be a

separable payoff vectors in the associated α-coalitional games. We will discuss this
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point later in Section 6.

4 Main results

In this section, we state and prove the main results.

Theorem 1 Let G be a strategic game with dominant punishment strategies and x ∈ X.

In G, if [x] is an inclusive set, then [x] is a SP-FSS.

Proof. Let G be a strategic game with dominant punishment strategies and di denote

the dominant punishment strategy of each i ∈ N . Fix an arbitrary x ∈ X. Assume that

[x] is an inclusive set. Note that x is efficient in G by Proposition 1(b).

Claim 1 [x] satisfies the internal stability.

Proof of Claim 1. Fix arbitrary y, y′ ∈ [x]. Suppose that y ≻ y′. Then, there exist

sequences of strategy profiles z0(= y′), ..., zm(= y) and coalitions S1, ..., Sm such that

for each h = 1, ...,m, zh−1 →Sh zh and vSh

(
zh−1

)
< vSh(y). However, constructing such

sequences is impossible by v(y′) = v(z0) = v(y). Hence, y ≻ y′ is impossible. □

We turn to the proof of the external stability of [x]. For any x′ ∈ X, define

L(x′, x) = {i ∈ N |vi(x′) < vi(x)} .

Claim 2 For any x′ ∈ X, L(x′, x) = ∅ if and only if x′ ∈ [x].

Proof of Claim 2. Fix an arbitrary x′ ∈ X. First, assume that L(x′, x) = ∅. Then,

v(x′) ≥ v(x). By the efficiency of x, v(x′) = v(x). Thus, x′ ∈ [x].

Next, assume that L(x′, x) ̸= ∅. Then, there exists some j ∈ N such that vj(x
′) <

vj(x). Thus, x
′ /∈ [x]. □

Fix an arbitrary y ∈ X \ [x]. We construct a sequence of strategy profiles and

a sequence of coalitions that consist an indirect dominance relation x′ ≻ y for some

x′ ∈ [x]. Define z0 = y and

Sh =
{
i ∈ L(zh−1, x)|zh−1

i ̸= di
}
;

zh =
(
dSh , zh−1

N\Sh

)
10



for each h = 1, ...m iteratively as long as Sh ̸= ∅. Thus, m is the maximum natural

number such that Sm ̸= ∅. Note that if S1 = ∅, then m = 0.

We confirm that such a finite m exists. Suppose that Sh ̸= ∅ for any natural number

h. For any h, if i ∈ Sh, then zh
′−1

i = di and i /∈ Sh′
for all h′ > h. Thus, Sh ∩ Sh′

= ∅
for any different h and h′. This means that the number of players taking the dominant

punishment strategies at zh monotonically increases as h increases. This contradicts the

finiteness of N . Thus, there exists the maximum m such that Sm ̸= ∅.

Claim 3 (i) If zm ∈ [x], then zm ≻ y.

(ii) If zm /∈ [x] and there exist some Ŝ ∈ N and ẑ ∈ [x] such that zm →Ŝ ẑ and

vŜ(z
m) < vŜ(ẑ), then ẑ ≻ y.

Proof of Claim 3. For each h = 1, ...,m, zh−1 →Sh zh since zhi ̸= zh−1
i implies i ∈ Sh

for each i ∈ N . For each h = 1, ...,m, we have vSh(x) > vSh(zh−1) by Sh ⊂ L(zh−1, x).

By these observations, (i) if zm ∈ [x], then the sequences z0(= y), ..., zm(∈ [x]) and

S1, ..., Sm consist an indirect dominance relation zm ≻ y; (ii) if zm /∈ [x] and there exist

some Ŝ ∈ N and ẑ ∈ [x] such that zm →Ŝ ẑ and vŜ(z
m) < vŜ(ẑ), then the sequences

z0(= y), ..., zm, ẑ(∈ [x]) and S1, ..., Sm, Ŝ consist an indirect dominance relation ẑ ≻ y.

□

Assume that L(zm, x) = ∅. Then zm ∈ [x] by Claim 2. Thus, zm ≻ y by Claim 3(i).

Assume that L(zm, x) ̸= ∅. Then, zm /∈ [x] by Claim 2. By the construction of

m, we have zmL(zm,x) = dL(zm,x). First, consider the case where L(zm, x) = N . In this

case, zm →N x and v(zm) < v(x). Thus, x ≻ y by Claim 3(ii). Next, consider the

case where L(zm, x) ̸= N . In this case, vN\L(zm,x)(z
m
N\L(zm,x), dL(zm,x)) ≥ vN\L(zm,x)(x) by

zmL(zm,x) = dL(zm,x). Since [x] is an inclusive set, there exists some x∗ ∈ [x] such that

x∗
N\L(zm,x) = zmN\L(zm,x). Then, zm →L(zm,x) x∗ and vL(zm,x)(x

∗) > vL(zm,x)(z
m). Thus,

x∗ ≻ y by Claim 3(ii), where x∗ ∈ [x]. Hence, [x] is a SP-FSS. ■

Theorem 2 Let G be a strategic game and x ∈ X. In G, if [x] is a SP-FSS, then [x] is

an inclusive set.

Proof. Let G be a strategic game and x ∈ X. We show the contraposition. Assume

that [x] is not an inclusive set in G. Then, there exist some S ∈ N and some yS ∈ XS
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such that vS(yS, zN\S) ≥ vS(x) for any zN\S ∈ XN\S and yS ̸= x′
S for all x′ ∈ [x]. Fix an

arbitrary yN\S ∈ XN\S. Note that vS(y) ≥ vS(x) and y /∈ [x] by the choice of yS.

Suppose that there exists some x′ ∈ [x] such that x′ ≻ y. Then, there exist a

sequence of strategy profiles z0, ..., zm and a sequence of coalitions S1, ..., Sm such that

z0 = y, zm = x′, and for all h = 1, ...,m, zh−1 →Sh zh and vSh(x′) > vSh(zh−1). By

vS(y) ≥ vS(x) = vS(x
′), S ∩ S1 = ∅.

