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Word maps in Kac-Moody setting

Elena Klimenko, Boris Kunyavskĭı, Jun Morita and Eugene Plotkin

Abstract. The paper is a short survey of recent developments in the
area of word maps evaluated on groups and algebras. It is aimed to
pose questions relevant to Kac–Moody theory.

Yukimi

Iza yukan

Yukimi ni korobu

Tokoro made.

Snow-viewing

Well, let’s go snow viewing,

Till we tumble over.

Matsuo Bashō, 1687

1. Word maps

This note is devoted to problems arising from the general philosophy

of word maps. It consists of two sections. In the first one, we describe

some recent results and problems related to word maps on simple algebraic

groups and finite-dimensional Lie algebras. The objective of the second
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section is to bring attention to Kac–Moody groups and algebras, look at

them from the viewpoint of word maps, and formulate some problems.

The general setting is as follows. Let Θ be a variety of algebras, H

be an algebra in Θ, W (X) be a free finitely generated algebra in Θ with

generators x1, . . . , xn. Fix w = w(x1, x2, . . . , xn) and consider the word

map

w : Hn → H. (1)

The map w is the evaluation map: one substitutes n-tuples of elements

of the algebra H instead of the variables and computes the value by per-

forming all algebra operations. Varying Θ we arrive at problems on word

maps specialized in a fixed Θ. Here we restrict ourselves to considering the

varieties of groups and Lie algebras.

The surjectivity of the word map for a given word w ∈ W (X) and an

algebra H ∈ Θ is traditionally the central question of the theory. In other

words, the question is whether the equation

w(x1, . . . , xn) = h (2)

has a solution for every h ∈ H. However, for many pairs of w and H

the phenomenon of surjectivity is just a dream. So the question about the

width of H with respect to a given w (see the definition below) often sounds

more relevant.

Denote by w(H) the value set of the map w in the algebra H. That is,

an element h ∈ H belongs to w(H) if there exist elements h1, h2, . . . , hn

of H such that w(h1, h2, . . . , hn) = h. We will be interested in estimating

the size of w(H). A reasonable but simpler problem is to compute the

span ⟨w(H)⟩ of w(H), where span means the verbal subgroup generated

by w(H) in the group case and the linear span of w(H) in the case of Lie

algebras.

Now assume that Θ is the variety of all groups and G ∈ Θ. As mentioned

above, the surjectivity property of a word map is too strong for most pairs

(w,G). Denote by w(G)k the set of elements g ∈ G of the form g =

g1g2 · · · gk where gi ∈ w(G), i = 1, . . . , k. The smallest k such that w(G)k =

G is called the w-width of the group G. Denote it by wdw(G). If G does

not have finite w-width, it is said to be of infinite w-width.



Word maps in Kac-Moody setting 27

We want to estimate how much freedom we have in the general setting

of word maps for groups, and to choose a reasonable group G where word

maps are evaluated. Let us look at two extreme classes of the variety of all

groups: free groups and simple groups. The essence of word maps evaluated

at these two poles is quite different.

1.1. Free groups

Let Fn(X), X = {x1, . . . , xn}, be the non-abelian free group with n gen-

erators. If we take w to be an arbitrary word in Fn(X), then common

sense suggests that wdw(Fn(X)) should be infinite. An important theo-

rem of A. Rhemtulla [101] (see also [106]) confirms that this is indeed the

case for all non-universal words, see [106] for details. Moreover, recently

A. Myasnikov and A. Nikolaev proved the following.

Theorem 1. [89] Let H be a non-elementary hyperbolic group. Then the

width wdw(H) is infinite for each non-universal word w.

