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SUMMARY 
The constraint satisfaction problem is constituted by several 

condition formulas, which makes it difficult to be solved. In this 
paper, using the Hopfield neural network, a new method is pro
posed to solve the constraint satisfaction problem by simplifying 
its condition formula. In this method, all restriction conditions of 
a constraint satisfaction problem are divided into two restrictions: 
restriction I and restriction II. In processing step, restriction II is 
satisfied by setting its value to be 0 and the value of restriction 
I is always made on the decreasing direction. The optimum so-
lution could be obtained when the values of energy, restriction I 
and restriction II become 0 at the same time. To verify the valid
ity of the proposed method, we apply it to two typical constraint 
satisfaction problems: N-queens problem and four-coloring prob
lem. The simulation results show that the optimum solution can 
be obtained in high speed and high convergence rate. Moreover, 
compared with other methods, the proposed method is better 
than other methods. 
key words: Constraint satisfaction problem, Combinatorial op
timization problem, Hopfield neural network, N-queens problem, 
Four-coloring problem 

1. Introduction 

A constraint satisfaction problem is a problem to find 
a consistent assignment of values to variables. It is 
one kind of the combinatorial optimization problem. A 
number of commonly encountered problems in mathe
matics , computer science , molecular biology, manage
ment science , seismology, communications, and opera
tion research belong to a class of combinatorial opti
mization problems [1]. The combinatorial optimization 
problem is a very difficult problem, it could take dozens 
of years to obtain one optimum solution even if the lat
est supercomputer is used [2] [3] . 

The idea of using neural network to provide solution 
originated in 1985 when Hopfield and Tank demon
strated that the traveling salesman problem could be 
solved using the Hopfield neural network [4] [5]. Since 
Hopfield and Tank's work [4] [5] , there has been grow
ing interest in the Hopfield neural network because of 
its advantages over other approaches for solving opti
mization problems. The work by Wilson and Pawley [6] 
showed that the Hopfield neural network often failed to 
converge to valid solutions. Takefuji et al. [7] [8] modi
fied the motion equation in order to guarantee the lo-
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cal minimum convergence. However, with the Hopfield 
neural network, the state of system is forced to converge 
to a local minimum. In other words , the neural network 
cannot always find the optimum solution. Therefore , 
several neuron models and heuristics such as hysteresis 
binary neuron model [9] , neuron filter [20], the hill
climbing term and omega function [10] , Lagrange re
laxation [ 11] and pots spin [12] have been proposed to 
improve the performance of the network. Despite the 
improvement of the performance of the Hopfield neural 
network over the past decade, this model still has some 
basic problems [13][14] .  

A constraint satisfaction problem has several con
straint conditions , and this makes it difficult to be 
solved. In this paper we propose a new method to solve 
the constraint satisfaction problem using the Hopfield 
neural network. In this method, all the restriction con
ditions of a constraint satisfaction problem are divided 
into two restrictions: restriction I and restriction II. In 
processing step, restriction II is satisfied by setting its 
value to be 0 and the value of restriction I is always 
made on the decreasing direction. The optimum solu
tion could be obtained when the values of energy, re
striction I and restriction II become 0 at the same time .. 
To verify the validity of the proposed method, we ap
ply it to two typical constraint satisfaction problems: 
N-queens problem and four-coloring problem. The sim
ulation results show that the optimum solution can 
be obtained in high speed and high convergence rate. 
Moreover, the comparison results show that the pro
posed method is better than other methods. 

The rest of this paper is organized as follows. In sec
tion 2, we briefly introduce the Hopfield neural network 
and its relevant components for constraint satisfaction 
problems. Section 3 presents the details of the pro
posed method and its formulization method. , The sim
ulation results of testing the proposed method in real 
constraint satisfaction problems are described in sec
tion 4 for N-queens problem and in section 5 for four
coloring problem. Finally, the paper is concluded with 
general comments concerning the proposed method and 
its effectiveness to constraint satisfaction problems .. 

2. The Hopfield Neural Network for Con
straint Satisfaction Problem 

In this section, we briefly introduce the Hopfield neu-
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Fig. 1 The conceptual figure of the proposed method. 

ral network and its relevant components for constraint 
satisfaction problems . 

