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The Firing Squad Synchronization Problems for Number Patterns 
on a Seven-Segment Display and Segment Arrays 
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SUMMARY The Firing Squad Synchronization Problem (FSSP), one 
of the most well-known problems related to cellular automata, was orig
inally proposed by Myhill in 1957 and became famous through the work 
of Moore [1]. The first solution to this problem was given by Minsky and 
McCarthy [2] and a minimal time solution was given by Goto [3]. A sig
nificant amount of research has also dealt with variants of this problem. In 
this paper, from a theoretical interest, we will extend this problem to num
ber patterns on a seven-segment display. Some of these problems can be 
generalized as the FSSP for some special trees called segment trees. The 
FSSP for segment trees can be reduced to a FSSP for a one-dimensional 
array divided evenly by joint cells that we call segment array. We will give 
algorithms to solve the FSSPs for this segment array and other number pat
terns, respectively. Moreover, we will clarify the minimal time to solve 
these problems and show that there exists no such solution. 
key words: firing squad synchronization problem, cellular automaton, 
seven-segment display, segment tree, segment array 

1. Introduction 

The Firing Squad Synchronization Problem (FSSP), one of 
the most well-known problems related to cellular automata, 
was originally proposed by Myhill in 1957 and became fa
mous through the work of Moore [1]. The first solution to 
the FSSP was given by Minsky and McCarthy [2], andre
quires 3n + O(log n) steps for n cells using thirteen states. 
It is easy to show that any solution to the FSSP requires at 
least 2(n- 1) steps. Goto [3] gave a minimal time solution 
using several thousands of states. Inspired by his results, 
many researchers tried to reduce the number of states: in 
1966, Waksman [4] gave a solution with sixteen states; in 
1967, Balzer [5] gave a solution with eight states; in 1987, 
Gerken [6] reduced this to seven states; and in the same year, 
Mazoyer [7] gave a solution with six states, the minimal 
time solution with the fewest states at present. Moreover, 
it is shown in [5] that any solution needs at least five states. 

A significant amount of research has also dealt with 
variants of the FSSP. The FSSP has been studied on a ring 
of n cells [8], and on arrays of two and three dimensions [9], 
[10]. The FSSP with multiple generals [11]-[13] has also 
been studied. The FSSP for Cayley graphs [14] and an
other particular class of graphs [ 15] have also been studied. 
Some constrained variants of the FSSP have been developed 
to find solutions on reversible (i.e., backward deterministic) 
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cellular automata [16] and cellular automata with a number-. 
conserving property (i.e., a state is a tuple of non-negative 
integers whose sum is constant) [17]. Other kinds of con
straints that have been considered involve the amount of in
formation exchange between any pair of adjacent cells [18], 
[19]. 

In this paper, from a theoretical interest, we will extend 
this problem to number patterns on a seven-segment display. 
Some of these problems can be generalized as the FSSP for 
some special trees called segment trees. The FSSP for seg
ment trees can be reduced to a FSSP for a one-dimensional 
array divided evenly by joint cells that we call segment ar
ray. We will give algorithms to solve the FSSPs for this seg
ment array and other number patterns, respectively. More
over, we will clarify the minimal time to solve these prob
lems and show that there exists no such solution. 

2. TheFSSP 

Since the FSSP is defined on cellular automata, we will 
briefly describe them. 

A cellular automaton is defined by an interconnection 
network with a finite automaton. Finite automata on nodes 
of the network, called cells, are copies of the finite automa
ton and communicate through edges of the network. For 
a cell u, cells connected to u directly are called neighbor 
cells of u. Each cell changes its state in discrete time by 
a state transition function of its own state and its neighbor 
cells' states (a set of a cell u and its neighbor cells is called 
its neighborhood). An interval of the time in which cells 
change their states once is called a step. 

In a one-dimensional cellular automaton, an intercon
nection network is a path of size n for any positive integer n, 
and the neighbor cells of u are its left and right ones. This is 
therefore called a three-neighborhood one-dimensional cel
lular automaton. In the two-dimensional case, an intercon
nection network is an m X n array for any positive integers m 
and n, and the neighbor cells of u consist of those cells hor
izontally and vertically adjacent to it. A cellular automaton 
of this type is called a five-neighborhood two-dimensional 
cellular automaton. 

