
AOP and Reflection for Dynamic Hyperslices
R. Chitchyan, I. Sommerville

Computing Department, Lancaster University, Lancaster, LA1 4YR
{rouza | is}@comp.lancs.ac.uk

Abstract

In this paper we present a Model for Dynamic Hyperslices which uses a particular Aspect-Oriented (AO) approach
– Hyperspaces – for decomposition and reflection as a means for composition of software modules. This model
allows for structured, dynamic, incremental change introduction and rollback, thus, supporting run-time evolution
yet preserving component modularity. The applicability of the model is illustrated through a schema adaptation
scenario.

1. Introduction
Aspect-Oriented software development (AOSD) is a methodology for software development with an
emphasis on the separation of concerns principle. AOSD takes the next step, after OO, in developing
well modularised software, by separating the crosscutting concerns. A significant part of work in AO
community focuses on software evolution support [1, 2] as well as dynamic change due to run-time
weaving of aspects [3-5]. AOSD itself provides new mechanisms, such as joinpoints, pointcuts and
introductions, that can be used to facilitate dynamic change, but it does not explicitly provide any
structured methodology to manage and support dynamic change in software.

Such a structure, however, is provided by reflective approaches to software development [6, 7]. In
reflection the main emphasis is on transparent manipulation of the base level via adaptation of the meta
level. Meta level is a handle for controlling the base. This is particularly useful for “non-invasive” run-
time adaptation of the base code and dynamic re-configuration using meta-object protocols.

Thus, we suggest that the meta-object protocols of reflection provide control and manipulation
mechanism that, in combination with the modularisation and change introduction capabilities of AO,
could lead to well-modularised, dynamically evolvable software systems.

This approach has been adopted in development of the Dynamic Hyperslices Model briefly outlined
and illustrated through an example in section 2 of this paper. Some implementation-related issues for
the model are examined in section 3 and the discussion is summarised in section 4.

2. The model for Dynamic Hyperslices

2.1 Outline of the model

The Dynamic Hyperslices model [8, 9] is intended to support the dynamic evolution of non-stop
systems, i.e. systems that cannot be easily taken offline due to high costs of their downtime (e.g.
telephone and banking), environmental safety (e.g. nuclear plants), loss of human life (e.g. life support
systems) and such like. The model uses the Hyperspaces approach [10-12] to decompose the software
system into “single-minded” modules (e.g. a module for Health feature of the Person object) and the
power of reflection [6, 7] along with filters (as discussed in the Composition Filters approach [13]) and
architectural connectors [14, 15] for unit composition and run-time manipulation.

The Dynamic Hyperslices aims to provide a composition mechanism that allows all the primary
concerns, decomposed in accordance with the Hyperspaces approach, to endure in the composite
concerns after composition.

In the Hyperspaces approach [10-12] the software is modelled as a set of modules (called hyperslices)
each of which represents only one single concern. These hyperslices are then composed using matching
units (e.g. method names) in different hyperslices as join-points. Composition-related concerns are not
treated as first class entities, but are transitory units which integrate with primary hyperslices into a
composed unit. Composition is a compile-time process and the final composed module has no
recollection of its composite parts.

We maintain the decomposition principles of Hyperspaces, but differ in our composition approach. We
use connectors for composition. Filters form part of our composition connectors where connectors
connect hyperslices and not (necessarily) complete object classes or (OO) components. Our connectors
don’t simply match provided/required services, or specify roles for connected components, but rely on

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a dynamically updateable composition strategy to build up functionality of coarser-grain components
(e.g. object classes) from primary hyperslices1, as well as carry out the communication between the
member hyperslices at run time.
In short, the model:

• Uses the Hyperspaces decomposition approach in separating concerns into single-minded
hyperslices (or primary concerns).

• Requires that an additional dimension for Composition concerns is specified in each Hyperspace-
type decomposition. This additional dimension contains connector-concerns. At the composition
stage the connector concerns are used to compose other concerns.