Since a “random” group is hyperbolic [91], for “generic” infinite groups the

width of any non-universal word is infinite. This result, though disappoint-

ing from the viewpoint of word maps, is compensated by a tremendous

theory of solutions of equations in free and hyperbolic (non-elementary)

groups. For instance, A. Mal’cev [76] described the set of solutions of the

equation [x, y] = [a, b], where a, b are generators of the free group and

[x, y] = xyx−1y−1. L. Comerford–C. Edmunds [31] and R. Grigorchuk–

P. Kurchanov [42], [43] described all solutions of quadratic equations in

free groups. Finally, G. Makanin and A. Razborov described solutions of

an arbitrary system of equations over a free group [75], [95]. This theory

leads to a developed geometry over free groups and, in its turn, to solution

of the famous Tarski problems on elementary theory of free groups, see

[60]–[65], [107]–[116], [49], [36], etc.

The theory mentioned above goes far beyond the scope of this note. We

will now turn to another pole of the variety of groups and consider simple

groups.
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1.2. Algebraic groups

First of all, from the set of all words we choose the following representa-

tives:

Power map:

w(x) = xk. (3)

Commutator map:

w(x, y) = [x, y] = xyx−1y−1. (4)

Engel maps: w(x, y) = en(x, y).

e1(x, y) = [x, y], . . . , en+1(x, y) = [en, y] = [x, y, . . . , y]. (5)

Quasi-Engel maps: w(x, y) = vn(x, y).

v1(x, y) = x−2y−1x, . . . , vn+1(x, y) = [xvn(x, y)x
−1, yvn(x, y)y

−1]. (6)

Quasi-Engel maps: w(x, y) = sn(x, y).

s1(x, y) = x, . . . , sn+1(x, y) = [y−1sn(x, y)y, sn(x, y)
−1]. (7)

Engel maps are related to nil elements and nilpotency, quasi-Engel maps

do the same with respect to solvability [130], [10], [18], [44].

We start with a particular problem, which seems to be, at the moment,

the most challenging and tempting among the problems on word maps for

semisimple algebraic groups.

Conjecture 2. Let G = PSL2(C), and let w = w(x, y) be an arbi-

trary non-identity word in F2(x, y). Then the word map w : PSL2(C) ×
PSL2(C) → PSL2(C) is surjective. In other words, the equation

w(x1, x2) = a

has a solution for every a ∈ PSL2(C).

Although this conjecture is widely open, there are several partial results.

First of all, note that the power map w = xn is surjective on PSL2(C),
since all roots are extractable in this group. The next class of surjective

words is given by
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Proposition 3. Suppose that a word w(x, y) = xi1yj1xi2yj2 . . . xikyjk is not

an identity of the infinite dihedral group D∞. Then the word map w(x, y)

is surjective on PSL2(C).

Proof. We can assume that

i1 + · · ·+ ik = 0 and j1 + · · ·+ jk = 0. (8)

Otherwise, if say i1+ · · ·+ik ̸= 0, we set y = 1 and arrive at the power word

xm. The equation xm = c is solvable, since in PSL2(C) one can extract

roots of an arbitrary degree. So, assuming condition (8), we need to solve

the equation w(x, y) = c in PSL2(C).
Taking into account that w(x, y) is not an identity in D∞, we have to

consider three cases.

Case 1: w(a, b) ̸= 1 for two involutions a, b ∈ D∞. Since a−1 = a, b−1 =

b, we have w(a, b) = (ab)ℓ, 1 ≤ ℓ ≤ k, or w(a, b) = (ba)ℓ, 1 ≤ ℓ ≤ k − 1.

(Note that l ≥ 1 because w(a, b) ̸= 1 in D∞.) We have the same expression

for w(a, b) if a and b are two involutions of PSL2(C). Extracting roots, we

arrive at a system of equations:

a2 = 1, b2 = 1, ab = c′ (or ba = c′), (9)

where c′ is a prescribed element of PSL2(C) (explicitly, c′ is an ℓth root of

c). It remains to notice that in PSL2(C) every element is a product of two

involutions [13].