The Hopfield neural network for constraint satisfac
tion problems consists of two elements named neuron 
unit and motion equation. The neuron unit is a col
lection of simple processing elements called neurons . 
Each· neuron has an input potential Ui and an output 
potential V;. The dynamic behavior of the network is 
described by the following motion equation with a par
tial derivation term of the energy function (E) and a 
decay term with a time constant T [4][5]. 

8E(V1, V2, · · · , VN) 
8V; (1 )  

Takefuj i  et al. showed that the decay term increases 
the energy function under some conditions [8]. They 
modified the motion equation in order to guarantee the 
local minimum convergence. 

8E(V1, v2, · · · , vN) 
8V; 

(2) 

To compute the input potential of neurons, the time
idependent method is used in which the input potential 
of neurons at time t + 1 depends on the value at time t 
[8] . 

(3) 

The output is updated from Ui using a non-linear 
function called neuron model . For example , according 
to the McCulloch-Pitts binary neuron model [30] , it can 
be obtained: 

{ 1 if ui > o 
Vi = 0 otherwise (4) 

Each neuron updates its input potential according 
to the computation rule (Eq. (3) ) and sends its out
put state in response to the input according to the in-
put/output function (Eq.(4)) . . 

3. The Proposed Method to Solve Constraint 

Satisfaction Problem Using the Hopfield 

Neural Network 

In this section, we describe a new method to solve con
straint satisfaction problem using the Hopfield neural 
network. Note that·the process in the Hopfield neural 
network is sequential. 

3 . 1  Simplification of Constraint Satisfaction Problem 

A constraint satisfaction problem usually consists of 
several restriction condition formulas . In the proposed 
method,  we classify these restriction condition formulas 
into two kinds: restrictions I and restrictions II . The 
conceptual figure of this proposed method is shown in 
Fig.l. Restriction I always is carried out in the de
creasing direction; restriction II are satisfied by setting 
its value to be 0 in processing step , in other words, if a 
certain value of restriction II increases , only the same 
quantity will decrease, and it returns to 0 surely. The 
optimum solution can be calculated when the values 
of both restrictions become 0. State change is sequen
tially performed for every neuron. If each neuron is in 
the state of satisfying restrictions, it can be stabilized 
in the state, on the contrary, it becomes unstable if it 
is in the state where it does not satisfy the restrictions. 

Although the constraint satisfaction problem is in the 
tendency to become complicated since it consists of sev
eral condition formulas , if some condition formulas are 
satisfied in the processing, the problem will be simpli
fied and it will become easy to draw a solution. More
over, the procedure at the time of drawing the optimum 
solution by becoming a unary formula decreases , and it 
is thought that it becomes possible to draw the opti
mum solution in a short time. 

3 .2  Formulization for Restrictions I and II 

As discussed above, the formula of a constraint sat
isfaction problem consists of two restriction condition: 
restriction I and restriction II in the proposed method. 
Next , we give the mathematic description for the pro
posed method. 

[1] For a certain neuron (i) in time (t), the value of 
restriction I is assumed to be aij ( t), of restriction 
II to be bik(t). Therefore, the input of neuron (i) 
can be described as: 

Ui ( t + 1) = restriction I + restriction I I 
= aij(t) + bik(t) (5) 

[2] In time (t), the energy function is assumed to 
be L;!1 Pj(t) for restriction I ,  '2:;�1 Qk(t) for 
restriction II, and, Pj(t) = L;�=l aij(t), Qk(t) = 
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L:�=l bik (t ) .  So , the energy function of network 
can be given by 

M M' 

E = 2:Pj(t) + LQk(t) 
j=l k=l 

(6) 

Here, Lis the number of neurons , (1, 2, · · · ,i, · · · ,L);M, 
neurons number of restriction I (1, 2 ,  · · ·, j, · · ·, M) ; 
M', neurons number of restriction II (1, 2, · · ·, k, · · ·, M'). 

Thus , according to the definition above, the following 
conditions will be satisfied for restrictions I and II in 
the proposed method. 