Fix an arbitrary h = 2, ...,m. We claim that if S ∩ Sℓ = ∅ for all ℓ = 1, ..., h − 1,

then S ∩ Sh = ∅. Since S ∩ Sℓ = ∅ for all ℓ = 1, ..., h − 1, zh−1
S = yS. By the choice of

yS, vS(z
h−1) = vS(yS, z

h−1
N\S) ≥ vS(x

′). By vSh(x′) > vSh(zh−1), S ∩ Sh = ∅.
By this mathematical induction, S∩

(∪m
h=1 S

h
)
= ∅. Thus, z0S = zmS . This contradicts

that yS ̸= x′
S. Hence, x̂ ≻ y does not hold for all x̂ ∈ [x], and [x] does not satisfy the

external stability. ■

From Theorem 1 and 2, we obtain the following corollary that completely character-

izes the SP-FSS in strategic games with dominant punishment strategies.

Corollary 1 Let G be a strategic game with dominant punishment strategies and x ∈ X.

In G, [x] is a SP-FSS if and only if [x] is an inclusive set.

Corollary 1 is a counterpart of Theorem 2 by Ray and Vohra (2015a), where the SP-

FSS of the coalitional game defined by their indirect dominance relation is characterized

by the separable payoff vectors. Since the inclusive set is closely related to the strict

α-core, Corollary 1 is also related to the result by Chander (2015) who showed the

equivalence between the SP-FSS and the strong-core in the partition function game.

In the proof of Ray and Vohra (2015a), singleton coalitions play important roles to

construct the indirect dominance relation. Note that the construction of an indirect

dominance relation in the proof of Theorem 1 in the present paper is similar with that

in the proof of Theorem 2 in Ray and Vohra (2015a), though the inclusive set is different

from the separable payoff vector. The dominant punishment strategies play the similar

role with the singleton coalitions in their proof. Further, a similar manner of constructing

the indirect dominance relation in a specific model is also found in the literature, for

example Suzuki and Muto (2005).

Note that the dominant punishment strategies are not required in Theorem 2. On

the other hand, the following example cited from Kawasaki (2015) demonstrates that

the dominant punishment strategies are essential to obtain Theorem 1.
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Example 1 (Kawasaki, 2015, Example 1) Let G be a strategic game where N =

{1, 2, 3} and Xi = {C,D} for each i = 1, 2, 3. The payoffs are defined as follows, where

player 1 chooses rows, player 2 chooses columns, and player 3 chooses matrices.

C D
C 1,1,1 0,5,0 C
D 5,0,0 5,0,0

C D
C 0,0,5 0,5,0 D
D 0,0,5 5,0,0

Player 2 is the only player who does not have the dominant punishment strategy

since v1(D,C,D) = 0 < 5 = v1(D,D,D) and v3(D,C,D) = 5 > 0 = v3(D,D,D),

while D is the dominant punishment strategy of both player 1 and 3. It is easy to see

that (C,C,C) is efficient. It is also easy to see that v ∈ V G
α ({i}) implies vi ≤ 0 for all

i = 1, 2, 3 and v ∈ V G
α ({i, j}) implies either vi ≤ 0 or vj ≤ 0 for all i, j = 1, 2, 3 with

i ̸= j. Thus, [(C,C,C)] = {(C,C,C)} is an inclusive set by Proposition 1(a). However,

Kawasaki (2015) showed that (C,C,C) ≻ (D,C,C) does not hold, and [(C,C,C)] is

not a FSS. Hence, Theorem 1 does not hold even if there is only one player without the

dominant punishment strategy.

The following corollary is obtained from Remark 1(b), Proposition 2, and Corollary

1.

Corollary 2 Let G be a strategic game with dominant punishment strategies and Γ be

the α-coalitional game associated with G. If there exists a separable payoff vector in Γ,

then the SP-FSS exists in G.

In other words, a SP-FSS in the sense of Chwe (1994) exists in a strategic game with

dominant punishment strategies if a SP-FSS in the sense of Ray and Vohra (2015a) exists

in the α-coalitional game associated with the strategic game. However, the SP-FSS may

fail to exist even if the strict α-core is nonempty. To see this, the following result will

be helpful, which strengthens Proposition 1(b) with the strictly dominant punishment

strategies.

Proposition 3 Let G be a strategic game with strictly dominant punishment strategies

and x ∈ X. For each i ∈ N , let di denote the strictly dominant punishment strategy

of i. If [x] is a SP-FSS in G, then (i) v(x) is in the strict α-core of G, and (ii) either

v(x) > v(dN) or v(x) = v(dN).
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Proof. Let G be a strategic game with strictly dominant punishment strategies and

x ∈ X. Let di denote the strictly dominant punishment strategy of each i ∈ N . Assume

that [x] is a SP-FSS in G. Then, [x] is an inclusive set in G by Theorem 2. Proposition

1(b) guarantees (i). For (ii), suppose that v(x) ̸= v(dN) and there exists some i ∈ N

such that vi(x) ≤ vi(dN). Since [x] is an inclusive set, there exists some x′ ∈ [x] such that

x′
i = di. By v(x′) = v(x) ̸= v(dN), x

′
j ̸= dj for some j ̸= i. Then, vi(x

′) > vi(x
′
−j, dj) ≥

vi(dN) ≥ vi(x) = vi(x
′), a contradiction. Hence, x satisfies both (i) and (ii). ■

Proposition 3 says that the inclusive set does not exist if neither v(x) > v(dN) nor

v(x) = v(dN) for any x ∈ X such that v(x) is in the strict α-core when each player has

the strictly dominant punishment strategy. We can easily construct such an example as

follows.

Example 2 Let G be a strategic game where N = {1, 2, 3} and Xi = {C,D} for each

i = 1, 2, 3. The payoffs are defined as follows, where player 1 chooses rows, player 2

chooses columns, and player 3 chooses matrices.