2.1 Definition of the FSSP 

The FSSP is defined on three-neighborhood one-dimension
al cellular automata. 

Consider a one-dimensional array of n cells, consisting 
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of Co, C 1, · · · , Cn-1· Assume that n is arbitrary, but finite. 
The cell Co at the left end is called a general, and the re
mainder of cells C1, C2, · · · , Cn-I are called soldiers. The 
problem is to design a set of states and a state transition 
function so that the general can cause all cells to enter a par
ticular terminal state, called the firing state, for the first time 
and at exactly the same time. 

A more precise definition is as follows . 
.1( = (S, 6) is a finite automaton of each cell C; (0 :S:: 

i :S:: n- 1). Sis a finite set of states: a general state G E S, 
a quiescent state Q E S, and a firing state F E S, each 
differing from each other. o is a state transition function, 
namely, 6: (S U {B}) X S X (S U {B}) ~ S. B rt. Sis a signal 
that shows border of the array. For the quiescent state Q, we 
define O(SQ, Q, SQ) = Q; SQ E {Q, B}. 

Initially, all soldiers are assumed to be in the quiescent 
state, and only the general is assumed to be in the general 
state. 

The state of C; (0 :S:: i :S:: n- 1) at time tis shown as 
s1

• The state st+I, which is the state of C; at timet+ 1, is 
l l 

determined by the state transition function and the states of 
its neighborhood as follows. 

The state s;_1 is B fori = 0, and the state s;+l is B for 
i=n-1. 

If all cells first enter the firing state F at time tF, we 
say that the array of n cells is fired by the finite automaton 
.1(. So, the state of each cell C; (0 :S:: i :S:: n- 1) is as follows. 

s:F = F and s; * F for all 0 :S:: t < tF 

The time tF required to solve the FSSP by a finite au
tomaton .1( for an array of n cells is written as tF(n, .1l). 

A finite automaton .1( solving the FSSP for all n is 
called a solution. The minimal time of the solutions for an 
array ofncells is written as tFmin(n). 

tFrrriu(n) = min{tF(n, .1l) I 
.1l is a solution for the FSSP} 

If tF(n, .1() = tFmiu(n) holds for all n, the solution .1( is 
called the minimal time solution. 

2.2 Outline of a Minimal Time Solution 

An outline of a minimal time solution (Waksman's algo
rithm [4]) to solve the FSSP is as follows. 

At timet= 0, the general Co simultaneously sends sig
nals t at propagation speeds of f, ~, ~, · · · , 2L 1 , · · · , where k 
is any natural number, to the right. These signals are called 
the firing signals and play an important role in dividing the 
array into two, four, eight, · · · , equal parts synchronously. 
When a signal of speed f reaches the right end of the array, 
at time t = n- 1, the rightmost cell Cn-I enters a general 
state and acts like the original general, except that it sends 
the firing signals to the left instead of the right. The signal of 
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Go C1 C2 · · · · · · · · C -1 t=O n 

t=n-1 

t = 2(n- 1) 

Fig. I Time-space diagram of a minimal time solution. 

speed ~ which Co sent at time t = 0 and the signal of speed 
f which Cn-I sent at time t = n- 1 meet at the center of 
C0 and Cn-I· Then, the middle cell enters the general state 
and acts like the original general, sending the firing signals 
to the left and also to the right. As a result of this process, 
the array is divided into two equal parts. This process is 
repeated until all cells in the array are in the general state. 
Every cell enters the firing state at the next step. Note that 
the above process insures synchronization of the array and 
also permits the determination of firing if it is in the general 
state and the cells on either side of it are also in the general 
state . 

It is easily understood that the time required for the 
above-mentioned process is 2(n- 1) steps. It equals the time 
required for the signal at propagation speed off, which Co 
sent, to go to Cn-1 and return. 

Figure 1 shows a time-space diagram of the minimal 
time solution. The horizontal axis is the cell space, and the 
vertical axis is the time. The fractions in the figure are prop
agation speeds of the firing signals, and the dots show that 
those cells are in the general state. 