• Utilises a composition connector to integrate any primary/composite concerns. Consequently, any
interaction between other concerns is channelled through a set of connectors.

• Provides connectors with capability to reflect upon their immediately connected concerns, while still
keeping these internals hidden from all other connectors and hyperslices.

The Dynamic Hyperslices approach is illustrated using an example of dynamic schema adaptation2 in
the following sub-section.

2.2 Illustrative Example

Dynamic database schema adaptation is desirable since, in database-centric environments (for instance
in banking sector), downtime of the central database system is very costly. Consequently, the ability to
seamlessly incorporate change into a database schema at run-time promises significant financial gains.

Figure 1(a) below depicts a certain (oversimplified) Object Database schema. The organisation that
owns this database has kept records of its clients, the (financial) services that it provides and the
registrations that its clients have undertaken for the provided services (e.g. Instant Savings Accounts).
Assume the organisation wants to improve its service provision and so intends to encourage the clients
to fill in newly introduced questionnaires about the services they use. To motivate the clients, for each
filled in questionnaire the clients registration record will be credited with a free quantity of service (e.g.
extra 0.1% of interest gained).

Root

Client Service Registration

Registration

Bool: qCompleted

Root

Service Registration

…
Bool: qCompleted

Questionnaire

Connector:
meregeByName

(CoreShema,
Questionnaire)

(a) Hyperslice: CoreSchema (b) Hyperslice: Questionnaire (c) Hyperslice: CoreShema_Questionnaire

creditForQuest()

…
creditForQuest();

Questionnaire
Client

fillQuest()

Client

fillQuest()

…
…

…
… …

…
…
…

…
…

…
… …

…

Figure 1: Illustration of the model for Dynamic Hyperslices.

Using the Hyperspaces decomposition approach, we adopt the existing schema as a composite
hyperslice CoreSchema (presented in Figure 1.a). Then, we design and develop the newly required set
of functionality as a separate hyperslice Questionnaire (presented on Figure 1.b), that has only
those concerns that deal with the issues related to the questionnaire. The Questionnaire hypeslice
consists of newly introduced Questionnaire class, Client class which has only one method
(fillQuest) to allow clients to fill in the questionnaires, and the Registration class which has a
Boolean variable qCompleted to indicate wheather the questionnaire for the given registration has
been completed, and a method for crediting the registration with additional free quantity of service for
each completed questionnaire.

1 Thus, the composition strategy in the connectors can be perceived as a kind of “merger algorithm” for producing

higher order artifacts. Here the “merger” is performed through run-time message manipulation within
connectors, without physically merging the hyperslices.

2 More about this subject can be found in [16].

The Connector, depicted as an oval, linking CoreSchema and Questionnaire hyperslices is the run-
time composition mechanism that combines the separate hyperslices into a composite
CoreSchema_Questionnaire hyperslice view (presented in Figure 1.c). However, while the general
view of the updated schema will be that presented on the right of Figure 1 (i.e. part c), the initially
independent hyperslices for core schema (1.a) and the questionnaire (1.b) will be retained intact as
presented on the left side of Figure 1 (i.e. parts a, b, and the connector). The connector will retain the
composition information which leads to the change of the schema, allowing for rollback to the previous
version, if required. The connector is also the communication mechanism between the composed
hyperslices as well as their clients.

Thus, in this section we have briefly outlined the possible applicability of the Dynamic Hyperslices
approach to a database schema evolution problem. We have discussed how with the Dynamic
Hyperslices approach a coherent view of the evolving database schema can be retained, along with the
details of the historical change (contained in connectors), allowing for rollback, if required. Yet, our
approach avoids the space usage overheads and coarseness of retained change history, as is the case
with the traditional schema versioning approaches (when several versions of the same schema are kept)
[17, 18]. We also avoid the pitfalls of class versioning approaches [19, 20] – when a copy of each new
version of each class is retained – which result in overcomplicated schema and loss of a single
coherent view on it (due to many versions of the same class).