C D
C 2,2,2 1,3,1 C
D 3,1,1 2,2,0

C D
C 1,1,5 0,2,4 D
D 2,0,4 1,1,3

Note that D is the strictly dominant punishment strategy of each player. It is easy

to see that (C,C,D) is the unique strategy profile that yields the payoff vector in the

strict α-core because v(C,C,D) ≥ v(D,D,D) with v3(C,C,D) > v3(D,D,D), and for

any x ∈ X \ {(C,C,D), (D,D,D)}, vj(x) < vj(D,D,D) for at least one j ∈ N . Thus,

for any strategy profile x ∈ X \ {(C,C,D)}, [x] is not an inclusive set by Proposition

1(b). However, (C,C,D) does not satisfy (ii) in Proposition 3 by v{1,2}(C,C,D) =

v{1,2}(D,D,D). Thus, [(C,C,D)] is not an inclusive set. Hence, the inclusive set does

not exist in this example.

The converse of Proposition 3 does not hold in general. We show it by another

example.

Example 3 Let G be a strategic game such that N = {1, 2}, Xi = [0, 1 − ε] for each

i = 1, 2, where ε > 0 is a sufficiently small real number, and vi(x) = (1−xi)(x1+x2) for

each i = 1, 2. It is easy to see that di = 0 is the strictly dominant punishment strategy of
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each i = 1, 2. Note that this is the most simple case of the voluntary contribution game

of a public good with a slight modification to make 0 the strictly dominant punishment

strategy.

By a straightforward calculation, it is easy to see that payoff vector (1/4, 3/4) >

(0, 0) = v(dN) is in the strict α-core that is solely yielded by x∗ = (3/4, 1/4). Thus, x∗

satisfies (i) and (ii) in Proposition 3 and [x∗] = {x∗}. However, player 1 can guarantee

the payoff 1/4 for herself by taking strategy y1 = 1/2 even if player 2 takes 0. Thus, [x∗]

is not an inclusive set in G. By Theorem 2, [x∗] is neither a SP-FSS in G.

On the other hand, we can obtain the converse of Proposition 3 in a special subclass

of the strategic games with strictly dominant punishment strategy. We show this fact

in the next section.

5 Binary games

We say a strategic game is binary when every player has two strategies. Such a game

often describes a situation where the players are facing to decide whether they participate

or not to an institution, an agreement, or a mechanism. A typical example is the cartel

formation problem due to d’Aspremont, et al. (1983)6. In this situation, the players

decide their strategies with foreseeing the outcome of the subsequent market stage that

varies according to the formed cartel in the current cartel formation stage, as pointed out

by Diamantoudi (2005). Therefore, the players are at least implicitly assumed farsighted,

and it seems consistent that the players also foresee the reaction by the other players

after changing their own decision in the cartel formation stage. In this sense, the binary

game is a nice application to consider the FSS.

Formally, a strategic game G = (N, (Xi)i∈N , (vi)i∈N) is a binary game if Xi = {C,D}
for all i ∈ N . Without loss of generality, we may assume that D is the (strictly)

dominant punishment strategy of each i ∈ N if a binary game G is a strategic game

with (strictly) dominant punishment strategies. Throughout this section, denote C(x) =

{i ∈ N |xi = C} for all x ∈ X; for all S ∈ N , denote CS = xS such that xi = C for all

i ∈ S and DS = xS such that xi = D for all i ∈ S. The following result strengthens

Proposition 3 for binary games.

6d’Aspremont, et al. (1983) formulated the problem in an abstract model. Later, Kamijo and Muto
(2010) reformulated it to the strategic game and investigated the FSS in the sense of Chwe (1994) in it.
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Proposition 4 Let G be a binary game with strictly dominant punishment strategies

and x ∈ X. In G, [x] is a SP-FSS if and only if (i) x is efficient, and (ii) either

v(x) > v(DN) or v(x) = v(DN).

Proof. Let G be a binary game with strictly dominant punishment strategies and

x ∈ X. The necessity follows from Proposition 3 and the efficiency of the strict α-core.

For the sufficiency, it suffices to show that [x] is an inclusive set if x satisfies (i) and (ii)

by Theorem 1.

Assume that x satisfies (i) and (ii). Suppose that [x] is not an inclusive set. Then,

there exist some S ∈ N and yS ∈ XS such that vS
(
yS, DN\S

)
≥ vS(x) and yS ̸= x′

S for

all x′ ∈ [x]. By (i), S ̸= N .

First, consider the case where v(x) = v(DN). Then, DN ∈ [x]. By yS ̸= DS,

vN\S
(
yS, DN\S

)
> vN\S(DN) = vN\S(x). This contradicts (i) by vS

(
yS, DN\S

)
≥ vS(x)

and S ̸= N .

Next, consider the case where v(x) > v(DN). Note that C(x) ̸= ∅ in this case. By

vS(yS, DN\S) ≥ vS(x) > vS(DN), yi = C for some i ∈ S. Denote T = C
(
yS, DN\S

)
̸= ∅.

Note that T ⊂ S, and thus vT
(
yS, DN\S

)
≥ vT (x). If T = C(x), then yS = xS,

contradicting the choice of yS. Thus, T ̸= C(x). If T ⊂ C(x), then vT
(
yS, DN\S

)
<

vT (x), contradicting vT (yS, DN\S) ≥ vT (x). Therefore, assume that T \C(x) ̸= ∅. Then,

vC(x)

(
CT∪C(x), DN\(T∪C(x))

)
> vC(x)(x);

vN\(T∪C(x))

(
CT∪C(x), DN\(T∪C(x))

)
> vN\(T∪C(x))(x).

Further, by T \ C(x) ⊂ T ⊂ T ∪ C(x) and vT
(
yS, DN\S

)
≥ vT (x),

vT\C(x)

(
CT∪C(x), DN\(T∪C(x))

)
≥ vT\C(x)

(
yS, DN\S

)
≥ vT\C(x)(x).