3. The FSSPs for Number Patterns on a Seven
Segment Display 

In this section, from a theoretical interest, we will extend the 
FSSP to number patterns on a seven-segment display. 

3.1 Number Patterns on a Seven-Segment Display 

A seven-segment display, shown in Fig. 2, is commonly 
used in electronics to display decimal numbers. It is com
posed of seven elements, called segment, as its name indi
cates. Individually turned on or off, they can be combined 
to produce simplified representations of numbers. 

Numbers from 0 to 9 are displayed on a seven-segment 
display as patterns, as shown in Fig. 3. 

t A signal at propagation speed of + moves at a rate of one cell 
every t steps. 
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Fig. 2 A seven-segment display. 

Fig. 3 Number patterns displayed on a seven-segment display. 

n 
~ 

CA IIID···OIIICD 

n{~ ~ 
CB IIID···DIIIC£ 

n{~ ~ 
c IIID···OIIIC C F 

Fig. 4 Modeling of a seven-segment display. 

3.2 Modeling of Number Patterns 

A seven-segment display is modeled on a two-dimensional 
cell space, as shown in Fig. 4. The seven segments consist 
of n cells, respectively. Six cells, called the joint cells, are 
placed between the segments. They are shaded in the figure. 
The six joint cells are called CA, C8 and Cc from top to 
bottom of the left column, and C v, C E and C F from top to 
bottom of the right column. 

The FSSPs for number patterns on a seven-segment 
display can be defined as problems on five-neighborhood 
two-dimensional cellular automata. Initial configurations of 
number patterns are shown in Fig. 5. The general is the joint 
cell at the starting position of the stroke order of the num
bert, thus the general of number patterns 0, 1, 6, 8 and 9 
is the joint cell Cv, and that of number patterns 2, 3, 4, 5 
and 7 is the joint cell CA. These are shaded in the figure. 
Of course, we assume that the length of one segment n is 
arbitrary, but finite. 
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DO .. o. • .0 .. ·00 •o ...oo • 0 
0 0 0 0 0 0 0 
' ' 
0 0 0 0 0 0 0 
0 0 D 00 .. ·00 DO ... oo DO ···DO 
0 0 D 0 0 0 

' 
D 0 D 0 0 D 
DO ... oo D 00 .. ·00 DO ... oo 0 

•o ... oo DO ... o. •o ... oo oo .. ·o• 00· .. 0· 
0 D 0 D 0 D 0 0 

' 
0 D 0 0 0 0 0 0 
DO ... oo DO ... oo 0 0 DO· ·DO DO ... oo 

D D D 0 0 0 0 
' 

0 D D 0 0 0 0 
DO .. oo DD .. ·DD 0 DO· ·DO DO ... [][] 

Fig.S Initial configurations of number patterns. 

4. The Firing Squad Synchronization Algorithms 

Some of the FSSPs for number patterns on a seven-segment 
display can be generalized as the FSSP for some special 
trees called segment trees. The FSSP for segment trees 
can be reduced to a FSSP for one-dimensional array divided 
evenly by joint cells. In this section, we will give algorithms 
to solve the FSSPs for this array and other number patterns, 
respectively. 

First, please pay attention to the joint cells at the initial 
configurations of number patterns shown in Fig. 5. 

On number patterns 2, 3, 4, 5, 6, 8 and 9, each joint 
cell CA, Cs, Cc, Cv, CE and Cp has a different neighbor
hood from the other cells in the segments. Therefore, they 
can recognize that they are joint cells with their neighbor
hood. However, the joint cells C 8 and C E of number pattern 
0 and the joint cell C E of number patterns 1 and 7 cannot rec
ognize that they are joint cells because they have the same 
neighborhood as cells in the segments. This difference is 
very important in the composition of the algorithms. 

4.1 Algorithms for Number Patterns 2, 3, 4, 5, 6, 8 and 9 

In number patterns 2, 3, 4, 5, 6, 8 and 9, number patterns 2, 
3, 4 and 5 are so-called trees. In Fig. 6, they are shown as 
dangling images. The nodes at level i (0 ~ i ~ 5) are joint 
cells and the node at level 0 is the general. Every branch that 
connects nodes corresponds to a segment. However each 
branch is drawn as a line in the figure, consisting of n cells. 