[Restriction I ] Restrictions I is formulized as fol
lowing. 

M M 

LPi(t+a) - LPi(t)::::; 0 
j=l j=l 

(7) 

This formula makes the energy function always go 
in the reduction direction. However, t +a is the 
time when the processing in the Hopfield neural 
network is sufficient in time t. 

(Restriction ll ] Restrictions II is formulized as fol
lowing. 

(8) 

When a step of processing is carried out about neu
ron (i), this formula presents that the value of re
strictions II at· time t + 1 is the same as that at 
time t, or less than it. Even if bik(t) of a neuron 
increases temporarily according to the conditions 
of restrictions I , or the conditions of the restric
tions II of other neurons , while carrying out one 

M' 
loop , it returns to the state of I:k=l Qk (t ) = 0 
again. Therefore , it is not necessary to formulize 
like restriction I so that the energy function may 
be made to go in the reduction direction. 

3.3 Algorithms 

The following procedure describes the algorithms for 
solving constraint satisfaction problems based on the 
proposed method. Note that t is the step number and 
Llimit is maximum number of iteration step. 

Step 1. Setteing Parameters. 

(a) Set t = 0, D.t = 1, and set Llimit and other 
parameters. 
(b) Randomize the initial value of Ui (0) for i = 

1, 2 , ···, N. 
(c) evaluate the values of 1/i(O) according to 
Equ.(4) . 

Step 2. Calculating Network Energy. 

for t = 1 to Llimit, do: 
(a) initialize Ui = O, fori = 1, 2, · · ·, N. 
(b) Update the Ui(t + 1) and 1/i(t + 1) for i 

1, 2 , ···, N. 
(c) Calculate the energy E according to Equ.(6). 
(d) Check system energy. If E = 0 (the optimum 
solution can be obtained) , end the procedure. 

4. Application to N-queens Problem 

In this section, the proposed method is applied to one 
of the optimization problems: N-queens problem. 

4.1 About N-queens Problem 

In 1992 , Takefuj i presented a neural network .for· N
queens problem with the hysteresis binary neuron 
model [31]. Mandziuk and Macukow presented a neu
ral network using the continuous sigmoid neuron model 
[28] . In 1995 , Mandziuk improved their neural network 
by using the binary neuron model [29] . In 1994 , Ohta 
et al. presented the neural network using the binary 
neuron model with the negative self-feedback [32]. In 
1997, Takenaka et al. presented the neural network us
ing the maximum neuron model with the competition 
resolution method [21]. 

N-queens problem is the problem to assign N queens 
with no collision in N x N chess board. Queen is the 
piece used in chess. Queen moves for vertical, horizon
. tal and diagonal freely. One of the optimum solution 
of 5 queens problem is shown in Fig.2. To express the 
problem with neurons , we transform Fig.2 to expres
sion with 5 x 5 neurons as shown in Fig.3. The output 
of the neuron corresponds to an existence of a queen. 
When a queen is placed , an output of the neuron is 1. 
An output where no queen is placed is 0. 

4.2 The Motion Equation and Energy Function 

The motion equation for the ijth neuron is given by: 

Uij ( t + 1) = ( restriction I + restriction I I ) 

= -A (t Vik - 1) - A (t Vki - 1) 
k=l k=l 

-B L Vi-k,j-k 
l<::,_i-k,j-k<::,_N(k#-0) 

-B L Vi-k,j+k 
l<::,_i-k,j+k<::,.N(k#-0) 

+1/ij(t) (9) 

where, A, Bare positive coefficients. In equation (9), 
the first term means the constraint that only on queen 
must be placed on row; the second term, on column; the 
third term, on lower right diagonal; the fourth term, 
on lower left diagonal. Among them, the first, second 
terms are corresponding to resticiton I , and the third, 
fourth terms are corresponding to restriction II . The 
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Fig. 2 An example of N-queens problem for N=5. 

0 0 1 0 0 

1 0 0 0 0 

0 0 0 1 0 

0 1 0 0 0 

0 0 0 0 1 

Fig. 3 Example of 5 x 5 neurons' configuration. 

fifth term expresses whether there is a queen or not 
before updating the neuron state. 