These three inequalities contradict (i) by C(x) ̸= ∅. Hence, [x] is an inclusive set in G.

■

By the finiteness of X, we immediately obtain the following corollary from Proposi-

tion 4.

Corollary 3 In a binary game with strictly dominant punishment strategies G, a SP-

FSS exists if and only if DN is efficient or not weakly efficient.
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Therefore, it suffices to check the (weak) efficiency of DN for the existence of SP-FSS in a

binary game with strictly dominant punishment strategies. Indeed, Example 2 appeared

in Section 4 is an example such that DN is weakly efficient, but not efficient. The

following two examples show that the strictness of the dominant punishment strategies

is essential for both the sufficiency and the necessity in Proposition 4.

Example 4 Let G be a strategic game where N = {1, 2, 3} and Xi = {C,D} for each

i = 1, 2, 3. The payoffs are defined as follows, where player 1 chooses rows, player 2

chooses columns, and player 3 chooses matrices.

C D
C 3,3,0 3,3,0 C
D 3,3,0 1,1,0

C D
C 3,3,1 3,3,0 D
D 3,3,0 0,0,0

Note that D is the dominant punishment strategy of each player, but none of which

is strict. In this game, v(C,C,D) = (3, 3, 1) > (0, 0, 0) = v(D,D,D) and (C,C,D) is

efficient. Also, [(C,C,D)] = {(C,C,D)}. However [(C,C,D)] is not an inclusive set in

G because {1, 2} can guarantee payoffs (3, 3) for themselves by taking (C,D) and (D,C)

even if player 3 takes D. Hence, the sufficiency of Proposition 4 may not hold without

the strictly dominant punishment strategies.

Example 5 Let G be a strategic game where N = {1, 2, 3} and Xi = {C,D} for each

i = 1, 2, 3. The payoffs are defined as follows, where player 1 chooses rows, player 2

chooses columns, and player 3 chooses matrices.

C D
C 3,3,1 0,4,1 C
D 4,0,1 1,1,0

C D
C 3,3,1 0,4,1 D
D 4,0,1 0,0,1

Note that D is the dominant punishment strategy of each player, but none of which

is strict. We show that [(C,C,C)] = {(C,C,C), (C,C,D)} is an inclusive set. For each

i = 1, 2 and xi ∈ {C,D}, vi(xi, D−i) = 0. For player 3, both C and D take a part of some

strategy profile in [(C,C,C)]. For any x{1,2} ̸= (C,C), vi(x{1,2}, D3) = 0 for at least either

one of i = 1, 2. For each i = 1, 2 and x{i,3} ∈ X{i,3}, vi(x{i,3}, Dj) ≤ 1, where j ̸= i, 3.

Thus, [(C,C,C)] is an inclusive set in G. However, v3(C,C,C) = v3(D,D,D). Hence,
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the necessity of Proposition 4 may not hold without the strictly dominant punishment

strategies.

The n-player prisoners’ dilemma (Okada, 1993) defined as follows is a strategic game

with strictly dominant punishment strategies, in which all the FSS were specified by

Suzuki and Muto (2005).

Let f : {C,D} × {0, ..., n− 1} → R be a function such that (i) both f(C, k) and

f(D, k) are increasing in k; (ii) f(D, k) > f(C, k) for all k = 0, ..., k−1; (iii) f(C, n−1) >

f(D, 0). A binary game G is called the prisoners’ dilemma iff

vi(x) =

{
f(C, |C(x)| − 1) if xi = C;

f(D, |C(x)| if xi = D.

Suzuki and Muto (2005) showed that for any x ∈ X, [x] = {x} is a SP-FSS if and only

if x is efficient and v(x) > v(DN). Proposition 4 in the present paper extends this result

because DN is never efficient in the prisoners’ dilemma.

In the prisoners’ dilemma, Suzuki and Muto (2005) showed that there exists at most

one FSS with multiple payoffs, and it exists only for the degenerate case. On the other

hand, the lumpy public good game appeared in section 3 has a quite different type of

the FSS with multiple payoffs as shown by Kawasaki and Muto (2009). They showed

that there exist an inefficient FSS except for the case where r∗ = n − 1: any x ∈ X

with r∗ ≤ |C(x)| < n is contained in at least one FSS, while x is efficient if and only

if |C(x)| = r∗. This difference shows that we need to exploit the structures of the

strategic games other than the dominant punishment strategies for characterizing the

multiple-payoff FSS, even though the strategic game is binary.

Kamijo and Muto (2010) formulated the cartel formation problem by d’Aspremont,

et al. (1983) in a binary strategic game, where each firm chooses to participate or not

to participate to the cartel, and studied the FSS where coalitional behavior is allowed.

As pointed out by d’Aspremont, et al. (1983), each player may not have the dominant

punishment strategy in such a game. On the other hand, by Donsimoni, et al. (1986), we

can confirm that not to participate becomes the strictly dominant punishment strategy

of each firm in the strategic cartel formation game when the demand function and the

marginal cost function are linear. Similarly, we can derive the binary game with strictly

dominant punishment strategy of each player from the cartel formation problem with

heterogeneous firms by Donsimoni (1985) when the demand and marginal cost functions
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are linear. The heterogeneity of the players may make the problem more complex, but

Proposition 4 says that we only need to check the efficiency and to compare the payoffs

with v(DN) for each strategy profile.

6 Market games

This section considers primitive strategic games naturally associated with some market

models. Some kinds of the stable sets with farsighted players have been well investigated

in market models such as Greenberg, et al. (2002), Kawasaki (2010), Klaus, et al. (2010),

and Mouleon, et al. (2011), among others. The FSS by Ray and Vohra (2015a) also

applies to the market economy models since they are frequently formulated in coalitional

games.

This section particularly considers two types of market models, the pure exchange

economy and the (many-to-many) matching problem. The strategic games associated

with these markets are shown to be those with dominant punishment strategies under

certain conditions, and the results in Section 4 apply. In each strategic game, the “status

quo” strategy becomes the dominant punishment strategies.