On the other hand, number patterns 6, 8 and 9 are 
graphs, other than trees, as shown in Fig. 7. Note the four 
nodes drawn as circles divided in half by lines in the fig
ure. Each of these four nodes has multiple paths of the same 
length from the root (general). As one path is sufficient to 
exchange signals (information) with the general, we divide 
each of the four nodes into half. They can then be drawn as 
trees shown in Fig. 8. 

By the method described above, the FSSPs for number 
patterns 2, 3, 4, 5, 6, 8 and 9 can be generalized as the FSSPs 
for segment trees defined below. 

The segment trees are trees that satisfy the following 

twe adopt the stroke order generally taught in elementary 
schools in Japan. 
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2 3 4 5 
level 0 

level l 

level 2 

level 3 

level 4 

level 5 

Fig.6 Trees for number patterns 2, 3, 4 and 5. 

6 8 9 
level 0 

level 1 

level 2 

level 3 

level 4 

Fig.7 Graphs for number patterns 6, 8 and 9. 

6 8 9 
level 0 

level 1 

level 2 

level 3 

level 4 

Fig. 8 Trees for number patterns 6, 8 and 9. 

conditions. 

• A branch is a segment that consists of n cells. 
• A node is also a cell, but it is distinguished from cells 

composing segments. 

The number of segments (branches) that exist on the 
path from the root to a node is called the level of the node, 
and the largest level of all nodes is called the height of the 
segment tree. 

Letting the root be a general, the FSSPs for the segment 
trees can be defined similarly t. 

4.2 The FSSPs for Segment Arrays 

We can easily see that the FSSP for a segment tree of height 
h can be reduced to a FSSP for a one-dimensional array of 
cells divided evenly by h + 1 joint cells. 

To define the FSSP for such an array precisely, we in
troduce a new state Q1 called joint state. The joint state QJ 
satisfies the following conditions where the symbols SQ, s 
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Fig. 9 A segment array. 

and* are elements of {Q, B}, SandS U {B}, respectively. 

6(sQ. QJ. sQ) == Q1 

6(*, s, QJ) = 0(*, s, Q) 

6(QJ. s, *) = 6(Q, s, *) 

The joint state Q1 conforms with the quiescent state Q. 
It does not change state when its right and left cells are in 
the quiescent state or border, and its neighbor right and left 
cells cannot distinguish its state from the quiescent state. 
However, once the joint state receives a signal from the gen
eral, it can transit to a state, which is different from the state 
that the quiescent state does, and even behave like the gen
eral. 

For a cell array Co, Cr, ... , Ct(n+l)• ... , Ch(n+l) oflength 
h(n+ 1)+ 1, C 0 is in the general state G, Ct(n+J) (1 :S: l :S: h) are 
in the joint state Q1 , and other cells are in the quiescent state 
Q. Such an array is called a segment array. The segment 
array is divide into h parts with general or joint cells at each 
end, as shown in Fig. 9. Thus, the FSSP for the segment 
array can be defined similarly. 

Now, we will present the algorithm to solve the FSSP 
for segment array. Without loss of generality, we assume 
that the length of a segment n equals al- 1 for some natural 
number a. 

Algorithm 1: 

1. At time t = 0, the general Co sends signals S; (0 :S: i :S: 
ha) at propagation speeds of h~-

2. At time t = n + 1, Cn+I receives the signalS ho: from 
C0 , then sends signals T; (0 :,;; i :,;; ha) at propagation 
speeds of i-o: tt ho: . 

3. At timet= h(n + 1), C.!.(n+l) (0 :S: i < ha) receive the 
signals S; and T; simult;neously and enter the general 
state. At the same time, Ch(n+l) receives the signal Tho: 

and enters the general state. 
4. C i(n+l) (0 :,;; i :S: ha) apply the minimal time algorithm 

to a each· of the connected arrays. 