3. Discussion on Implementation Issues
The Dynamic Hyperslices model is currently under development. In this section, we talk about some
initial ideas for its implementation.

As discussed earlier, the composition in our model is carried out through reflective adaptation. The
partial structure of the meta-object level of the model is presented below:

<<interface>>

Hyperslice

Connector PrimarySlice CompositeSlice

CompositionStrategy CompositionManager

Figure 2: Partial structure of the meta-model for Dynamic Hyperslices

Figure 2 states that all primary and composite slices and the connectors are hyperslices. The
connectors, primary, and composite slices can be composed into new composite slices. The
composition details are provided through the composition strategy which is a part of the composition
connectors. The composition process is monitored and validated by the CompositionManager
element of the connectors.

The base level (i.e. application) programmer using the Dynamic Hyperslices model does not need to be
aware of the above meta-level. The link between the base and the meta levels is established at load time
via an AspectJ aspect which introduces and initialises the corresponding reference variables in the base
and meta levels.

MO Client_Core MO Client_Quest.

Composite
MO Client

Class
Client_Core

proxy Class
Client

Class
Client_Quest.

Obj.Client_Core

Obj.Client_Quest.

proxy Obj. Client

Figure 3: High-level workings of the model for Dynamic Hyperslices.

The high-level working of the system, also illustrated in Figure 3 above, is as follows:
• The Base and Meta level link is established at load time, with a meta-object created per each

loaded class;
• Composed slices are represented by a proxy class at the base level and a composite meta-

object at the meta level. Instantiation of a composed class results in instantiations of its
components;

• All calls to the base level objects are passed to their meta-objects. The meta-objects resolve
each calls in accordance with the composition strategy used and filter it down the composition
chain to the resolved primary slice which executes the call;

• The topmost composite meta-object refers to the “combined” interface of all composition
participants. This combined interface is displayed to all clients of the composite slice

The implementation is being undertaken mainly with Java and AspectJ. It is likely that byte-code
manipulations tools (such as BCEL or Javassist) will also be used. While our preferred option is to
maintain module integrity all through its life cycle, including the run-time, we are aware that in
medium to long term this approach will have noticeable performance overheads. Consequently we plan
to consider various optimisation strategies, e.g. guarded integration of “stable” compositions into
coarse-grained slices, with only guard checked for changes, rather then the whole composition chain;
or permanent integration of certain changes into module structures (at the system maintainer’s
discretion) to improve performance in critical places.

Another challenging issue is that of instance adaptation, i.e. how to make objects consistent with the
evolved classes. For example (going back to our example in section 2.2) how will the instances of
Client class, created before composition of Questionnaire slice, handle requests to fill in questionnaire?
Our present intent is to use conversion of the objects to the new definitions of their classes with a
hyperslice for instance conversion handling. Thus, the instance adaptation strategy itself will be
evolvable, in correspondence with the evolving schema.

4. Summary and Future Work
In the present paper we have suggested that reflection and AO can be used as complementary
technologies, with reflection particularly well suited for dynamic reconfiguration and adaptation and
AO as a modularisation mechanism.

We have employed the above principle in the development of the Dynamic Hyperslices model, where
we use a particular AO decomposition mechanism (i.e. that suggested by the Hyperspaces approach) in
combination with a reflection-based composition (via our composition connectors). The applicability of
this model has been illustrated though a schema evolution scenario.

While the Dynamic Hyperslices model simplifies the change introduction and module (i.e. hyperslice)
development process, it requires some consideration for the complexity of slice composition. However,
the proposed model also provides for treating the composition concerns themselves as 1st class entities,
similar to any other slices. Implementation and refinement of the composition mechanism is one of the
prime tasks to us at the present time. Some other implementation related issues, besides those already
discussed in section 3, are the development of checks for correctness of composition, consideration of
ways of incorporating domain-specific knowledge into composition process.