Case 2: w(a, b) ̸= 1, where a is an involution and b is an element of infinite

order in D∞. In this case aba = b−1, and therefore w(a, b) =
(
b±1

)m
, where

m ≥ 1. Now we have to solve the following system of equations with two

variables a and b in PSL2(C):

a2 = 1, aba = b−1, b±1 = c′, (10)

where c′ is an mth root of the given c ∈ PSL2(C). We see that b is either

c′ or its inverse and a is the first of two involutions whose product is b.

(Indeed, if b = aa′ with a2 = (a′)2 = 1, then aba = a′a = b−1.)

Case 3: w(a, b) ̸= 1, where both elements a, b have infinite order in D∞.

Since in this case a and b commute, we have

w(a, b) = ai1+···+ikbj1+···+jk = a0b0 = 1. (11)
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This contradiction shows that Case 3 does not occur under assumption

(8).

Corollary 4. All Engel maps are surjective on PSL2(C).

Proof. Let a, b ∈ PSL2(C) be involutions. We have e1(a, b) = aba−1b−1 =

abab = (ab)2. We show that en(a, b) = (ab)2
n
. By induction,

en(a, b) = [en−1(a, b), b] = [(ab)2
n−1

, b] = (ab)2
n−1

b(ba)2
n−1

b

= (ab)2
n−1

(ab)2
n−1

= (ab)2
n
.

Among other interesting word maps which fall under the conditions of

Proposition 3 is the family w1(x, y)=[x, y], wn+1(x, y)=[wn(x, y), δn(x, y)],

where δn(x, y) = y if n = 2k or δn(x, y) = x if n = 2k + 1. Moreover,

T. Bandman proved

Theorem 5. [5] The word map defined by w(x, y) ∈ F (1)\F (2) is surjective

on PSL2(C).

Here F (1) = [F, F ] and F (2) = [F (1), F (1)] are the first and the second terms

of the lower central series of the two-generated free group F = F2(x, y). The

proof is reduced to verification of the surjectivity of w(x, y) on the unipotent

elements. Note that the surjectivity of w(x, y) on the semisimple elements

of PSL2(C) can be derived by computations of trace polynomials (see, for

example, [41]) and application of methods of [11], [8]. Another proof of the

surjectivity of w(x, y) on the semisimple elements can be found in [57].

From Theorem 5 it follows that a key to solution of Conjecture 2 lies in

behaviour of words w sitting in F (2) or deeper in the lower central series.

In this sense a result of [5] stating that the quasi-Engel maps w(x, y) =

sn(x, y) are surjective for any n ≥ 1 is of promising importance. Yet other

computations from the same paper show that the word

w(x, y) = [[x, [x, y]], [y, [x, y]]] ∈ F (2) (12)

is surjective on PSL2(C) as well.
Conjecture 2 is a particular case of [55, Question 2]. We repeat this

question here:
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Problem 6. Let G be the class of simple groups G of the form G = G(k)

where k = k̄ is an algebraically closed field and G is a semisimple adjoint

linear algebraic group. Is it true that word maps are surjective for all

non-power, non-trivial words?

It should be noted that the power map w = xn is surjective on an

arbitrary G = G(k) if n is prime to 30 (see [124], [27]–[30], [68]). Moreover,

the only simple algebraic adjoint group with extracting arbitrary roots is of

type An. Hence, Problem 6 for the groups of type An can be reformulated

as follows:

Problem 7. Is the word map w : PSLn(C) × PSLn(C) → PSLn(C) sur-
jective for every non-trivial w(x, y) ∈ F2(x, y)?

Despite many efforts applied to Problem 6 within past years there are

only few developments for specific word maps. For instance, the commu-

tator map w(x, y) = [x, y] is surjective on every semisimple adjoint linear

algebraic group G = G(k) over an algebraically closed field k [96] (cf. the

Ore conjecture for finite simple groups: every element of a group is a com-

mutator). The next theorem concerning Engel words is due to N. Gordeev.

Theorem 8. [40] The image of the Engel map en(x, y) on a semisimple

adjoint linear algebraic group G = G(k), k = k̄, contains all semisimple

and all unipotent elements.