Figure 10 shows a time-space diagram of the FSSP al
gorithm described above when h = 3, a = 2. The circle 
indicates that the cell Co is in the general state and the dots 
indicate that the cells have entered the general states of the 
minimal time algorithm of Sect. 2.2. The square indicates 
that the cell C n-l in the joint state has received the signal S 6 

from the general and now beccome to be able to send signals 
T; (0 :S: i :S: 6). 

tNote that the problems are no longer the problems defined on 
five-neighborhood two-dimensional cellular automata. 

ttNote that a signal whose propagation speed is positive propa
gates to the right and a signal whose propagation speed is negative 
propagates to the left. · 



3280 

So 

t=3(n+l) 

7 t = 
2 
( n + l) "'-L'JLL--'"'-'-=~'--l.-"L.L_C>LL'>K.-l-"'LDL-.DI<'-L">~ 

Fig.IO Time-space diagram of the FSSP algorithm for a segment array 
when h = 3, a = 2. 

It requires h(n + 1) steps for Ci(n+l) (0 ::; i ::; ha) to 

enter the general state. Moreover, it ;equires i (n + 1) steps 
for a cell array oflength iCn + 1) + 1, which has the general 
states at both ends, to fire using the minimal time algorithm. 
Therefore, the total time of this algorithm is h(n+ 1)+ iCn+ 1) 
steps. The bigger a becomes, the smaller h(n + 1) + iCn + 1) 
becomes. By incrementing the value of a, we can approxi
mate the total time to h(n + 1) unboundedly. 

As the number patterns 4, 8 and 9 can be represented 
as segment trees of height 3, the algorithm described above 
solves the FSSPs for them in 3(n + 1) + iCn + 1) steps. Also, 
as the number patterns 3, 5 and 6 can be represented as seg
ment trees of height 4, the algorithm solves the FSSPs for 
them in 4(n + 1) + iCn + 1) steps. Moreover, as the number 
pattern 2 can be represented as a segment tree of height 5, 
the algorithm solves the FSSP for it in 5(n + 1) + i<n + 1) 
steps. 

4.3 The Minimal Time to Solve the FSSPs for Segment 
Arrays 

We have presented an algorithm to solve the FSSP for a seg
ment array oflength h(n+ 1)+ 1 that requires h(n+ 1)+i(n+ 1) 
steps when n equals al - 1 for some natural number a. 

In this section, we show that the minimal time to solve 
the FSSP for the segment array is h(n + 1). 

Because the cell Ch(n+ll is in the joint state Q1 until the 
timet = h(n + 1)- 1, the solution time cannot be less than 
or equal to h(n + 1). Therefore, the following lemma holds. 

Lemma 1: tF(n, 3{) ::::: h(n + 1) holds for any solution 3{ of 
the FSSP for segment arrays of length h(n + 1) + 1. 

We can easily construct a finite automaton 3{no that can 
fire a segment array of a particular fixed length h(n0 + 1) + 1 
in h(no + 1) steps, but does not fire a segment array of length 
h(n + 1) + 1 for n different from n0 . 3{no consists of the 
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following set of states S and state transitions. The symbol * 
indicates any element of S U {B}. 

S = {X, Q, QJ, G = So, S j, S z, ... , S h(no+ I) = F} 

o(S;-~oQ,*) = S; 

o(s i-1, QJ, *) = s; 
O(*,S;-J,s) = S; 

o(S i-J, QJ, *)=X 

8(*, S ;,X)= X 

8(Sn0 ,Q,*) =X 

if i * l(no + 1), 1 ::; l::; h 

if i = l(no + 1 ), 1 ::; l ::; h 

if s *X 

ifi-:f:.no+1 

We now give a brief description of the behavior of 3{no. 

First, we consider a segment array of length h(n0 + 1) + 1. 
The general G = So changes its state asS 1, S z, ... , S h(no+l) 
successively counting the number of cells. The states propa
gate to the right one by one. As a result, at time t = i, all cells 
from Co to C; enter the stateS;. So, at timet= h(no + 1), all 
cells enter the stateS h(no+1) = F. 

When n is less than no, at timet = n + 1 the cell Cn+l 
changes its state from Q1 to X. As the state X propagates to 
the left, at time t = 2(n + 1) < h(n0 + 1) all cells are in the 
states X, Q or Q1 . 

