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Abstract 

We studied the acceleration conditions in the small but fairly energetic flare of May 21 ,  1984 

at 13 : 26 UT. The most pronounced aspect of this flare was a series of 13 microwave I x-ray 

spikes, each lasting for about 0 . 1  s. A previous study has shown that each of these was due to a 

series of successive sudden formations of small plasma knots of high energy particles. Each of 

these knots lost its energy in about 50 ms. In the present study we show that these knots can 

originate by the process of x-type (3-D) flux tube coalescence. The predicted rise time (30 to 50 

ms) and energy are in good agreement with the observationally derived parameters. 

1. I ntroduct ion 

On May 21 ,  1984 at  13  : 25 UT a solar flare was observed in  microwavec and hard x-rays, 

which was in many respects remarkable (Kaufmann et al., 1985). An interesting aspect of the 

flare was its short duration (only one minute in x·and radio-waves) but most remarkable was one 

of its flare burst which lasted for about three seconds. At millimeter waves (90 GHz) this short 

burst was the strongest burst of the flare. In x-rays it emitted at higher energies than the other 

bursts of the flare complex, with a noticiable radiation component above 100 keV. Its most 

interesting aspect was that at 90 GHz the burst consisted of about 13 short-lived spikes, each with 

a lifetime of about 0.1 s. The spikes were about symmetrical in their time profiles, having 

rise-and decay-times of about 60 ms. 

Several explanations have been proposed for this high-eneray component of the flare (Kauf­

mann et al. ,  1985,1986; De Jager et al. ,  1987) . In the latter paper it was shown that each of the 

100 ms spikes could be explained by the following emission model : The individual spikes, both 

in microwaves and in hard x-rays were produced by the same electron population: the x-rays by 

their bremsstrahlung, and the microwaves by their gvrosynchrotron emission. The emission 

sources were small, with a characteristic size of about 350 km. They had an electron density of 

about 10 1 1  em -s, a 'temperasure' of 5 x 108 K and a magnetic field of about 1400-2000 G. Energy 
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injection should have occurred in less than about 50 ms (as judged from the rise times of the 

spikes) . It could be shown that plasma knots with the character described above should loose 

their energy by saturated convective flux (collisionless conduction) in about 30 ms, a time which 

is good agreement with the observed decay times of the spikes (60 ms). The fact that 13 spikes 

were observed in a rapid succession then leads automatically to the conclusion that this was due 

to the successive formation of 13 plasma knots as described above. These successive energiza­

tions could occur by successive interaction between many small flux tubes ('flux threads') which 

are assumed to occur in the flaring region and which interact, a process that way occur by 

external forces acting on and deforming the system of flux threads. Since the thermal energy of 

the flare knots was about 1026 erg, this must be the amount of released in each of the.flux-thread 

interactions. 

Hence, the emission mechanism of the bursts can be understood. The problem remains how 

the bursts originated. It will be shown in this Letter that this aspect can be explained by the 

mechnism of x-type (3-D imensional) flux tube coalescense, a mechanism presently being studied 

by one of.the authors (Sakai and de Jager, 1990.). We note here that the mechanism of flux-tube 

coalescence has been described and studied earlier (see review by Sakai and Ohsawa, 1987), but 

so far only for the one-and two-dimensional cases. In the present (x-type) case we are dealing 

with two crossed flux·tubes, interacting in one point, a fundamentally new process as compared 

to the 1-D and 2-D cases. 

2. Energetics; condit ions su itable for coa lescence 

A spherical region with a diameter of 350 km and a magnetic field B of 1400 to 2000 G would 

contain a magnetic energy B2 V /Sn, being to being 2 to 4 x 1027 erg. The thermal energy content 

of that volume, assuming an electron density ne = 101 1  and temperature T = 5 x lOB K, is 1.5 x 1026 

erg. Hence the magnetic energy of the region. is sufficient to provide the energy of the flare 

spikes. 