So, for elements g = tu that have the Jordan form with non-trivial

semisimple part t and non-trivial unipotent part u, it is unclear whether

they are covered by en(x, y). In the same paper it is proved that the Engel

map is surjective on PSp4(k) and G2(k). Summing up, the surjectivity

of Engel words is unknown for all groups except PSL2(k), PSp4(k) and

G2(k). For quasi-Engel maps the only treated case is PSL2(k) [5].

Now we are interested in estimating wdw(G), where w(x1, . . . , xn) is any

word in Fn(X). The amazing theorem of A. Borel [17] (see also [69], [55])

states that the image of w on every appropriate algebraic group is large in

Zariski topology.
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Theorem 9. [17] Let w(x1, . . . , xn) be a non-trivial word, let G = G(k) be

a connected semisimple linear algebraic k-group over an arbitrary field k.

The image of the word map w : Gn(k) → G(k) is Zariski dense.

The next corollary confirms that for an algebraically closed field the

image is indeed big.

Corollary 10. Let k be an algebraically closed field. Then w(G(k))2 =

G(k).

The latter fact means that the width of any word map evaluated on a

connected semisimple linear algebraic group over an algebraically closed

field is less than or equal to two.

1.3. Algebraic groups. Forms

For an extended discussion of the situation with word maps in this case

see [68]. Here we just mention a few principal results.

First of all, the power word map xn is surjective for the compact real

forms of all semisimple algebraic groups G (cf. [30]). The fact that the

commutator map w(x, y) = [x, y] is surjective for the case of compact Lie

groupsG = SUn(R) goes back to H. Tôyama and M. Gotô. The same is true

for R-anisotropic simple algebraic groups G = G(R), see [129], [41]. In con-

trast with the split case, the behaviour of Engel word maps on anisotropic

groups is well-known due to A. Elkasapy–A. Thom (cf. also [40]):

Theorem 11. [33] Let G be an R-anisotropic simple algebraic group. Then

for every n ≥ 1 the n-Engel word map en(x, y) : G
2 → G is surjective.

In particular, en is surjective on compact Lie groups SUn(R). Nothing is

known about the behaviour of quasi-Engel maps. The general result similar

to that of Theorem 5 was earlier established by A. Elkasapy–A. Thom [33]:

if w(x, y) does not belong to F (2), then the corresponding word map is

surjective on SUn(R). The group SUn(R) in the setting above can be

replaced by any compact Lie group G.

Remark 12. The compact counterparts of Conjecture 2 and Problem 6

have negative answers [127]. From the construction of A. Thom it also
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follows that the width wdw(G) may be infinite in the compact case. The

reason is that for some words w the images of the corresponding word maps

are small neighbourhoods of the identity matrix, in particular, are not dense

in Euclidean topology. The authors are not aware of any example of a non-

power word w (i.e., w not representable as a proper power of another word)

such that the corresponding map on a simple real algebraic group would

be dominant in Euclidean topology but not surjective.

1.4. Finite simple groups

New achievements in the theory of word maps evaluated on finite simple

groups may be considered as a sort of catalyst which gave rise to ongoing

interest in this theory.

Among jewels of the last years was a positive solution of Ore’s problem:

every element of a finite simple group is, indeed, a single commutator (see

[92], [34] and the final solution in [73]; a nice survey is given in [77]).

A formidable progress in the description of images of word maps for finite

simple groups was obtained by M. Larsen and A. Shalev, who stimulated

a development of this area of research under the name of “Waring type

problems”. The final result of Larsen–Shalev–Tiep is as follows:

Theorem 13 ([71]). Let w be an arbitrary non-trivial word of Fn(x1,..., xn).

There exists a constant N = N(w) such that for all non-abelian simple

groups G of order greater than N one has

w(G)2 = G.

