
AOP and Reflection for Dynamic Hyperslices 
R. Chitchyan, I. Sommerville 

Computing Department, Lancaster University, Lancaster, LA1 4YR 
{rouza | is}@comp.lancs.ac.uk 

 

Abstract 

In this paper we present a Model for Dynamic Hyperslices which uses a particular Aspect-Oriented (AO) approach 
– Hyperspaces – for decomposition and reflection as a means for composition of software modules. This model 
allows for structured, dynamic, incremental change introduction and rollback, thus, supporting run-time evolution 
yet preserving component modularity. The applicability of the model is illustrated through a schema adaptation 
scenario.  

1. Introduction 
Aspect-Oriented software development (AOSD) is a methodology for software development with an 
emphasis on the separation of concerns principle. AOSD takes the next step, after OO, in developing 
well modularised software, by separating the crosscutting concerns. A significant part of work in AO 
community focuses on software evolution support [1, 2] as well as dynamic change due to run-time 
weaving of aspects [3-5]. AOSD itself provides new mechanisms, such as joinpoints, pointcuts and 
introductions, that can be used to facilitate dynamic change, but it does not explicitly provide any 
structured methodology to manage and support dynamic change in software. 

Such a structure, however, is provided by reflective approaches to software development [6, 7].  In 
reflection the main emphasis is on transparent manipulation of the base level via adaptation of the meta 
level. Meta level is a handle for controlling the base. This is particularly useful for “non-invasive” run-
time adaptation of the base code and dynamic re-configuration using meta-object protocols. 

Thus, we suggest that the meta-object protocols of reflection provide control and manipulation 
mechanism that, in combination with the modularisation and change introduction capabilities of AO, 
could lead to well-modularised, dynamically evolvable software systems.  

This approach has been adopted in development of the Dynamic Hyperslices Model briefly outlined 
and illustrated through an example in section 2 of this paper. Some implementation-related issues for 
the model are examined in section 3 and the discussion is summarised in section 4. 

2. The model for Dynamic Hyperslices 

2.1 Outline of the model 

The Dynamic Hyperslices model [8, 9] is intended to support the dynamic evolution of non-stop 
systems, i.e. systems that cannot be easily taken offline due to high costs of their downtime (e.g. 
telephone and banking), environmental safety (e.g. nuclear plants), loss of human life (e.g. life support 
systems) and such like. The model uses the Hyperspaces approach [10-12] to decompose the software 
system into “single-minded” modules (e.g. a module for Health feature of the Person object) and the 
power of reflection [6, 7] along with filters (as discussed in the  Composition Filters approach [13]) and 
architectural connectors [14, 15] for unit composition and run-time manipulation. 

The Dynamic Hyperslices aims to provide a composition mechanism that allows all the primary 
concerns, decomposed in accordance with the Hyperspaces approach, to endure in the composite 
concerns after composition. 

In the Hyperspaces approach [10-12]  the software is modelled as a set of modules (called hyperslices) 
each of which represents only one single concern. These hyperslices are then composed using matching 
units (e.g. method names) in different hyperslices as join-points. Composition-related concerns are not 
treated as first class entities, but are transitory units which integrate with primary hyperslices into a 
composed unit. Composition is a compile-time process and the final composed module has no 
recollection of its composite parts.  

We maintain the decomposition principles of Hyperspaces, but differ in our composition approach. We 
use connectors for composition. Filters form part of our composition connectors where connectors 
connect hyperslices  and not (necessarily) complete object classes or (OO) components. Our connectors 
don’t simply match provided/required services, or specify roles for connected components, but rely on 
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a dynamically updateable composition strategy to build up functionality of coarser-grain components 
(e.g. object classes) from primary hyperslices1, as well as carry out the communication between the 
member hyperslices at run time.   
In short, the model:  

• Uses the Hyperspaces decomposition approach in separating concerns into single-minded 
hyperslices (or primary concerns).  

• Requires that an additional dimension for Composition concerns is specified in each Hyperspace-
type decomposition. This additional dimension contains connector-concerns. At the composition 
stage the connector concerns are used to compose other concerns.  

• Utilises a composition connector to integrate any primary/composite concerns. Consequently, any 
interaction between other concerns is channelled through a set of connectors.  

• Provides connectors with capability to reflect upon their immediately connected concerns, while still 
keeping these internals hidden from all other connectors and hyperslices. 

The Dynamic Hyperslices approach is illustrated using an example of dynamic schema adaptation2 in 
the following sub-section. 

2.2 Illustrative Example 

Dynamic database schema adaptation is desirable since, in database-centric environments (for instance 
in banking sector), downtime of the central database system is very costly. Consequently, the ability to 
seamlessly incorporate change into a database schema at run-time promises significant financial gains.   

Figure 1(a) below depicts a certain (oversimplified) Object Database schema. The organisation that 
owns this database has kept records of its clients, the (financial) services that it provides and the 
registrations that its clients have undertaken for the provided services (e.g. Instant Savings Accounts). 
Assume the organisation wants to improve its service provision and so intends to encourage the clients 
to fill in newly introduced questionnaires about the services they use. To motivate the clients, for each 
filled in questionnaire the clients registration record will be credited with a free quantity of service (e.g. 
extra 0.1% of interest gained).  
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Figure 1: Illustration of the model for Dynamic Hyperslices. 

Using the Hyperspaces decomposition approach, we adopt the existing schema as a composite 
hyperslice CoreSchema (presented in Figure 1.a). Then, we design and develop the newly required set 
of functionality as a separate hyperslice Questionnaire (presented on Figure 1.b), that has only 
those concerns that deal with the issues related to the questionnaire. The Questionnaire hypeslice 
consists of newly introduced Questionnaire class, Client class which has only one method 
(fillQuest) to allow clients to fill in the questionnaires, and the Registration class which has a 
Boolean variable qCompleted to indicate wheather the questionnaire for the given registration has 
been completed, and a method for crediting the registration with additional free quantity of service for 
each completed questionnaire.  