6.1 The exchange economy

This subsection considers the strategic game associated with the classical pure exchange

economy (Scarf, 1971). Consider an exchange economy with m commodities. Let N =

{1, ..., n} denote the set of agents (players). The preference relation of each i ∈ N is

represented by a utility function ui : Rm
+ → R. Each i ∈ N is endowed with ωi ∈ Rm

+\{0}.
Let E = (N, (ui)i∈N , (ω)i∈N) denote an exchange economy.

Throughout this subsection, we assume that ui is continuous on Rm
+ ; monotonically

increasing, i.e. for any x, x′ ∈ Rm
+ with x ≥ x′ and x ̸= x′, ui(x) > ui(x

′); strictly

quasi-concave, i.e. for any x, x′ ∈ Rm
+ with ui(x) ≥ ui(x

′) and x ̸= x′, and any θ ∈ R
with 0 < θ < 1, ui(θx+ (1− θ)x′) > ui(x

′) for each i ∈ N .

In an exchange economy E, an n-tuple of consumption bundles a = (a1, ..., an) ∈ Rnm
+

is called an allocation, and a positive m-vector p = (p1, ..., pm) ∈ Rm
++ is called a price. A

pair of a price and an allocation (p∗, a∗) ∈ Rm
++×Rnm

+ is said to be a Walras equilibrium

iff a∗i ∈ argmax{ui(ai)| ai ≥ 0, p∗ · ai ≤ p∗ · ωi} for all i ∈ N and
∑

i∈N a∗i =
∑

i∈N ωi.
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We will employ the following well-known facts, the proofs of which can be found in

standard textbooks such as Mas-colell, et al. (1995).

Remark 3 A Walras equilibrium (p∗, a∗) exists and is Pareto efficient under our condi-

tions, that is, there exists no allocation a such that
∑

i∈N ai ≤
∑

i∈N ωi, ui(a
∗
i ) ≥ ui(ai)

for all i ∈ N , and uj(a
∗
j) > uj(aj) for some j ∈ N .

We introduce a strategic exchange game GE = (N, (Xi)i∈N , (ui)i∈N) associated with

E due to Scarf (1971). The set of players N is identical to the set of agents in E. For

each i ∈ N , define

Xi =

{
xi = (xi1, ..., xin) ∈ Rmn

+

∣∣∣∣ xij = (x1
ij, ..., x

m
ij ),∀j ∈ N ;∑

j∈N xh
ij = ωh

i ,∀h = 1, ...,m.

}
.

For each i, j ∈ N and h = 1, ...,m, xh
ij denotes the amount of h-th commodity that i

gives to j. To define the payoff function, we define an allocation function a : X → Rmn
+

such that a(x) = (a1(x), ..., an(x)) and ai(x) = ωi−
∑

j∈N xij +
∑

j∈N xji for each i ∈ N .

Then, the payoff function vi : X → R is defined by vi(x) = ui(ai(x)) for all i ∈ N and

any x ∈ X.

The following fact follows from the monotonicity of the utility functions, which was

also pointed out by Hirai, et al. (2004).

Remark 4 For each i ∈ N , di = (di1, ..., din) such that

dij =

{
ωi if i = j;

0 otherwise

is the dominant punishment strategy in GE.

Throughout this subsection, we denote di the dominant punishment strategy of each i

described in Remark 4. The strategic exchange game is an example where the inclusive

sets are equivalent to the separable payoffs (Ray and Vohra, 2015) as pointed out in

section 3.

Proposition 5 Let E be an exchange economy, GE be a strategic exchange game asso-

ciated with E, and ΓE be an α-coalitional game associated with GE.

(a) Let (p∗, a∗) be a Walras equilibrium in E and x∗ ∈ X be such that a(x∗) = a∗. Then,

[x∗] is an inclusive set, and thus, [x∗] is a SP-FSS.
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(b) Let x ∈ X. Then, [x] is an inclusive set if and only if v(x) is separable in ΓE.

Proof. Let E be an exchange economy, GE be a strategic exchange game associated

with E, and ΓE be an α-coalitional game associated with GE.

(a) Let (p∗, a∗) be a Walras equilibrium and x∗ ∈ X be such that a(x∗) = a∗. Assume

that there exist some S ∈ N and yS ∈ XS such that vS(yS, dN\S) ≥ vS(x
∗). If S = N ,

then v(y) = v(x∗) follows from the efficiency of the Walras equilibrium, and y ∈ [x∗].

Thus, assume that S ̸= N .

Denote a′ = a(yS, dN\S). Note that
∑

i∈S a
′
i ≤

∑
i∈S ωi since dji = 0 for all j ∈ N \S

and all i ∈ S. We claim that the equality holds. Suppose that
∑

i∈S a
′
i ̸=

∑
i∈S ωi. Then,

there exists some ŷS ∈ XS such that ai(ŷS, dN\S) ≥ a′i for all i ∈ S, and aj(ŷS, dN\S) ̸= a′j

for some j ∈ S. Denote â = a(ŷS, dN\S). Then, ui(âi) ≥ ui(a
′
i) ≥ ui(a

∗
i ) for all i ∈ S,

and uj(âj) > uj(a
′
j) ≥ uj(a

∗
i ) for some j ∈ S. Since a∗i ∈ argmax{ui(ai)| ai ≥ 0, p∗ ·ai ≤

p∗ · ωi} for all i ∈ N , p∗ · âi ≥ p∗ · ωi for all i ∈ S, and p∗ · âj > p∗ · ωj for some j ∈ S.

Thus, p∗ ·
∑

i∈S âi > p∗ ·
∑

i∈S ωi. By p∗ > 0,
∑

i∈S âi ≤
∑

i∈S ωi does not hold. This

contradicts that dji = 0 for all j ∈ N \ S and i ∈ S. Thus,
∑

i∈S a
′
i =

∑
i∈S ωi. Note

that this implies that yij = 0 for all i ∈ S and all j ∈ N \ S since a′i = ai(yS, dN\S) for

all i ∈ S.