Similarly, when n is greater than no, at time t = no + 1 
the cell Cno+l changes its state from Q to X. Therefore, at 
timet = 2(n0 + 1) ::; h(n0 + 1) all cells are in the states X, Q 

or QJ. 
The finite automaton 3{' that mimics the above 3{n

0 

together with an appropriate solution 3{ is also a solution 
of the FSSP for segment arrays and tF(n0, 3{') = li(n0 + 1) 
holds. Thus, the following theorem holds. 

Theorem 1: tFmin(n) = h(n + 1) holds for the FSSP for 
segment arrays oflength h(n + 1) + 1. 

4.4 The Minimal Time Solution to the FSSP for Segment 
Arrays 

Though we have shown that the minimal time to solve the 
FSSP for a segment array oflength h(n+ 1)+ 1 is h(n+ 1), we 
must discuss whether such a minimal time solution exists 
or not. The following lemma shows that no such solution 
exists. 

Lemma 2: Let 3{ = (S, 8) be a solution of the FSSP for 
segment arrays of length h(n + 1) + 1. If n + 2 > JSj2, 
tF(n, 3{) > h(n + 1) holds. 

Proof: We will prove the lemma by assuming tF(n, 3{) = 
h(n + 1) and deriving a contradiction. 

Lets; be the state of cell C; at timet. 
Because n + 2 > JSJ2, there exist two different integers i 

and j ((h-1)(n+ 1) ::; i < j::; h(n+ 1)) such that s:_1 = s~_ 1 , 

s: = sj. That is, there exist two pairs of adjacent cells C;_1 C; 
and Cj-l Cj on the right side of the cell Cch-l)(n+l) and the 
states s; 1·s; of the cells C;_1 C; at time i and the states s! 

1 
s! 

L- L ]- ] 

of the cells C j-l C j at time j are the same. 
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Because s:!J = o(s:, Q, Q) when (h- 1)(n + 1) :::; i < 

h(n + 1)- 1, it follows that si+kk = sj+kk when 0 < k < h(n + 
l+ ;+ -

1)- 1- j. Furthermore, because s:+l = o(sLl' s:, Q) when 

(h-l)(n+ 1) ::::: i::::: h(n+ 1) -1, it follows that s:!Z+1 = sj:~+l 

when 0 ::::: k ::::: h(n + 1) - 1 - j. Therefore, we have that 
h(n+ l)+i- j _ h(n+ I) 

sh(n+l)-l+i-j- sh(n+l)-1" 

From the assumption that the solution time is h(n + 1), 
h(n+l) _ F h ld Th £ h(n+l)+i-j _ h(n+l) _ F 

sh(n+l)-1 - 0 s. ere ore, sh(n+l)-l+i-j - sh(n+1)-1 -

also holds. As the cell C h(n+ 1)_ 1 +i- j is in the firing state at 
time t = h(n + 1) + i - j, Jl is not the solution and this fact 
contradicts the assumption. o 

Theorem 2: There exists no minimal time solution of the 
FSSP for segment arrays. 

4.5 The Firing Squad Synchronization Algorithm for 
Number Pattern 7 

The FSSP for number pattern 7 cannot reduce to the FSSP 
for a segment array. However, it can be solved smilarly. 
Number pattern 7 is an array oflength 4(n+ 1)+ 1, consisting 
of Co, C 1, ... , C4(n+ 1l. Initially, the cell Cn+ 1 is in the general 
state, the cells ci(n+1) (i = 0, 2, 4) are in the joint state, and 
other cells are in the quiescent state. 

Assuming n equals al - 1 for some natural number a, 
we present an algorithm to solve the FSSP for number pat
tern 7 as follows. 

Algorithm 2: 

1. At timet = 0, the general Cn+ 1 sends the signals S; (0 ::::: 
i:::; 4a) at propagation speed of i;;;;. 

2. At timet= n + 1, C 2cn+1l receives the signal S4a from 
Cn+1, then sends signals T; (0::::: i:::; 4a) at propagation 
speeds of i;~a . 

