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Abstract 

The rate of oxygen removal from an oxygen-doped Nb membrane by hydrogen ion 

sputtering was examined by measuring the change in the sticking coefficient of H2, α. First, 

the temperature dependence of α was measured at various oxygen concentrations to 

investigate correlation between bulk oxygen concentration and α. Then the oxygen 

concentration in the membrane was adjusted to 1.5 at%, and the surface of the membrane was 

irradiated by hydrogen ions of 600 eV at 1113 K. The change in α with sputtering time was 

measured, and the reduction in bulk oxygen concentration was estimated from the extent of 
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change in α. The oxygen concentration decreased with increasing sputtering time by 

continuous surface segregation of oxygen and sputtering. The sputtering yield of oxygen on 

the Nb membrane surface was evaluated to range from 0.012 to 0.036.  

 

1.  Introduction 

Metallic membranes covered by adlayers of non-metallic impurities such as oxygen and 

sulfur have enormous permeability for atoms and ions of hydrogen isotopes [1]. Hence, such 

membranes can be applied for particle control in fusion devices [2-5]. The high permeability 

is due to the suppression of reemission of hydrogen isotopes from incident surfaces by the 

non-metallic impurities. Therefore, reduction in the impurity coverage by sputtering degrades 

the permeation capabilities. In other words, compensation for removed impurities is necessary 

to sustain the performance of membranes under sputtering.  

The present authors have reported that oxygen doping in the bulk of a Nb membrane is 

effective to sustain the permeation capability under sputtering due to continuous surface 

segregation of oxygen [6-9]. Prolonged sputtering, however, led to the degradation of 

permeability owing to the reduction in the oxygen concentration in the membrane [9]. This 

observation indicates that periodic oxygen doping is required as a maintenance work to keep 

the good permeability. A longer intervening period between oxygen doping treatments is 

better for the application viewpoint. Namely, the interval should be enough longer than that of 

discharge time. Otherwise, the permeation membranes could not be used for particle control. 

One of the key factors determining the intervening period between oxygen doping treatments 

is the sputtering yield of oxygen on membrane surfaces.  

The purpose of the present study is to develop an experimental technique to evaluate the 

sputtering yields of impurity elements segregated to the surface of membrane materials. First, 

a Nb membrane was loaded with oxygen to various bulk concentrations, and the correlation 

between bulk oxygen concentration and the sticking coefficient of H2, α, was examined by 
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permeation experiments on account that α could provide a measure of non-destructive 

evaluation of the bulk oxygen concentration. Then, the bulk oxygen concentration was 

adjusted to 1.5 %, and sputtering was carried out by hydrogen plasma at 1113 K. The 

sputtering was periodically interrupted, and α was measured to evaluate the reduction in bulk 

oxygen concentration with sputtering time. The sputtering yield was estimated from the 

number of incident hydrogen ions and that of removed oxygen atoms. The value of sputtering 

yield thus obtained was compared with results of computer simulation with EDDY (computer 

simulation of Erosion and Deposition based on DYnamic model) code.  

 

2. Experimental 

 The details of the permeation apparatus used in the present study are reported 

elsewhere [10], and only a brief description is given here. The permeation apparatus consists 

of two ultra-high vacuum chambers, i. e. upstream and downstream chambers, separated by a 

tubular specimen membrane. Both the upstream and downstream chambers are evacuated by 

turbo-molecular pumps (TMPs) and sputter-ion pumps (IPs) and equipped with analysis 

instruments such as pressure gauges and mass spectrometers. The upstream chamber 

comprises the main discharge chamber and auxiliary chamber, and Ta filaments are installed 

in the former chamber as electron sources for discharge. The latter is equipped with the 

above-mentioned analysis instruments. The discharge is carried out by applying a voltage 

between the filaments serving as cathode and the chamber wall serving as anode. The kinetic 

energy of incident ions onto the membrane surface was controlled by a bias voltage between 

the chamber wall and the specimen membrane. The specimen membrane in tubular form is 

heated ohmically, and the temperature of the membrane is measured with a thermocouple 

inserted in the membrane.  

 The specimen used was the membrane of polycrystalline Nb of 0.1 mm thickness. 

Before the measurement of sputtering yield, the correlation between bulk oxygen 
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concentration and the sticking coefficient of H2, α, was examined by permeation experiments 

at various oxygen concentrations under symmetric membrane condition, i. e. the 

recombination coefficients of H2 on the upstream and downstream surfaces are equal to each 

other. Under such condition, α can be evaluated from the permeation flux φp by the following 

relation: α = 2φp / φH2, where φH2 is incident flux of H2 on the upstream surface. The details of 

permeation experiments are described elsewhere [11].  