Suppose that a′j ̸= a∗j for some j ∈ S. By ui(a
′
i) = vi(yS, dN\S) ≥ vi(x

∗) = ui(a
∗
i ) for

all i ∈ S and a∗i ∈ argmax{ui(ai)| ai ≥ 0, p∗ ·ai ≤ p∗ ·ωi} for all i ∈ N , p∗ ·a′i ≥ p∗ ·ωi for

all i ∈ S. By a′j ̸= a∗j for some j ∈ S and the strict quasi-concavity of uj, p
∗·a′j > p∗·ωj for

some j ∈ S. Thus, p∗ ·
∑

i∈S a
′
i > p∗ ·

∑
i∈S ωi. This contradicts that

∑
i∈S a

′
i =

∑
i∈S ωi.

Thus, a′i = a∗i for all i ∈ S.

Since
∑

i∈S a
′
i =

∑
i∈S ωi and a′i = a∗i for all i ∈ S,

∑
i∈S ωi =

∑
i∈S a

′
i =

∑
i∈S a

∗
i and∑

i∈N\S

a∗i =
∑
i∈N

a∗i −
∑
i∈S

a∗i =
∑
i∈N

ωi −
∑
i∈S

ωi =
∑

i∈N\S

ωi.

Thus, there exists some yN\S ∈ XN\S such that ai(dS, yN\S) = a∗i for all i ∈ N \ S. By

yij = dij = 0 for all i ∈ S and j ∈ N \ S, ai(y) = ai(dS, yN\S) = a∗i for all i ∈ N \ S.

Thus, vN\S(y) = vN\S(x
∗). Then, by vS(y) ≥ vS(yS, dN\S) ≥ vS(x

∗) and the efficiency

of the Walras equilibrium, v(y) = v(x∗). Hence, y ∈ [x∗] and [x∗] is an inclusive set. By

Theorem 1, [x∗] is a SP-FSS.

(b) The sufficiency has already been proved by Proposition 2. For the necessity, fix

an arbitrary x ∈ X such that [x] is an inclusive set. Let a = a(x). By Proposition 1(b)
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and the efficiency of the strict α-core, v(x) is efficient.

Assume that there exist some T and its partition P(T ) such that v(x) ∈ V E
α (S)

for all S ∈ P(T ). Then, for each S ∈ P(T ), there exists some yS ∈ XS such that

vS(yS, dN\S) ≥ vS(x). Let â
S = (yS, dN\S) for each S ∈ P(T ).

Fix an arbitrary Q ∈ P(T ). By Proposition 1(b) and the monotonicity of ui,

vQ(yQ, dN\Q) = vQ(x) and
∑

i∈Q âQi =
∑

i∈Q ωi. Thus, yij = 0 for all i ∈ Q and

j ∈ N \Q. Since this holds for all S ∈ P(T ), yij = 0 for all i ∈ T and j ∈ N \ T .
Since [x] is an inclusive set, there exists some yN\T ∈ XN\T such that v(y) = v(x).

By yij = 0 for all i ∈ T and j ∈ N \ T , ai(y) = ai(dT , yN\T ) for all i ∈ N \ T , and thus,

vN\T (dT , yN\T ) = vN\T (x). Hence, v(x) ∈ V E
α (N \ T ), and v(x) is separable. ■

6.2 The many-to-many matching

This subsection considers a primitive strategic game with dominant punishment strate-

gies associated with a many-to-many matching problem with substitutable preferences.

The (SP-)FSS of the one-to-one and many-to-one matching problem with substitutable

preferences was well-investigated by Mouleon, et al. (2011) who considered a reasonable

definition of the indirect dominance relation. They showed that a singleton of a match-

ing is a FSS in their sense if and only if the matching is a (strong) core matching. Ray

and Vohra (2015a) as well as their Supplementary Note (Ray and Vohra, 2015b) argued

the close relationship between their FSS and the FSS by Mouleon, et al. (2011). Further,

Roketskiy (2012) considered a more general class of matching problems by dropping the

assumption of the substitutable preferences and adding contracts, while he retained the

feature of the indirect dominance relation of Mouleon, et al. (2011).

We investigate the SP-FSS in a primitive strategic game associated with a many-to-

many matching problem. If the preference of each player satisfies the substitutability

assumption, the associated strategic game turns out to be that with dominant punish-

ment strategies. On the other hand, our strategic game excludes the matching that is not

individually rational. By this feature, the SP-FSS in the sense of Chwe (1994) becomes

equivalent to the individually rational core matching, rather than the core matching.

Echenique and Oviedo (2006) showed that the individually rational core matching has

nice properties under a stronger condition than the present paper. They showed that

the individually rational core matching exists and can be found by a certain fixed-points
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algorithm called the T -algorithm if the preferences of the players in one side satisfy the

substitutability and the preferences of the players in the other side satisfy the strong

substitutability.7

We introduce the many-to-many matching model by following Echenique and Oviedo

(2006) with slight modifications. A (many-to-many) matching problem is defined by a

tuple M = (F,W,P ), where F = {f1, ..., fr} is the set of firms, W = {w1, ..., ws} is the

set of workers, and P = (P (f1), ..., P (fr), P (w1), ..., P (ws)) is the preference profile of

F ∪W .

For each f ∈ F , S ∈ 2W is called a set of f ’s partners, and for each w ∈ W , S ∈ 2F

is called a set of w’s partners. The preference relation of each i ∈ F ∪W is a strict and

linear ordering on the set of all sets of i’s partners. For each i ∈ F ∪W and two sets of

i’s partners S, S ′, we denote S P (i) S ′ when i prefers S to S ′, and S R(i) S ′ when either

S P (i) S ′ or S = S ′. For each i ∈ F ∪W and a set of i’s partners S, let Chi(S) denote

the most preferable subset of S for i that is called the choice set of S for i. Therefore,

Chi(S) R(i) S ′ for all S ′ ⊂ S. For each i ∈ F ∪W , the preference relation P (i) is said

to be substitutable iff j ∈ Chi(S
′ ∪ {j}) implies j ∈ Chi(S ∪ {j}) for any i’s partner j

and two sets of i’s partners S, S ′ such that S ⊂ S ′. A matching problem M is said to be

a matching problem with substitutability iff the preference relation of any i ∈ F ∪W is

substitutable.