According to the Uij from the equation (9) , the value 
of Vii is defined by 

if Uii > 0 
otherwise 

The energy function is given by 

(10) 

N N { ( )} + B L L Vij L Vi-k,i+k 
i=l j=l l�i-k,i+k�N(k#O) 

According to equation (11) , the first term becomes 
zero if one queen is placed in every row. The sec
ond term becomes zero if one queen is placed in every 
column and the third, fourth term become zero if no 
more than one queen is placed on any diagonal line. 
In overall, the values of the energy function always be
come positive or 0, and it tends to increase if all con� 
straints are not fulfilled. Therefore, if the neuron state is 
changed along the decreasing direction of energy func
tion, it is possible that the energy becomes zero. This 
is the optimization solution when the energy becomes 
zero. 

4.3 Simulation Results 

4.3.1 The Change Situation of Energy 

This simulation aims to observe the change situations 
of system energy, restriction I and restriction Il until 
a optimum solution is obtained. The parameters are 
set to be: A = 1, B = 1, Uimit = 1000. In the initial 
state we let Vii = 0 for all ij, and the experiments for 
10-500 queens are carried out. Here, the initial state 
represents whether a neuron is firing or not before up
dating in the network , and whether a queen is placed 
or not in the chess. On a mathematic expression, it 
means to initialize the Vii by 0 or 1. A change situa
tion of the energy when carrying out a simulation with 
such an initial state is shown in Fig.4. It illustrates the 
changes of energy, restriction I and restriction Il in one 
step (all neurons are sequentially processed by a unit 
of 1 time). It can be seen easily that Fig.4 illustrates 
the same result as discripted in the conceptual figure 
(Fig.1). It turns out that restrictions Il is satisfied by 
setting its value to be 0 and restrictions I is brought in 
the reduction direction. The optimum solution can be 
obtainted when the energy value of restriction I and 
restriction Il become 0 at the same time. 

250 

200 

(11) 

Number of Steps 

Energy -+
Restriction I ···»·· 
Restriction D · · • · 

Fig. 4 The change situation of energy. 
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Table 1 Simulation results of N-queen problems. 

Queens Neuron filter[20] Takefuji[7] Maximum NN[21] The proposed method 
N Conv.(%) Ave.step Conv.(%) Ave.step Conv.(%) Ave.step Conv.(%) Ave.step 
10 31 159.3 31 162.8 
20 51 286.2 51 290.6 
30 52 246.7 52 253.9 
50 86 301.2 86 308.4 

100 98 288.7 98 300.9 
150 96 400.6 96 411.0 
200 94 508.8 93 517.6 
300 86 597.1 85 616.8 
400 70 659.2 69 677.8 
500 69 748.4 67 756.8 

4.3.2 The Result of Comparison with Other Methods 

This simulation aims at evaluating the validity and ef
fectivity of the proposed method by comparing with the 
other methods. The other methods include neuron fil
ter [20] , Takefuji method [7] and Maximum NN method 
[21] . 

In this simulation, the parameters are set to be: 
A = 1, B = 1, Uimit = 1000. 100 simulations runs with 
different initial states are preformed for 10-500 queens. 
We use the convergence rate and the number of aver
age steps of each solution method for comparison. Here, 
the number of average steps is the average value of the 
number of steps required for the convergence. The con
vergence rate expresses the average convergence times 
on the optimum solution during 100 trial. The simula
tion results are shown in Table 1, where the convergence 
rate and the average number of steps required for the 
convergence are summarized. 

As shown in Table 1, the convergence rate in the pro
posed method is all 100% , but , in the other methods 
they are not so well. Furthermore, the required average 
steps for the proposed method are much less than the 
other methods. For example when N =100 , the average 
steps are 288.7, 300.9 and 174.2 for Neuron filter [20] , 
Takefuj i [7] and Maximum NN [21] , respectively, but 
the proposed needs only 43 steps for the 100% conver
gence rate. It demonstrates that the proposed method 
increases the convergence rate and reduces the aver
age steps compared with the other methods. That is 
to say, the proposed method performs better than the 
other methods. 