3. At timet= 3(n + 1), C1.(n+1l (0:::; i < 4a) receive the 
signals S; and T; simult~neously and enter the general 
state. At the same time, C 4cn+ll receives the signal T4a 

and enters the general state. 
4. ci(n+l) (0::::: i::::: 4a) apply the minimal time algorithm 

to a each of the connected arrays. 

Figure 11 shows a time-space diagram of the FSSP al
gorithm described above when a = 2. 

It requires 3(n + 1) steps for C L(n+l) (0 ::::: i ::::: 4a) to 
enter the general state, so the FSSP f;r the number pattern 7 
can be solved in 3(n + 1) + l(n + 1) steps. As a increases, 

(l' 

the total time unboundedly approaches to 3(n + 1) steps. 

4.6 The Minimal Time to Solve the FSSP for Number Pat
tern 7 

Because the cell c4(n+ I) is in the joint state QJ until time 
t = 3(n + 1) - 1, the solution time cannot be less than or 
equal to 3(n + 1). Therefore, the following lemma holds. 
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Fig.ll Time-space diagram of the FSSP algorithm for number pattern 7 
when a= 2. 

Lemma 3: tp(n, Jl) ;::: 3(n + 1) holds for any solution Jl of 
the FSSP for number pattern 7. 

By the same discussion in Sect. 4.3, we have the fol
lowing theorem. 

Theorem 3: tFmin(n) = 3(n + 1) holds for the FSSP for 
number pattern 7. 

4.7 The Minimal Time Solution for Number Pattern 7 

Though the minimal time to solve the FSSP for the number 
pattern 7 is 3(n + 1), we show there exists no such solution. 

Lemma 4: Let Jl = (S, 8) be a solution of the FSSP for 
number pattern 7. If 2(n + 1) > ISI2 , tp(n,Jl) > 3(n + 1) 
holds. 

The proof of lemma 4 is essentially similar to the proof 
of lemma 2. Thus, the following theorem holds. 

Theorem 4: There exists no minimal time solution of the 
FSSP for number pattern 7. 

4.8 The Firing Squad Synchronization Algorithm for 
Number Pattern 0 

The FSSP for number pattern 0 cannot reduce to the FSSP 
for a segment array. However, it can be also solved simi
larly. If we divide the joint cell C F of number pattern 0 into 
half, it can be regarded as an array oflength 6(n+ 1)+ 1, con
sisting of Co, C 1, ... , C6(n+ll· Both the leftmost cell Co and 
the rightmost cell C6(n+ll are Cp. Initially, the cell C3(n+Il is 
in the general state, the cells ci(n+l) (i = 0, 2, 5, 6) are in the 
joint state, and other cells are in the quiescent state. 

Assuming n equals al - 1 for some natural number a, 
we present an algorithm to solve the FSSP for number pat
tern 0 as follows. 

Algorithm 3: 

1. At time t = 0, the general C3(n+ll sends the signals 
S; (0::::: i::::: 6a) at propagation speeds ;3:;:'. 
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Co 
t= 0 

t = n+ 1 

t=3(n+l) --

Cn+l ... C2(n+lJ· .. C3(n+t)· . . C4(n+tJ···C5(n+lJ···C6(n+ll 

I 

t = ~(n - 1) L<Lk~oJiLlCLLl,LG~'Lld'~&LU&~'Lld'~&LU&~~ 
2 

Fig. 12 Time-space diagram of FSSP algorithm for number pattern 0 
when a= 2. 

2. At time t = n + 1, C2cn+ 1) receives the signal So from 
C3cn+ 1), then sends signals T; (0 .:::; i .:::; 4a) at propaga
tion speeds of i2~a. 

3. At time t = 2(n + 1), Cscn+1) receives the signal S 6a 

from C3Cn+1)• then sends the signal T; (4a < i .:::; 6a) at 
propagation speeds of ';,~a. 

4. At timet= 3(n + 1), C-'-cn+l) (0 < i < 6a) simultane
ously receive the signals aS; and T; and enter the general 
state. At the same time, Co receives the signal To and 
C6Cn+1) receives the signal T6a· Co and C6Cn+1) then en
ter the general state. 

5. C -'-Cn+l) eo .:::; i .:::; 6a) apply the minimal time algorithm 
to a each of the connected arrays. 

Figure 12 shows a time-space diagram of the FSSP al
gorithm described above when a = 2. 