So, for every w the w-width of a finite simple group is less than or

equal to two. We believe that the coincidence of widths in Borel’s theorem

for algebraic groups and the theorem of Larsen–Shalev–Tiep quoted above

might have a conceptual explanation in the spirit of principles of model

theory: loosely speaking, a statement on algebraic varieties formulated over

an algebraically closed field should have a counterpart over every sufficiently

large finite field. Classical theorems of Ax–Kochen–Grothendieck can serve

as instances of such a principle, see [117]. This approach is awaiting an

interested reader. We also refer to the papers [120]–[122], [71], [70], [8], [7],
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[55], [90], [79], [105], [50], [59], [72], etc., for details, surveys and further

explanations.

Returning to specific word maps evaluated on finite simple groups, even

the case of Engel words en(x, y) is still widely open. The only known result

is the surjectivity of en on PSL2(Fq) obtained in the paper of Bandman–

Garion–Grunewald.

Theorem 14. [7] Let G = PSL2(Fq). The n-th Engel word map en(x, y) :

G2 → G is surjective provided that q > q0(n). If n ≤ 4, then en(x, y) is

surjective for every q.

Note that the estimate q0(n) is exponential in n. The main ingredient of

the proof is dynamics of trace maps, see [8].

1.5. Finite-dimensional simple Lie algebras

In this particular case W (X), X = {x1, . . . , xn}, is the finite-dimensional

free Lie algebra, that is, the algebra of Lie polynomials with coefficients

from a field k. We will consider word maps w : Ln → L, where w ∈ W (X)

and L is a split semisimple Lie algebra.

Let us treat the brackets in maps (4),(5) as Lie operations. The role of

quasi-Engel maps (6), (7) is played by the sequence

v1(x, y) = [x, y], . . . , vn(x, y) = [[vn−1(x, y), x], [vn−1(x, y), y]], (13)

which is related to the solvability property of Lie algebras [6], [44].

In this setting, many problems on word maps formulated above for groups

have solutions for Lie algebras. For example, these are the Ore problem [19]

and the problem of the surjectivity of Engel word maps [9]. The analogue

of Conjecture 2 has a partial solution [57]. Namely, if k is an algebraically

closed field, then the image of any non-trivial homogeneous w ∈ W (X)

evaluated on sl2(k) is either 0, or the set of all non-nilpotent traceless ma-

trices, or sl2(k). Note that the trivial image can appear, since for simple Lie

algebras L the word w can be an identity of L. Further, the Lie polynomial

v2(x, y) = [[[x, y], x], [[x, y], y]] (14)
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covers only the non-nilpotent values on sl2(k) [9], realizing the second pos-

sibility for images of an arbitrary word w. In particular, this means that

the quasi-Engel word w(x, y) is not surjective on sl2(k). The proof in the

Lie case is a variation of a similar general result on multilinear polynomi-

als evaluated on simple associative algebras, which is due to Kanel-Belov–

Malev–Rowen (cf. [58]):

Theorem 15. [56] If w is a multilinear polynomial evaluated on the matrix

ring M2(k) (where k is a quadratically closed field), then the image of w is

either {0}, or k, or sl2(k), or the full matrix algebra M2(k).

The question whether a multilinear Lie polynomial w can take only the

values 0 or sl2(k) on sl2(k) is still open. We will finish this brief overview

with presenting a Lie-algebraic counterpart of Borel’s theorem:

Theorem 16. [9] Let L be a split semisimple Lie algebra. Suppose that a

Lie polynomial w(x1, . . . , xn) is not an identity of the Lie algebra sl2(k).

Then the image of w : Ln → L is Zariski dense.

Remark 17. It is unclear whether it is possible to improve the result by

suppressing the condition on w(x1, . . . , xn) in Theorem 16. Also, the case

of word maps evaluated on non-classical Lie algebras is generally open (see

[55] for further discussions). If the base field k is not algebraically closed

and L is not split, the situation is not understood either. Even for the

simplest word w = [x, y], even for k = R, there are only partial results:

the corresponding map L2 → L is surjective if L is a compact simple

algebra [47], [2] (D. Akhiezer [2] also treats some non-compact algebras).