5 . .  Application to Four-Coloring Problem 

5.1 About Four-Coloring Problem 

A mapmaker colors adjacent countries with different 
colors so that they may be easily distinguished. This is 
not a problem as long as one has a large number of col
ors. However, it is more difficult with a constraint that 
one must use the minimum number of colors required 
for a given map. It is still easy to color a map with a 

26 71.2 100 16.4 
47 142.0 100 23.5 
53 148.3 100 22.8 
78 176.6 100 31.6 
99 174.2 100 43.0 
95 151.8 100 62.1 
95 152.7 100 87.6 
95 152.8 100 104.6 
87 152.6 100 165.8 
86 139.4 100 251.5 

small number of regions. In the early 1850's , Francis 
Guthrie was interested in this problem, and he brought 
it to the attention of Augustus De Morgan. Since then 
many mathematicians, including Arthur Kempe,  Pe
ter Tait , Percy Heawood, and others tried to prove 
the problem that any planar simple graph can be col
ored with four colors. A four-coloring problem is de
fined that one wants to color the regions of a map in 
such a way that no two adjacent regions (that is, re
gions sharing some common boundary) are of the same 
color. In August 1976, Appel and Haken presented 
their work to members of the American Mathematical 
Society [24] . They showed a computer-aided proof of 
the four-coloring problem. However, their coloring was 
based on the sequential method so that it took many 
hours to solve a large problem. Their computation time 
may be proportional to O(x2) where x is the number 
of the regions. Moreover, few parallel algorithms have 
been reported. Dahl [25] , Moopenn et al. [26] , and 
Thakoor et al. [27] have presented the first neural net
work for map K-colorability problems. 

Fig. 5 An example of 7-region map. 

I [�] Z2 0 I 0 0 ;g 3 0 0 I 0 
.!a 4 0 0 0 I 
9 5 0 0 I 0 6 0 I 0 0 7 I 0 0 0 

1 234 567 
I 0100100 

2 I 0 I I I 0 0 3 0101 -001 4 0 I I 0 I I I 5 1 101000 6 0001101 7 0011010 
Fig. 6 Neural representation of the 7-region map. 

In order to map the four-coloring problem to the Hop
field neural network, a x x 4 two dimensional neural 
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array is needed, where x is the number of regions to be 
colored , and a single region requires four neurons for 
the single-color assignment. 7-region map are colored 
by four colors as shown in Fig.5. If red, yellow, blue and 
green are represented respectively by 1000, 0100, 0010 
and 0001, the neural representation for the problem 
is given in Fig.6, where a 7 x 4 neural array is used. 
Fig.6 also shows the 7 x 7 adjacency matrix D of the 
seven-region map, which gives the boundary informa
tion between regions , where Dxy = 1. 

5.2 The Motion Equation and Energy Function 

According to the four-coloring problem constraint con
ditions , we can obtain the motion equation for c neuron 
as 

Uxc(t + 1) = (restriction I+ restriction II) 
4 N 

= -A(LVxk - 1) -BLDxyVyc 
k=1 y=1 

+Vxc(t) + dAxc (12) 

where , A and B are positive constants,  D is the adja
cency matrix, and Vxk is the output of kth neuron in 
the x region. 

And depending upon the U,c, the Vxc can be deter
mined by 

(Uxc > 0) 
(Uxc :S: 0) 

( 13) 

In the equation (12) ,  the first term represents the row 
constraint in the neural array, which forces one region 
to be colored by one and only one color. It corresponds 
to restriction I in this paper. In the case that no color 
neuron is firing, 2::!=1 Vxk = 0, then -(2::!=1 Vxk -1) = 
+ 1. It suggests that the value of U is changed on the 
positive direction. That is, V is drawn towards firing 
direction. In the case that only one color neuron is 
firing, 2::!=1 Vxk = 1, then -(2::!=1 Vxk - 1) = 0. It 
suggests there is no change in U. Similarly, in the case 
that two or over two color neurons are firing, the value 
of U is changed in the negative direction. That is , V is 
drawn towards non-firing direction. 