A (many-to-many) matching in M is a mapping µ : F ∪W → 2F ∪2W , where for any

f ∈ F and w ∈ W , (i) µ(f) ∈ 2W ; (ii) µ(w) ∈ 2F ; (iii) f ∈ µ(w) if and only if w ∈ µ(f).

In M , a matching µ is said to be individually rational iff µ(i) = Chi(µ(i)) for all i ∈ N .

Given a matching µ, a block of µ is a tuple (F ′,W ′, µ′) where F ′ ⊂ F , W ′ ⊂ W , and µ′

is a matching such that (i) F ′ ∪ W ′ ̸= ∅; (ii) µ′(i) ⊂ F ′ ∪ W ′ for all i ∈ F ′ ∪ W ′; (iii)

µ′(i) R(i) µ(i) for all i ∈ F ′ ∪ W ′; (iv) µ′(i) P (i) µ(i) for some i ∈ F ′ ∪ W ′. A block

(F ′,W ′, µ′) of a matching µ is said to be individually rational iff µ′(i) = Chi(µ
′(i)) for

all i ∈ F ′∪W ′. A matching µ is said to be a core matching iff there exists no block of µ.8

A matching µ is said to be an individually rational core matching iff µ is individually

rational and there exists no individually rational block of µ.

Now, we associate a primitive strategic game GM = (N, (Xi)i∈N , (vi)i∈N) with a

7We omit the definitions of the strong substitutability and the T -algorithm because we do not employ
them in this paper. See Echenique and Oviedo (2006) for the detail.

8We follow the terminology of Echenique and Oviedo (2006), while the core matching should probably
be called the strong core matching, which is more familiar.
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matching problem with substitutability M = (F,W,P ). Let N = F ∪ W . Let Xf =

{S ∈ 2W |Chf (S) = S} for each f ∈ F , and Xw = {S ∈ 2F |Chw(S) = S}. Note that

Xi ̸= ∅ for all i ∈ F ∪W since ∅ ∈ Xi for all i ∈ F ∪W . A function ν from X to the set

of matchings is said to be a matching rule iff for any x ∈ X,

ν(x)(f) = {w ∈ xf |f ∈ xw} for each f ∈ F ;

ν(x)(w) = {f ∈ xw|w ∈ xf} for each w ∈ W .

The payoff function of i ∈ N is defined consistently with P (i) as follows: vi(x) > vi(x
′)

if and only if ν(x)(i) P (i) ν(x′)(i) for all i ∈ N and all x, x′ ∈ X.9

We can easily confirm that ν(x) is a matching for any x ∈ X as the following way.

Let x ∈ X, f ∈ F , and w ∈ W . It is obvious that (i) and (ii) of the definition of the

matching is satisfied in ν(x). For (iii), if f ∈ ν(x)(w), then w ∈ xf and f ∈ xw. Thus,

w ∈ ν(x)(f), and vice versa. Further, the following lemma points out that our strategic

game completely captures the individually rational matchings.

Lemma 1 Let M be a matching problem with substitutability and GM be the strategic

game associated with M . A matching µ is individually rational in M if and only if

ν(x) = µ for some x ∈ X in GM .

Proof. Let M be a matching problem with substitutability and GM be the strategic

game associated with M . We first show the necessity. Let µ be an individually rational

matching in M . By the individual rationality, Chi(µ(i)) = µ(i) for all i ∈ N . Thus,

µ(i) ∈ Xi for all i ∈ N . Define xi = µ(i) for all i ∈ N . Then, ν(x)(i) = µ(i) for all

i ∈ N by the definition of ν.

Next, we show the sufficiency. Let µ be a matching such that µ = ν(x) for some

x ∈ X. Fix an arbitrary i ∈ N . We assume that i ∈ F . The case where i ∈ W is

omitted because it can be proved in the same way as the following proof. It suffices to

show that ν(x)(i) ⊂ Chf (ν(x)(i)). If ν(x)(i) = ∅, then the proof is done. Therefore,

assume that ν(x)(i) ̸= ∅.
Fix an arbitrary j ∈ ν(x)(i). Note that j ∈ ν(x)(i) ⊂ xi, and thus, ν(x)(i) \ {j} ⊂

xi \ {j}. By the definition of Xi, j ∈ xi = Chi(xi) = Chi((xi \ {j}) ∪ {j}). By the

9Our strategic game is very similar with that by Konishi and Ünver (1999). The only difference is
that we restrict the strategy sets to the individually rational partners.
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substitutability of the preference relation and ν(x)(i)\{j} ⊂ xi \{j}, j ∈ Chi((ν(x)(i)\
{j}) ∪ {j}) = Chi(ν(x)(i)). Hence, ν(x)(i) ⊂ Chi(ν(x)(i)). ■

Now, we state and prove the result of this subsection.

Proposition 6 Let M be a matching problem with substitutability and GM be the strate-

gic game associated with M .

(a) In GM , di = ∅ is the dominant punishment strategy of i for each i ∈ N .

(b) For any x ∈ X, [x] is a SP-FSS in GM if and only if ν(x) is the individually rational

core matching in M .

Proof. Let M be a matching problem with substitutability and GM be a strategic game

associated with M .

(a) Fix an arbitrary i ∈ N , an arbitrary xi ∈ Xi \ {∅}, and an arbitrary z−i ∈ X−i.

We assume i ∈ F . The case where i ∈ W is omitted because it can be proved in the

same way as the following proof. For each f ∈ F \ {i}, ν(xi, z−i)(f) = ν(∅, z−i)(f), and

thus, vf (xi, z−i) = vf (∅, z−i).