Surprisingly, for w = [x, y] there is a very nice result of “Waring type” due

to G. Bergman–N. Nahlus [15] who use recent two-generation theorems by

J.-M. Bois [16]: if L is a finite-dimensional simple Lie algebra defined over

any infinite field of characteristic different from 2 and 3, then every a ∈ L

is a sum of two brackets: a = [x, y] + [z, t]. (Over R, a simple proof can be

found in [47]; see [39] for the case of arbitrary classical Lie algebras.) To

the best of our knowledge, there are no examples of simple Lie algebras of

infinite bracket width; moreover, we do not know any example where one

bracket is not enough.
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In the case where the base field k is replaced with some ring R, the

situation is almost totally unexplored, see [67] for discussion of some cases

where R is of arithmetic type.

2. Word maps for Kac–Moody groups and algebras. Problems

Our next aim is to discuss how the results of the previous section can

be treated from the viewpoint of Kac–Moody groups and algebras. Let

A = (aij), 1 ≤ i, j ≤ n, be a generalized Cartan matrix, that is, aii = 2,

aij ≤ 0 if i ̸= j and aij = 0 if and only if aji = 0. Every A = (aij) gives

rise to a complex Kac–Moody algebra gA, see [81], [51], etc. According to

the type of A (positive-definite, positive-semidefinite, indefinite), we arrive

at finite-dimensional simple Lie algebras, affine Kac–Moody algebras, and

indefinite Kac–Moody algebras, respectively.

2.1. Minimal (incomplete) Kac–Moody groups. Split case

Given a generalized Cartan matrix A and a field k (or a ring R), the

value GA(k) of the Tits functor GA : Z-Alg → Grp defines a minimal Kac–

Moody group over k, see [128] (cf. [26], [86]). One can view this functor

as a generalization of the Chevalley–Demazure group scheme. We assume

that A is indecomposable. As a rule, we assume that the functor GA

is simply connected. (However, speaking about the simplicity of a Kac–

Moody group GA(k) (resp. k-algebra gA), we will freely, often without

special mentioning, use common language abuse, assuming that we go over

to its subquotient, taking the derived subgroup (resp. subalgebra) and

factoring out the centre, if necessary.)

If A is a definite matrix, then the group GA(k) is the Chevalley group

GΦ(k) where Φ is the root system corresponding to A. Word maps arising

in this case were considered in the previous section.

If A is of affine type, then all possibilities for A are described by affine

root systems Φ̃, where Φ is the corresponding finite root system. The group

GA(k) is isomorphic to the Chevalley group GΦ(k[t, t
−1]) where k[t, t−1] is

the ring of Laurent polynomials. Since GA(k) is a Chevalley group over a

ring, all Borel-type considerations are irrelevant. However, the width of
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GA(k) with respect to natural words is unknown.

Problem 18. What is the width of the affine Kac–Moody group GA(k) ≃
GΦ(k[t, t

−1]) with respect to commutators? Is this width finite?

A comprehensive survey of the widths of the Chevalley groups over

rings can be found in [45], [126], [125]. We shall quote some facts from

these sources. First of all, since k[t, t−1] is a Euclidean ring, the group

GΦ(k[t, t
−1]) is perfect and, moreover, GΦ(k[t, t

−1]) = EΦ(k[t, t
−1]), where

EΦ(k[t, t
−1]) is the elementary subgroup of GΦ(k[t, t

−1]). Further, it is

worth taking into account an unexpected result from [45] which states that

finite width in commutators is equivalent to bounded generation in ele-

mentary unipotent elements (see [88] for a survey of the latter question).

Furthermore, there is an example by R. K. Dennis and L. Vaserstein:

Theorem 19 ([32]). The group SL(3,C[t]) does not have finite width with

respect to commutators.

This example shows that the commutator width for Chevalley groups over

polynomial rings with coefficients from C is infinite. It also prevents from

predictions in the case of Laurent polynomials, without clarifying the situ-

ation with usual polynomial rings.