The second term represents the same color neuron 
cannot be arranged in the adjacent regions. It corre
sponds the restriction II in this paper. Dxy Vyc becomes 
+ 1 only in the case that the same color neuron is firing 
in the two adjacent regions x and y. This is because 
Dxy = 0 if region x, y are not adjacent regions and 
Vyc=O if the same color neurons are colored. Thus, it 
can be said that the second term is the sum of firing c 
neuron in the region adjoined with x region. Since -B 
is multiplied to this sum, the more this sum is, the more 
V is drawn towards non-firing direction eventually. 

The third term represents the color neuron state be
fore updating. In addition, since state change in the 

proposed method is sequentially performed for every 
neuron, the value of Vxc at time (t) and time (t + 1) is 
intermingled. 

The fourth clause dAxc, which is a special term, has 
the motion to fire a neuron of some region (the round 
region of middle in Fig. 7) forcibly when surrounding of 
this region is colored by all four colors as shown in Fig. 7, 
and it is impossible to also place all the color. That is ,  
when there is no color in the region in the convergent 
state, the neural network gives a positive big value to 
dAxc, and make a neuron to fire forcibly. 

Fig. 7 An example for a colorless state. 

The energy function which arranged in the four color 
problem is given by the following formula using the en
ergy function of the Hopfield neural network. 

E= 

1 N N 4 

+2BLLLDxyVxYyc (14) 
x=1y=1c=1 

The first term is the constraint that a region is col
ored by one and only one color. If the constraint is ful
filled, the value of the first term becomes 0, otherwise, 
positive value. The second term is the constraint that 
adjoined region cannot be colored by the same color. 
If the constraint is satisfied, the value of the first term 
becomes 0, otherwise, positive value. On the whole , 
the energy function takes only positive value or 0, and 
its value can increase if restrictions are not satisfied. 
Therefore , the energy function of the Hopfield neural 
network can be changed on the decreasing direction if 
restrictions are satisfied. When the values of two re
strictions become 0, the value of the energy becomes 0 ,  
too. Thus, the optimum solution can be obtained. 

5.3 Simulation Results 

In this section, we apply the proposed method to the 
four-coloring problem. Simulations are performed on 
three kinds of maps: 48 regions (American Map) , 110 
regions, and 210 regions. The parameters are set to be: 
A =  1, B = 1, Llimit = 1000. 
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5 .3 . 1 The Change Situation of the Energy 

40 

This simulation aims to observe the change situations 
of system energy, restriction I and restriction II until a 
optimum solution is obtained. First , in the initial state 

we let V.,c =0, the change state of energy, restriction 
I and restriction II are illustrated in Fig .8 ,  Fig .9 and 

Fig . 10 ,  respectively. The initial value of dA.,c is set to 
be 0, and after 10 steps (It is judged as the convergence 
state of the Hopfield neural network. ) ,  it is. set to be 100. 
As shown in Fig .8 ,  the minimum value can be obtained 
in 1 step for the 48 regions. Fig .8 ,  Fig.9  and Fig . 10  
illustrate that restriction I i s  drawn on the decreasing 
direction and the restriction II is always satisfied until 
the convergence state of the Hopfield neural network is 
obtained . It turns out that this is in agreement with 
that explained in Section 3 (see Fig. 1 ) .  

5 .3 .2  The Comparison with Other Methods 

Next , in order to compare the proposed method with 
the other methods , the simulations are performed 100 
times from different initial state. As ·examples , the 
other methods include Takefuj i method [8] and Yamada 
method [23] . The datas of Takefuji method and Ya
mada method used in this paper are from the data car
ried by the paper [23] . The regions that can be com
pared are the map of 48 regions and 210 regions ,  and 
we use the convergence rate and the number of average 
steps of each solution method for comparison. Here, 
the number of average steps is the average value of the 
number of steps required for the convergence. The con
vergence rate expresses the average convergence times 
on the optimum solution during 100 trial .  The simula
tion results are shown in Table 2 .  