First, oxygen was removed from the membrane at around 1000 K by sputtering with 

hydrogen ions at H2 pressures from 0.3 to 0.6 Pa and bias voltages from 300 to 600 V. The ion 

current density was kept at 2 mA•cm-2; this ion current density corresponds to the ion flux of 

1×1016 cm-2•s-1. The sticking coefficient α  which was 2.1×10-4 at 970 K before sputtering 

reached the maximum value, 2.6×10-3, after sputtering for 320 min. Such increase in α was 

ascribed to oxygen removal form the surface and bulk of membrane caused by continuous 

surface segregation of oxygen and sputtering as described in Section 3. The value of α  after 

sputtering indicates that the oxygen concentration was about 0.03 at%. This oxygen 

concentration is considered to be determined by a balance between the rates of oxygen 

removal by sputtering and deposition by oxygen-containing impurity species in the plasma. 

Then, oxygen was introduced into the membrane step by step up to 1.5 at%, and the 

temperature dependence of α  was measured at each step of oxygen doping. The method of 

oxygen introduction is given in a previous paper [12]. 

 After the introduction of oxygen up to 1.5 at%, the membrane was sputtered by 

hydrogen plasma at 1113 K. The discharge was periodically interrupted, and the change in the 

bulk oxygen concentration was examined by measuring α. During the sputtering, the bias 

voltage and ion current density were adjusted to 600 eV and 1.1 mA•cm-2; this ion current 

density corresponds to the ion flux of 7×1015 cm-2•s-1. 

 The surface concentration of oxygen was examined by Auger electron spectroscopy 

in the Department of Advanced Energy Engineering Science, Kyushu University. Sheet type 
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specimens containing 1 and 2 at% of oxygen were prepared, and Auger spectra were 

measured at 1113 K, i. e. the same temperature as the above-mentioned sputtering 

experiments. The energy of primary electron beam was adjusted to 3 keV. The pressure of 

residual gas during the measurements was less than 1×10-7 Pa.    

 

3. Results and discussion 

 Figure 1 shows the temperature dependence of α after sputtering for given periods of 

time along with that observed for specimens of various oxygen concentrations. The open 

symbols indicate the values of α before sputtering. It is evident that α has strong dependence 

on the bulk oxygen concentration COX; it decreased radically with increasing COX. Hence, it 

was concluded that non-destructive evaluation of bulk oxygen concentration is possible by 

measuring α. This result is consistent with the observation in the previous study [12] that the 
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Fig.1  Change in α with bulk oxygen concentration and sputtering time. 
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surface recombination coefficient of deuterium decreased with increasing bulk oxygen 

concentration. The mechanism underlying the correlation between α and COX will be 

discussed in a separate paper. 

 As mentioned in the previous section, the sputtering was started at COX = 1.5 at%. 

The sticking coefficient α increased with sputtering time as shown by the filled circles in   

Fig. 1. Such increase in α can be ascribed to the removal of oxygen not only from the surface 

but also from the bulk caused by continuous surface segregation of oxygen and sputtering. 

This is because no significant change in α was observed between respective runs of the 

sputtering experiments; α should decrease in the intervals of sputtering owing to the 

resegregation of oxygen if only surface concentration of oxygen was reduced and COX kept 

the initial value.  

 The change in COX with sputtering time tS is shown in Fig. 2. The bulk oxygen 

concentration decreased with increasing tS. This plot is roughly approximated by a single 

straight line, indicating that the sputtering yield and oxygen surface coverage kept almost 
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constant value in the range of COX from 1.5 to 0.058 at %. The sputtering yield of oxygen β 

can be evaluated from the slope of the plot by the following equation: 

 -dCOX / dts = β •φin •N / f •h     (1) 

where φin is the incident flux of ions, f the factor to convert the bulk oxygen concentration 

from at% to atoms•cm-3, h the thickness of membrane, and N the number of protons 

contained in incident ions, i. e. N = 1 for H+, 2 for H2
+ and 3 for H3

+. By assuming N = 1, β 

was evaluated to be 0.036. The abundance ratio of H+, H2
+ and H3

+ in the plasma, however, 

was not measured because operation of mass spectrometer during discharge was difficult due 

to its geometrical configuration. Hence, the value of β can range from 0.012 (for each proton 

in H3
+) to 0.036 (for H+). Another factor bringing uncertainty in β is the emission of 

secondary electron by ion bombardment. Namely, the secondary electron emission leads to 

the overestimation of incident ion flux. Ion beam experiments independently carried out in 

Bonch-Bruyevich University indicated that the emission yield of secondary electron was 

0.2-0.3 for 20 keV H3
+ (0.07-0.1 for each proton). Therefore, the error induced by secondary 

electron emission is considered to be about 10 %. 