Remark 20. In general, the question whether a Chevalley group GΦ(k[t])

over a polynomial ring with coefficients in k has a finite commutator width

should depend on the choice of the ground field k. By Theorem 19 and

in view of the relationship between finite commutator width and bounded

generation in elementary unipotents and results of [35], for fields of infinite

transcendence degree over the prime subfield this question is answered in

the negative. To the contrary, for finite fields an affirmative answer sounds

quite reasonable. We quote [125]: “It is amazing that the answer is un-

known already for SLn(F [x]), where F is a finite field or a number field”

and thank A. Stepanov for the whole remark.

Let now GA(k) be a Kac–Moody group of indefinite type. All these

groups are perfect for fields of size > 3. Moreover, B. Rémy [99] and

P.-E. Caprace–B. Rémy [21] showed that the minimal indefinite adjoint
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Kac–Moody groups GA(Fq) are simple provided q > n > 2 where n is

the size of A. These groups are also simple for some matrices A if n = 2

and q > 3. J. Morita and B. Rémy [87] proved that in the case where k

is the algebraic closure of Fq the groups GA(k) are simple. However, the

simplicity problem for minimal groups over other fields is open.

P.-E. Caprace and K. Fujiwara [20] showed that over finite fields these

(infinite) simple groups have infinite commutator width. In general, espe-

cially over the C and R, problems on word maps are not yet settled.

Problem 21. Study the image of word maps for minimal non-affine Kac–

Moody groups over various fields. In particular, what can be said about the

commutator width and power width? Are there some density properties?

Are there analogues of results of Waring type for arbitrary words?

The first step is to check what tools that proved to be useful in finite-

dimensional case can be extended to Kac–Moody setting. This is not com-

pletely hopeless, as is shown in the papers [84], [85], where this was done

for Gauss decomposition.

2.2. Maximal (complete) Kac–Moody groups. Split case

Let GA(k) be an incomplete Kac–Moody group. There are several ways

to complete this group with respect to an appropriate topology. Different

methods of completions lead to very similar groups (Rémy–Ronan groups

[100], Mathieu groups [80], Carbone–Garland groups [24]) whose distinc-

tions are not very important for our goals. It is known that the Rémy–

Ronan group is smallest among them and can be obtained as a quotient

of others. So, once we are talking about a simple (indefinite) Kac–Moody

complete group we can assume that this is one of the incarnations of the

Rémy–Ronan group. Denote it by GA(k). This group is simple (both as

a topological group and an abstract group), see [82], [53], [38], [23], [78],

[104], [21], [99], etc.

Let first A be of affine type (untwisted case), that is, GA(k) is a complete

affine Kac–Moody group. Then GA(k) is isomorphic to a Chevalley group

of the form GΦ(k((t))) where k((t)) is the field of formal Laurent series
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over k. Thus, GA(k) modulo centre is a simple algebraic group. Here is an

immediate corollary of Borel type:

Corollary 22. Let GA(k) be a complete adjoint affine Kac–Moody group,

and let w = w(x1, . . . , xn) be an arbitrary non-trivial word. Then the image

of w : GA(k)
n → GA(k) is Zariski dense.

Note that the field k((t)) is not algebraically closed. Thus, it is not hard

to prove that, say, if w = xn is a power word, then the induced word map

is not surjective, both for G = SL2 defined over k((t)) and k[t, t−1]: it is

enough to look at the equation xn = diag(t, t−1).

Further, Corollary 22 does not provide estimates for particular wdw(GΦ(

k((t)))). However, recently Hui–Larsen–Shalev [48] proved that for an ar-

bitrary word w and any infinite field K we have wdw(GΦ(K)) ≤ 4 in every

simple Chevalley group GΦ(K). Thus, wdw(GA(k)) ≤ 4. In a similar spirit,

from [48] it follows that the width of GA(k) in squares equals 2. So, one

can ask the following question:

Question 23. What is the commutator width of GA(k)?