                                                 
1  Thus, the composition strategy in the connectors can be perceived as a kind of “merger algorithm” for producing 

higher order artifacts. Here the “merger” is performed through run-time message manipulation within 
connectors, without physically merging the hyperslices. 

2 More about this subject can be found in [16]. 



The Connector, depicted as an oval, linking CoreSchema and Questionnaire hyperslices is the run-
time composition mechanism that combines the separate hyperslices into a composite 
CoreSchema_Questionnaire hyperslice view (presented in Figure 1.c).  However, while the general 
view of the updated schema will be that presented on the right of Figure 1 (i.e. part c), the initially 
independent hyperslices for core schema (1.a) and the questionnaire (1.b) will be retained intact as 
presented on the left side of Figure 1 (i.e. parts a, b, and the connector). The connector will retain the 
composition information which leads to the change of the schema, allowing for rollback to the previous 
version, if required. The connector is also the communication mechanism between the composed 
hyperslices as well as their clients. 

Thus, in this section we have briefly outlined the possible applicability of the Dynamic Hyperslices 
approach to a database schema evolution problem. We have discussed how with the Dynamic 
Hyperslices approach a coherent view of the evolving database schema can be retained, along with the 
details of the historical change (contained in connectors), allowing for rollback, if required. Yet, our 
approach avoids the space usage overheads and coarseness of retained change history, as is the case 
with the traditional schema versioning approaches (when several versions of the same schema are kept) 
[17, 18]. We also avoid the pitfalls of class versioning approaches [19, 20] – when a copy of each new 
version of each class is retained –  which result in overcomplicated schema and loss of  a single 
coherent view on it (due to many versions of the same class). 

3. Discussion on Implementation Issues 
The Dynamic Hyperslices model is currently under development. In this section, we talk about some 
initial ideas for its implementation. 

As discussed earlier, the composition in our model is carried out through reflective adaptation. The 
partial structure of the meta-object level of the model is presented below: 

<<interface>>

Hyperslice

Connector PrimarySlice CompositeSlice

CompositionStrategy CompositionManager
 

Figure 2: Partial structure of the meta-model for Dynamic Hyperslices 

Figure 2 states that all primary and composite slices and the connectors are hyperslices. The 
connectors, primary, and composite slices can be composed into new composite slices. The 
composition details are provided through the composition strategy which is a part of the composition 
connectors. The composition process is monitored and validated by the CompositionManager 
element of the connectors.  

The base level (i.e. application) programmer using the Dynamic Hyperslices model does not need to be 
aware of the above meta-level. The link between the base and the meta levels is established at load time 
via an AspectJ aspect which introduces and initialises the corresponding reference variables in the base 
and meta levels.  
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Figure 3: High-level workings of the model for Dynamic Hyperslices. 



The high-level working of the system, also illustrated in Figure 3 above, is as follows:  
• The Base and Meta level link is established at load time, with a meta-object created per each 

loaded class; 
• Composed slices are represented by a proxy class at the base level and a composite meta-

object at the meta level. Instantiation of a composed class results in instantiations of its 
components; 

• All calls to the base level objects are passed to their meta-objects. The meta-objects resolve 
each calls in accordance with the composition strategy used and filter it down the composition 
chain to the resolved primary slice which executes the call; 

• The topmost composite meta-object refers to the “combined” interface of all composition 
participants. This combined interface is displayed to all clients of the composite slice 

The implementation is being undertaken mainly with Java and AspectJ. It is likely that byte-code 
manipulations tools (such as BCEL or Javassist) will also be used. While our preferred option is to 
maintain module integrity all through its life cycle, including the run-time, we are aware that in 
medium to long term this approach will have noticeable performance overheads. Consequently we plan 
to consider various optimisation strategies, e.g. guarded integration of “stable” compositions into 
coarse-grained slices, with only guard checked for changes, rather then the whole composition chain; 
or permanent integration of certain changes into module structures (at the system maintainer’s 
discretion) to improve performance in critical places. 

Another challenging issue is that of instance adaptation, i.e. how to make objects consistent with the 
evolved classes. For example (going back to our example in section 2.2) how will the instances of 
Client class, created before composition of Questionnaire slice, handle requests to fill in questionnaire? 
Our present intent is to use conversion of the objects to the new definitions of their classes with a 
hyperslice for instance conversion handling. Thus, the instance adaptation strategy itself will be 
evolvable, in correspondence with the evolving schema. 

4. Summary and Future Work 
In the present paper we have suggested that reflection and AO can be used as complementary 
technologies, with reflection particularly well suited for dynamic reconfiguration and adaptation and 
AO as a modularisation mechanism.  

We have employed the above principle in the development of the Dynamic Hyperslices model, where 
we use a particular AO decomposition mechanism (i.e. that suggested by the Hyperspaces approach) in 
combination with a reflection-based composition (via our composition connectors). The applicability of 
this model has been illustrated though a schema evolution scenario.  

While the Dynamic Hyperslices model simplifies the change introduction and module (i.e. hyperslice) 
development process, it requires some consideration for the complexity of slice composition. However, 
the proposed model also provides for treating the composition concerns themselves as 1st class entities, 
similar to any other slices. Implementation and refinement of the composition mechanism is one of the 
prime tasks to us at the present time. Some other implementation related issues, besides those already 
discussed in section 3, are the development of checks for correctness of composition, consideration of 
ways of incorporating domain-specific knowledge into composition process. 
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