In order to know if the conditions in the flaring area are suitable for explosive coalescence · 

one has to know the value of f3 = (c./v A)2• Here, c. is the sound velocity and v A the Alfven 

velocity. The value of vA has to be calculated using the magnetic field produced by the loop 

current (and not the ambient field.). With again ne = l01 1  cm�3 and taking B = l500 G and T = 5 X  

lOB K we find vA = 2000 km s�1 and Cs = 20000 km s�1• Hence the value of f3 after coalescence is 

/3 = 0.01 ,  with some uncertainty: vA is proportional to B-2 and to T. It seems safe to assume f3<< 
1 (after the coalescence). This is a condition that would be suitable for explosive coalescence if 

it would apply to the pre-coalescence situation. For large values of /3, close to unity, our 

numerical calculations show that the coalescence would not be explosive in character. 

3. X-type coa lescence app l ied to the 21 May 1984 bu rsts 

The f3 value given above (0.01) is the value that occurs after the explosion, but for a study 
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of the coalescence process we are interested 

in the value before the start of the coales­

cence. These f3 values may be larger than 0. 

OL Detailed numerical calculations are so 

for only available for the case /] = 0.5 .  To 
start with, we will work with this value. 

Below we will find it to be a good approxima­

tion. The calculations show that after coa­

lescence the particle density has increased by 

a factor 10 and the field strength B (produced 

by the current loop) by a factor 100. The 

fieldstrength B along the loop would increase 

by a factor 10 .  That means that the pre­

coalesence value of v A should in that case 

have been about 300 km s-1 • Assuming a 

coronal temperature of 102 ev before the 

coalescence, one would have c5 = 100 km s-1 • 

Hence the initial (pre-coalescence) value of f3 

would have been 0 . 1 ,  which is not too far 

from our tentative value f3 = 0.5 .  

In such conditions the Alfven transit time 

over an area of 350 km would be about 1 

second. Numerical calculations, given in 

Figures 1 and 2, show that the duration of the 

coalescent explosion is of the order of 0 .03 to 

0.05 Alfven transit times. Since the latter is 

about 15 ,  the explosion should have lasted for 

30 to 50 ms, as was indeed observed. 

The numerical calculations also show 

that for f3 = 0.5 the maximum explosion veloc-

ity is about 200 VA, which is about 60000 km 

s-1 • This corresponds with an electron 

energy still below 100 keV; but if the initial f3 

value would have been 0 .1  (the more likely 
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Fig. 1 Velocities in X-type (3-D) coalescence, cal­
culated for the case (J = 0. 5. The three 
diagrams show the velocities in the 3 car­
tesian coordinates. The upper diagram 
gives the velocity component in the direction 
of coalescence ; the two others in directions 
perpendicular to it. Horizontal axis : time 
in units of the Alfven transit time ; Vertical 
axis : velocities in units of the Alfven veloc­
ity. 
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case) then the explosion velocity would have 3 

been c/3, vilding electron energies above 100 

keV, as observed. We note that, as stated 

above, f3 = 0 .1  is indeed the most probable 

pre-coalescence value. nme 
Fig. 2 Density in X-type coalescence. horizontal 

axis : time in units of the Alfven transit 
time ;vertical axis : density in arbitrary 
units. The initial density is 0. 5 units. 
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4. Concl u sions 

We found that the conditions in  the area producing the remarkable flare bursts of  21  May 

1984 were indeed such that the many flare spikes could have been due to explosive coalescence. 

The pre-flare conditions were an electron density of 1010 cm-3 and a magnetic field produced by 

the loop current of about 15  G. The magnetic field along the loop must have been 150 G. This 

is so because in the case f3 = 0.5 coalescence causes the field along the loop to increase by a factor 

10 while the magnetic field due to the loop currrent increases by a factor 100. It seems further­

more likely that the interacting flux threads must have had diameters of the order of 350 km, 

other wise the flare kernels would have been larger in size. 
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