Table 2 shows that the 100% convergence rate can be 
obtained in all solution methods . It turns out that the 
minimum value can be calculated with the fewest num
ber of steps for the 48 regions map. However, as shown 
in Fig.8 ,  the minimum value can also be calculated at 
only one step by the proposed method depending on 
the initial state of neurons . By the simulation result 
of 210 regions,  the minimum value can be calculated 
with the fewest number of steps . It depicts that the 
proposed method is better than the other methods . 

Moreover, the average CPU time at the time of con
vergence obtained by the proposed method is shown in 
Table 2, too. It suggests that the four-coloring prob
lem with which it dealt in this paper can be solved in 
several seconds . 

In addition , the computer to perform the simulations 
in this paper is CPU: Pentium ill 800Hz; OS: Winodws 
2000; and the compiler is performed in the environment 
of VC++6.0 .  

6 .  Conclutions 

In this paper, we proposed a new method to solve the 
constraint satisfaction problems using the Hopfield neu
ral network. In this method, all the restriction condi
tions of a constraint satisfaction problem are divided 
into two restrictions: restriction I and restriction II. 
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Table 2 Simulation results of four-coloring problems. 

Regions Takefuji's method [8] Yamada's method [23] Proposed method 
N Conv.(%) Ave.step Conv.(%) 
48 100 89 100 

llO - - -
210 100 769 100 

In processing step , restriction II is satisfied by setting 
its value to be 0 and the value of restriction I is al
ways made on the decreasing direction . The optimum 
solution could be obtained when the values of energy, 
restriction I and restriction II become 0 at the same 
time. As two typical examples of constraint satisfac
tion problems, the proposed method was demonstrated 
by simulating the N-queens problem and four-coloring 
problem. The simulation results showed that the pro
posed method could increase the convergence rate and 
reduce the average steps and perform better than the 
other methods. 

References 

[1] R. Garey and S. Johnson," Computers and Intractability: A 
guide to theory of NP-completeness, " Freeman and Com
pany, 1991. 

[2] G.Brassard, P.Bratley, "Algorithmic theory and practice," 
Prentice-Hall Inc., 1988. 

[3] N. Wirth," Algorithms + Data Structures = Programs," 
Prentice-Hall Inc., 1976. 

[4] J.J.Hopfield and D.W.Tank, ""Neural" computation of de
cisions in optimizatiton problems,"' Biol.Cybern., No.52, 
pp.l41-152, 1985. 

[5] J.J.Hopfield and D.W. Tank, "Computing with neural cir
cuits: A model," Science, No.233, pp.625-633, 1986. 

[6] G.V. Wilson and G.S. Pawley," On the stability of the travel
ing salesman problem algorithm of Hopfield and Tank," Bioi. 
Cybern., Vol.58, pp.63-70, 1988. 

[7] Y.Takefuji," Neural Network Parallel Computing," Kluwer 
Publishers, 1992. 

[8] Y.Takefuji and K.C.Lee, "Artificial neural networks for four
coloring map problem and K-Colorability problems, " IEEE 
Trans. Circuits & Syst., 38, 3, pp.326-333, 1991. 

[9] Y. Takefuji and K. C. Lee," An artificial hysteresis binary 
neuron: A model suppressing the oscillatory behaviors of 
neural dynamics," Bioi. Cybern., Vol.64, pp.353-356, 1991. 

[10] Y. Takefuji and K. C. Lee," A parallel algorithm for tiling 
problems," IEEE Trans., Neural Networks, Vol.l, No.1, 
pp.l43-145, March 1990. 

[ll] Z. L. Stan," Improving convergence and solution quality 
of Hopfield-type neural networks with augmented Lagrange 
multipliers," IEEE Trans., Neural Networks, Vol.7, No.6, 
pp.l507-1516, 1996. 

[12] S. Ishii and S. Masaaki, "Chaotic potts spin model for com
binatorial optimization problems," Neural Networks, Vol.lO, 
pp.941-963, 1997. 

[13] B. S. Cooper, "Higher order neural networks-Can they help 
us optimize?" Proc. Sixth Australian Conference on Neural 
Networks (ACNN ' 95), pp.29-32, 1995. 