References
[1] A. Rashid and P. Sawyer, "Object Database Evolution using Separation of Concerns," ACM

SIGMOD Record, vol. 29, pp. 26-33, 2000.
[2] S. Clarke, W. Harrison, H. Ossher, and P. Tarr, "Subject-Oriented Design: Support for

Evolution from the Design Stage," in Workshop on Software and Organisation Co-Evolution,
1999.

[3] A. Popovici, G. Alonso, and T. Gross, "Just In Time Aspects: Efficient Dynamic Weaving for
Java ." presented at 2nd International Conference on Aspect- Oriented Software Development,
Boston, USA, 2003.

[4] E. Truyen, W. Joosen, and P. Verbaeten, "Run-time Support for Aspects in Distributed System
Infrastructure," in First AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (AOSD-2002), 2002.

[5] J. Boner and A. Vasseur, "AspectWerkz Web Site, http://aspectwerkz.codehaus.org," 2004.

http://aspectwerkz.codehaus.org,/

[6] P. Maes, "Concepts and Experiments in Computational Reflection," presented at OOPSLA,
1987.

[7] G. T. Sullivan, "Aspect-Oriented Programming Using Reflection and Meta-Object Protocols,"
Communications of ACM, vol. 44, pp. 95-97, 2001.

[8] R. Chitchyan, I. Sommerville, and A. Rashid, "A Model for Dynamic Hyperspaces," presented
at Workshop on Software engineering Properties of Languages for Aspect Technologies:
SPLAT (held with AOSD 2003), 2003.

[9] R. Chitchyan and I. Sommerville, "Composing Dynamic Hyperslices," presented at Workshop
on Correctness of Model-based Software Composition (ECOOP 2003), Darmstadt, Germany,
2003.

[10] H. Ossher and P. Tarr, "Multi-Dimensional Separation of Concerns using Hyperspaces," IBM
Research Report 1999.

[11] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton, "N Degrees of Separation: Multi-
Dimensional Separation of Concerns," presented at Proc. 21st International Conference on
Software Engineering (ICSE 1999), 1999.

[12] P. L. Tarr and H. Ossher, Hyper/J user and Installation Manual: IBM Research, 2000.
[13] L. Bergmans and M. Aksit, "Composing Crosscutting Concerns using Composition Filters,"

Communications of the ACM, vol. 44, 2001.
[14] M. Shaw, "Procedure Calls Are the Assembly Language of Software Interconnection:

Connectors Deserve First-Class Status," presented at Studies of Software Design, Proceedings
of a 1993 Workshop, 1996.

[15] D. Balek, "Connectors in Software Architectures (PhD Thesis)," in Faculty of Mathematics
and Physics. Prague: Charles University, 2002.

[16] A. Rashid, "A Database Evolution Approach for Object-Oriented Databases," in Computing
Department: Lancaster University, UK, 2000.

[17] W. Kim and H. T. Chou, "Versions of Schema for Object-Oriented Databases," presented at
14th International Conference on Very Large Databases, 1988.

[18] B. S. Lerner and A. N. Habermann, "Beyond Schema Evolution to Database Reorganisation,"
presented at Proceedings of ECOOP/OOPSLA, 1990.

[19] S. Monk and I. Sommerville, "Schema Evolution in OODBs Using Class Versioning,"
SIGMOD Record, vol. 22, pp. 16-22, 1993.

[20] A. H. Skarra and S. B. Zdonik, "The Management of Changing Types in Object-Oriented
Databases," presented at OOPSLA, 1986.

	AOP and Reflection for Dynamic Hyperslices
	
	R. Chitchyan, I. Sommerville

	1. Introduction
	2. The model for Dynamic Hyperslices
	2.1 Outline of the model
	2.2 Illustrative Example

	3. Discussion on Implementation Issues
	4. Summary and Future Work
	References