 Figure 3 shows a typical example of Auger electron spectra obtained at 1113 K for 

Nb specimen containing 1 at% of oxygen. Only peaks of Nb and oxygen were observed, and 

no other impurity was detected. The peak-to-peak height ratio of Nb (167 eV) and oxygen 

(512 eV) was measured at several different points randomly-selected on the specimen surface. 

It ranged from 0.29 to 0.36, and the average value was 0.33. By assuming that oxygen was 

present only at the top layer, the oxygen coverage θOX was evaluated from the average value 

of peak-to-peak height ratio by taking account of the escape depth of Auger electrons from Nb. 

Namely, θOX was determined by the following equation: 
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where I(O) / I(Nb) is the peak-to-peak height ratio, SNb and SO are the atomic sensitivity 
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Fig. 3  Typical example of Auger spectra obtained at 1113 K for the specimen containing
1 at% of oxygen. 

factors of Nb (1.3284) and oxygen (1.2571) at 3 keV of primary electron beam energy [13],  

x is the depth from the surface, λ the mean escape depth of Auger electrons from Nb (167 eV) 

in Nb, and δ the angle between detector and normal direction to the specimen surface. The 

escape depth λ was evaluated by the equation proposed by Seah and Dench [14]. The value of 

θOX thus evaluated was close to unity. The oxygen coverage on the specimen containing 2 at%  

of oxygen was also estimated to be ～ 1. Hence, it was concluded that θOX on the surface of 

specimen used for the sputtering experiments, COX in which was 1.5 at%, was also close to 

unity. It is appropriate to consider that θOX kept the value close to unity even under sputtering, 

because no significant reduction in plasma-driven permeation rate was observed during the 

discharge. Namely, the above-mentioned sputtering yield, 0.012-0.036, corresponds to the 

value at θOX ～  1. It appears that the rate of oxygen diffusion was high enough in 

comparison with that of sputtering under the present conditions.  

 The sputtering yield obtained experimentally was compared with the results of 

calculation with EDDY code. The physical sputtering yield can be evaluated with this code by 
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taking account of both elastic and inelastic collisions. The details of this code are described 

elsewhere [15]. In the calculation, the oxygen concentration on the surface was adjusted to 50 

at% as mentioned above and that in bulk to 1 at%. The binding energy of oxygen on the 

surface was adjusted to 7.2 eV as a summation of the heat of adsorption of O2 molecule on the 

surface of group 5 metals (4.6 eV for 1/2O2) [16] and the dissociation energy of O2 (2.6 eV 

for 1/2O2) [17]. The dominant incident ion is assumed to be H+. The calculation was carried 

out with various incident energies from 200 to 600 eV to simulate the incidence of 600 eV H+, 

H2
+ and H3

+ ions and incident angles from 0° to 89° against the normal direction to the 

surface. The sputtering yield was more sensitive to the incident angle than the incident energy, 

and it ranged from 0.0038 to 0.0058 at 0° and 0.036 to 0.050 at 89°. The values of sputtering 

yield obtained experimentally, 0.012-0.036, fall in this range. Therefore, it is appropriate to 

consider that both the experiments and calculations are reliable, and physical sputtering is the 

dominant process of oxygen removal from the membrane surface under the present conditions. 

The characterization of incident ions, i. e. incident angle distribution and the abundance ratio 

of H+, H2
+ and H3

+ ions, is necessary for more detailed discussion.  

 

4. Conclusions 

(1) The sticking coefficient of H2, α, on Nb surface sensitively decreased with increasing 

bulk oxygen concentration and could be used as a reliable measure for non-destructive 

evaluation of bulk oxygen concentration. 

(2) The surface oxygen coverage was close to unity at 1113 K and 1-2 at% of bulk 

concentration. 

(3) The sputtering yield of oxygen on Nb surface by hydrogen ions was estimated to be 

0.012-0.036 under the bias voltage of 600 eV. 

(4) The results of computer simulation with EDDY (computer simulation of Erosion and 

Deposition based on DYnamic model) code was in reasonable agreement with the 
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experimentally-obtained sputtering yield. 
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