[14] D. E. Bout and T. K. Miller, "Improving the performance 
of the Hopfield-Tank neural network through normalization 
and annealing," Bioi. Cybern., Vol.62, pp.l29-139, 1989. 

[15] Y. Takefuji, S. Oka, "Neural Computing for Solving In
tractable Problems, " The journal of the Institute of Elec-

Ave.step Conv.(%) Ave.step CPU time (sec.) 
6 100 12.91 0.0176 
- 100 54.17 0.1827 

49 100 ll.22 0.1679 

tronics, Information, and Communication Engineers, Volume 
79, Number 9, 1996. 

[16] H.N.Schaller," Constraint satisfaction problem," Optimiza
tion Techniques, edited by C.T.Leondes, San Diego: Aca
demic Press, pp. 209-248, 1998. 

[17] E.Aarts and J .Korst, "Simulated Annealing and Boltzmann 
Machines," Chichester: John Wiley and Sons, 1989. 

[18] Y.Takefuji, "Neural Network Parallel Computing," Boston: 
Kluwer Academic, 1992. 

[19] K.Smith, M.Palaniswami and M.Krishnamoorthy," Neural 
techniques for combinatorial optimization with application," 
IDDD Trans, Neural Networks, Vol.9, pp.l301-1318,1998. 

[20] Y.Takenaka, N.Funabiki, and T.Higashino, "A proposal of 
neuron filter: A constraint resolution scheme of neural 
networks for combinational optimization problem," IEICE 
Trans. Fundamentals, Vol.E83-A, No.9, pp.l815-1823, 2000. 

[21] Y.Takenaka, N.Funabiki, and S.Nishikawa, "A proposal of 
competition resolution methods on the maximum neuron 
model thorough N-Queen problems," J.IPSJ, Vol.38, No.ll, 
pp.2142-2148, 1997. 

[22] Kedem Z.M., Palem K.V.,Pantziou G.E., Spirakis P.G. 
and Zaroliagis C.D.," Fast Parallel Algorithms for Coloring 
Random Graphs," Lecture Notes in Computer Science 570, 
Graph-Theoretic Concepts in Computer Science, pp.l35-147, 
Spinger-Verlag , 1992. 

[23] Yamada et al, "Four-coloring probelm algorithm using 
the maximum neural network," IEICE Technology report, 
NLP97-144,NC97-96,pp.59-66, 1998. 

[24] K. Appel and W. Haken, "The solution of the four-color-map 
problem," Scientific American, pp.l08-121, Oct.l977 

[25] E.D. Dahl," Neural network algorithm for an NP-complete 
problem: Map and graph coloring," in Proc. First Int. Conf. 
On Neural Networks, Vol.III, pp.ll3-120, 1987. 

[26] A. Moopenn et al., "A neurocomputer based on an analog
digital hybrid architecture," in Proc. First lnt, Conf. Neural 
Networks, Vol. Ill, pp.479-486, 1987. 

[27] A. P. Thakoor et al., "Electronic hardware implementations 
of neural networks," Appl. Opt. Vol. 26, pp. 5085-5092, 1987. 

[28] J. Mandziuk and B. Macukow: "A neural network designed 
to solve the N-queen problem", Boil. Cybern, Vol.66, pp.375-
379, 1992. 

[29] J. Mandziuk," Solving the N-queen problem with a binary 
Hopfield-type network," Boil. Cybern, Vol.72, pp.439-445, 
1995. 

[30] W. S. McCulloch and W. H. Pitts:" A logical cauculus of 
ideas immanent in nervous activity," Bull. Math. Biophys, 
Vol.5, pp.ll5-133, 1943. 

[31] Y. Takefuji and K. C. Lee," An artificial hysteresis binay 
neuron: A model suppressing the oscillatory behaviors of 
dynamics," Bioi. Cybern., Vol. 67, pp.243-251, 1991. 

[32] M. Ohta, A. Ogihara, and K. Fukunaga, "Binary neural 
network with negative self-feedback and its application to 
N-queens problem," IEICE Trans. Inf. & Syst., Vol.E77-D, 
No.4, pp.459-465, 1994 

- 8 -