Fix an arbitrary w ∈ W . First, assume that either i /∈ zw or w /∈ xi. Then,

i /∈ ν(xi, z−i)(w). Thus, ν(xi, z−i)(w) = ν(∅, z−i)(w) and vw(xi, z−i) = vw(∅, z−i). Next,

assume that both i ∈ zw and w ∈ xi. Then, i ∈ ν(xi, z−i)(w) and ν(∅, z−i)(w) =

ν(xi, z−i)(w) \ {i}. By Lemma 1, Chw(ν(xi, z−i)(w)) = ν(xi, z−i)(w). It follows that

ν(xi, z−i)(w) P (w) ν(xi, z−i)(w) \ {i} = ν(∅, z−i)(w). Thus, vw(xi, z−i) > vw(∅, z−i).

Hence, ∅ is the dominant punishment strategy of i.

(b) Let x ∈ X. First, assume that [x] is a SP-FSS. Then, [x] is an inclusive set in GM

by Theorem 2. Suppose that ν(x) is not an individually rational core matching in M .

By Lemma 1, ν(x) is individually rational. Then, there exists an individually rational

block (F ′,W ′, µ′) of µ. Thus, (i) F ′ ∪W ′ ̸= ∅, (ii) µ′(i) ⊂ F ′ ∪W ′ for all i ∈ F ′ ∪W ′,

(iii) µ′(i) R(i) µ(i) for all i ∈ F ′ ∪ W ′, (iv) µ′(i) P (i) µ(i) for some i ∈ F ′ ∪ W ′, and

(v) Chi(µ
′(i)) = µ′(i) for all F ′ ∪ W ′. By (v), µ′(i) ∈ Xi for all i ∈ F ′ ∪ W ′. Define

x′
i = µ′(i) for all i ∈ F ′∪W ′. Then, ν(x′

F ′∪W ′ , ∅N\(F ′∪W ′))(i) = µ′(i) for all i ∈ F ′∪W ′ by

(ii). This contradicts Proposition 1(b) by (iii) and (iv). Hence, ν(x) is an individually

rational core matching in M .

Next, assume that ν(x) is an individually rational core matching in M . By The-

orem 1 and (a) of this proposition, it suffices to show that [x] is an inclusive set.
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Suppose that there exist some S ∈ N and x∗
S such that vS(x

∗
S, ∅N\S) ≥ vS(x). Note

that Chi(ν(x
∗
S, ∅N\S)(i)) = ν(x∗

S, ∅N\S)(i) for all i ∈ S by Lemma 1. Note also that

ν(x∗
S, ∅N\S)(i) ⊂ S for all i ∈ S by the definition of ν. Since ν(x) is an individually

rational core matching and the preferences are strict, ν(x∗
S, ∅N\S)(i) = ν(x)(i) for all

i ∈ S. Then, ν(x)(j) ⊂ N \ S for all j ∈ N \ S by ν(x)(i) = ν(x∗
S, ∅N\S)(i) ⊂ S for all

i ∈ S.

Since ν(x) is an individually rational core matching, ν(x)(j) ∈ Xj for all j ∈ N \ S.
Denote x∗

j = ν(x)(j) for each j ∈ N \ S. For all j ∈ N \ S, ν(∅S, x∗
N\S)(j) = ν(x)(j) by

ν(x)(j) ⊂ N \ S. Since i /∈ x∗
j for all i ∈ S and j ∈ N \ S, ν(x∗)(i) = ν(x∗

S, ∅N\S)(i) =

ν(x)(i) for all i ∈ S and ν(x∗)(j) = ν(∅S, x∗
N\S)(j) = ν(x)(j) for all j ∈ N \ S. Thus,

x∗ ∈ [x], and [x] is an inclusive set in GM . ■

Proposition 6(a) heavily relies on the substitutability of the preferences. Consider

the following simple example. Let F = {f1} and W = {w1, w2}. The preference rela-

tion of f1 is {w1, w2} P (f1) {w1} P (f1) ∅ P (f1) {w2}, which is not substitutable, and

that of wi is {f1} P (wi) ∅ for each i = 1, 2. Then, neither ∅ nor {f1} is the dom-

inant punishment strategy of w2 since vf1({w1, w2}, ∅, ∅) > vf1({w1, w2}, ∅, {f1}) and

vf1({w1, w2}, {f1}, {f1}) > vf1({w1, w2}, {f1}, ∅). Therefore, our result cannot be ex-

tended to the model by Roketskiy (2012) who allowed general preferences by dropping

the substitutability condition.

7 Concluding remarks

This paper characterized the SP-FSS in the strategic games with dominant punishment

strategies by the notion of the inclusiveness. The union of the inclusive sets has a very

close connection to the strict α-core. A further characterization is given to the SP-FSS

in the binary game with strictly dominant punishment strategies. Some applications are

also investigated. Our results may simplify the investigation on the SP-FSS for a variety

of strategic games as we mentioned in section 1. We conclude with a remark.

This paper did not consider the FSS whose elements yield multiple payoffs. In

coalitional and partition function games, Béal, et al. (2008), Ray and Vohra (2015a),

and Chander (2015) showed that there is no FSS including multiple payoffs at least

under a certain condition. On the other hand, a FSS yielding multiple payoffs may

exist in a number of strategic games. See for example, Suzuki and Muto (2005) and

26



Kawasaki and Muto (2009). Although we did not consider such a FSS, investigating it

is also important since it may have novel implications. For example, Kawasaki and Muto

(2009) showed that the multiple-payoff FSS supports the over-contribution to a public

good in a voluntary contributing situation as we reviewed in Section 3, which has been

rarely discussed in the literature so far. As we pointed out in Section 5, investigating the

FSS with multiple payoffs should exploit the structure of the specific game. The results

in the present paper allow us to concentrate for investigating such a FSS for various

strategic games. We remain this problem for future research.
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