It requires 3en + 1) steps for c-'-(n+l) eo .:::; i .:::; 6a) to 
enter the general state, so the FSSP f;r the number pattern 0 
can be solved in 3en + 1) + ±en+ 1) steps. As a increases, 
the total time unboundedly approaches to 3(n + 1) steps. 

As mentioned above, it is shown in [8] that the FSSP 
for a ring of n cells can be solved in n steps and n is the 
minimal time for this problem. If we regard the number 
pattern 0 as a ring of 6en + 1) cells, the FSSP for the number 
pattern 0 can be solved in 6(n + 1) steps. Therefore, our 
algorithm is over 2(n + 1) steps faster than the minimal time 
algorithm for a ring. Because of that, our algorithm uses the 
information of the shape of pattern, that is, the joint cells 
CA, Cc, CD, and CF are at the corner of pattern and it is 
2n + 3 cells in height and n + 2 cells in length. 

4.9 The Minimal Time for Number Pattern 0 

Because the cell C6Cn+1) is in the joint state Q1 until time 
t ·= 3en + 1) - 1, the solution time cannot be less than or 
equal to 3en + 1). Therefore, the following lemma holds. 

Lemma 5: tFen, .1l) ~ 3en + 1) holds for any solution 3l of 
the FSSP for number pattern 0. 

By the same discussion in Sect. 4.3, we have the fol
lowing theorem. 

Theorem 5: tFminen) = 3(n + 1) holds for the FSSP for 
number pattern 0. 
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4.10 The Minimal Time Solution for Number Pattern 0 

Though the minimal time to solve the FSSP for number pat
tern 0 is 3(n + 1), we show there exists no such solution. 

Lemma 6: Let .1{ = es, c5) be a solution of the FSSP for 
number pattern 0. If 2(n + 1) > 1812

, tFen,.1l) > 3(n + 1) 
holds. 

The proof of lemma 6 is also similar to the proof of 
lemma 2. Thus, the following theorem holds. 

Theorem 6: There exists no minimal time solution of the 
FSSP for number pattern 0. 

4.11 The Firing Squad Synchronization Algorithm for 
Number Pattern 1 

As the joint cell CE of number pattern 1 cannot be distin
guished from the other cells in the segments with its neigh
borhood, the FSSP for this pattern is just as the original 
FSSP of length 2n+ 3. Therefore, applying the minimal time 
algorithm, it can be solved in 4(n + 1) steps. It goes without 
saying that 4(n + 1) is the minimal time for this problem. 

5. Conclusion 

In this paper, from a theoretical interest, we extended the 
FSSP to number patterns on a seven-segment display. Gen
eralizing the FSSPs for some number patterns, we defined 
segment trees and proposed the FSSP for segment trees. The 
FSSP for segment trees can be reduced to that for a one
dimensional array divided evenly by joint cells. We called 
such an array as segment array and also proposed the FSSP 
for those segment arrays. Moreover, we developed algo
rithms to solve the FSSPs for segment arrays and other num
ber patterns, respectively. 

Our algorithm to solve the FSSP for a segment array of 
length h(n + 1) + 1 requires h(n + 1) + ± (n + 1) steps for some 
natural number a. Therefore, the FSSP for number patterns 
4, 8 and 9, number patterns 3, 5 and 6, and number pattern 2 
can be solved by this algorithm in 3(n + 1) + ±en+ 1) steps, 

4(n + 1) + ±Cn + 1) steps, and 5(n + 1) + ±en + 1) steps, 
respectively. We then clarified that the minimal time of the 
FSSP for segment arrays is h(n + 1) and showed that there 
exists no such solution. 

We showed the algorithms to solve the FSSP for num
ber patterns 0 and 7, which require 3(n + 1) +±en+ 1) steps. 
We then clarified that the minimal time of the FSSP for num
ber patterns 0 and 7 is 3en + 1) and showed that there exists 
no such solution. 

The FSSP for number pattern 1 is just as the original 
FSSP of array length 2n + 3. Therefore, it can be solved in 
4(n + 1) steps by the minimal time algorithm. 
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