Let now GA(k) be an arbitrary complete Kac–Moody group. The prob-

lem whether a suitable variant of Borel’s theorem is valid for GA(k) is

among the most intriguing ones. For example, let us view GA(k) as a

simple algebraic ind-scheme [66], [80], [103] (see also [1], [52], etc.). Then

GA(k) is endowed with a Zariski-type topology [118], [119], [54]. One of

the possible approaches is to test the image of a word map in this topology.

Problem 24. Let GA(k) be a complete non-affine Kac–Moody group, and

let w = w(x1, . . . , xn) be an arbitrary non-trivial word. Is it true that

w((GA(k)
n) is dense in a Zariski topology?

Here are some related questions.

Questions 25. Is there a bound for wdw(GA(k))? What is the commutator

width of GA(k)? How big is the image w((GA(k)
n) in the natural topology

of GA(k)?

In a more general context, one can try to investigate an eventual gap

between the density and surjectivity properties:



40 Elena Klimenko, Boris Kunyavskĭı, Jun Morita and Eugene Plotkin

Question 26. Do there exist a locally compact topological group G, sim-

ple at least as a topological group, and a word w = w(x1, . . . , xn) non-

representable as a proper power of another word such that the correspond-

ing word map w : Gn → G is not surjective but the image of w is dense?

Kac–Moody groups seem to be a sufficiently rich testing ground for such

sort of questions.

2.3. Forms of Kac–Moody groups

The theory of forms for Kac–Moody groups is mainly developed in [97],

[98], [103], [104], [102], [46], [93], [94], etc. All questions stated before in

the split case also make sense for twisted forms. In particular, for affine

real forms classified in [14], this is related to commutator widths in twisted

Chevalley groups over the ring of Laurent polynomials R[t, t−1]. Another

question to study in the compact case is the phenomenon of Thom’s se-

quence (see Section 1): can it occur for word maps on any compact Kac–

Moody group?

The case of integer forms of Kac–Moody groups, which were extensively

studied both from arithmetic viewpoint (Eisenstein series, Langlands pro-

gram) and with an eye towards applications in mathematical physics (su-

perstrings, supergravity), see e.g. [37], [24], [12] and the references therein,

is even less explored. Any question on the word width of such groups

seems challenging. In a more group-theoretic spirit, one can mention the

papers of D. Allcock and L. Carbone [3], [4], who established some finite

presentability results in the affine and hyperbolic cases.

2.4. Kac–Moody algebras

As in Section 1, one can ask questions on the image of the map induced

by a Lie polynomial, as well as questions of width type, for Kac–Moody

algebras, mutatis mutandis. For example, it seems natural to proceed in the

spirit of Remark 17 and look at the bracket width of simple (subquotients

of) algebras gA. Can it happen that such an algebra is of infinite bracket

width? Of bracket width greater than one?
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In the case that for some simple algebra the bracket map turns out to

be surjective, one can study n-Engel maps (n ≥ 2) and maps induced by

general multilinear Lie polynomials.

Another problem is to find out whether some counterpart of Borel-type

Theorem 16 exists in Kac–Moody setting.
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46 Elena Klimenko, Boris Kunyavskĭı, Jun Morita and Eugene Plotkin

[50] S. Jambor, M. W. Liebeck, E. A. O’Brien, Some word maps that are

non-surjective on infinitely many finite simple groups, Bull. London

Math. Soc. 45 (2013), 907–910.

[51] V. G. Kac, Infinite-dimensional Lie Algebras, 3rd ed., Cambridge

Univ. Press, Cambridge, 1990, xxii+400 pp.

[52] V. G. Kac, D. H. Peterson, Regular functions on certain infinite-

dimensional groups, Arithmetic and Geometry, Vol. II (M. Artin,

J. Tate, eds.), Progr. Math., vol. 36, Birkhäuser, Boston, MA, 1983,
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xvi+606 pp.
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