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Global asymptotic stability for a nonautonomous

Lotka-Volterra competition system

Kunihiko Taniguchi

Abstract. We consider nonautonomous N -dimensional generalized
Lotka-Volterra competition systems. Under certain conditions we
show that there exists a unique solution u∗ whose components are
bounded above and below by positive constants on R, and u∗ attracts
any solution. If such system is periodic, so is u∗.

1. Introduction and statements of the main results

In this paper we consider the system of differential equations

u′
i = ui



ai(t) −
N
∑

j=1

bij(t)fij(ui, uj)



 , i = 1, . . . , N, N ≥ 2, (GLV)

where the functions ai(t), 1 ≤ i ≤ N , and bij(t), 1 ≤ i, j ≤ N , are assumed

to be continuous and bounded on R. For a bounded function g(t) on R, we

put gM := supt∈R g(t), gL := inft∈R g(t). We assume that

bij(t) ≥ 0, t ∈ R, 1 ≤ i, j ≤ N ; (1.1)

aiL > 0, biiL > 0, 1 ≤ i ≤ N. (1.2)
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Furthermore let the function fij(x, y), 1 ≤ i, j ≤ N , be continuously

differentiable on [0, ∞)2, and we impose the following condition on fij :











































fij(x, y) > 0, (x, y) ∈ R
2
+, 1 ≤ i, j ≤ N ;

D1fij(x, y) ≥ 0, (x, y) ∈ R
2
+, 1 ≤ i, j ≤ N ;

D2fij(x, y) > 0, (x, y) ∈ R
2
+, 1 ≤ i, j ≤ N ;

fij(0, 0) = 0, 1 ≤ i, j ≤ N ;

lim
x→∞

fii(x, x) = ∞, 1 ≤ i ≤ N,

(1.3)

where R
2
+ = (0, ∞)2 and Di, i = 1, 2, denotes the differentiation with

respect to the i-th variable.

Throughout the paper we make use of the well-known fact (see e.g. [3],

[11]) that if u = (u1, . . . , uN ) is a local solution of system (GLV) with

u(t0) ∈ R
N
+ , then u can be extended to the interval [t0, ∞) and u(t) ∈ R

N
+

for t ∈ [t0, ∞). Therefore in the sequel we may assume that all solutions

of system (GLV) exist near +∞ and are positive there.

System (GLV) is a generalization of the following nonautonomous N -

dimensional Lotka-Volterra competition system that S. Ahmad and A. C.

Lazer [2] considered:

u′
i = ui



ai(t) −
N
∑

j=1

bij(t)uj



 , i = 1, . . . , N, N ≥ 2. (LV)

In system (LV) the negative influence of the j-th species to the i-th species

is regarded essentially as linear function, because the corresponding term in

the classical system (LV) is written as uiuj . But, as is often the case with

mathematical modeling in biology, such a hypothesis is too restrictive from

the biological point of view. In fact, K. Gopalsamy [9] considered system

u′
i = ui



ai +
n
∑

m=1

N
∑

j=1

bmiju
m
j



 , i = 1, . . . , N, (1.4)

where ai, bmij , 1 ≤ i, j ≤ N , 1 ≤ m ≤ n, are real constants. If n =

1, then (1.4) reduces to the form of system (GLV). Motivated by these

facts, we propose less restrictive system (GLV) than system (LV), and make
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an attempt to analyze it in order to generalize previous results to system

(GLV). In fourthcoming papers we will continue to consider system (GLV)

further.

When system (LV) is an autonomous case for N = 2, it is well known

the following (see [10]): If positive constants ai, bij , i, j = 1, 2, satisfy

a1 >
b12a2

b22
, a2 >

b21a1

b11
,

then there exists a unique equilibrium point (u∗
1, u∗

2) ∈ R
2
+ that attracts

any solution curve (u1(t), u2(t)) of system (LV) with (u1(t0), u2(t0)) ∈ R
2
+,

that is,

u1(t) → u∗
1 and u2(t) → u∗

2 as t → ∞.

For system (LV) S. Ahmad and A. C. Lazer [2] have shown a general-

ization of the above fact. They supposed conditions (1.1), (1.2) and the

condition

aiL >
∑

j 6=i

bijM

(

aj

bjj

)

M

, 1 ≤ i ≤ N. (1.5)

Under these conditions they have shown the following: Let u = (u1, . . . , uN )

be a solution of system (LV) with u(t0) ∈ R
N
+ . Then there exists a unique

solution u∗ = (u∗
1, . . . , u∗

N ) of system (LV) defined on R and the following

statements (I)–(III) hold:

(I) 0 < inft∈R u∗
i (t) ≤ supt∈R u∗

i (t) < ∞ for 1 ≤ i ≤ N ;

(II) limt→∞(ui(t) − u∗
i (t)) = 0 for 1 ≤ i ≤ N ;

(III) If ai(t), bij(t), 1 ≤ i, j ≤ N , are periodic with period T > 0, then u∗

is T -periodic.

In [2] to see property (I) only the condition

inf
t∈R

ai(t) −
∑

j 6=i bij(t)(aj/bjj)M

bii(t)
> 0, 1 ≤ i ≤ N, (1.6)
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is required. Note that (1.6) is weaker condition than (1.5). In [1], [6]–[8]

and [13] results related to properties (I)–(III) have been obtained under the

condition

aiL >
∑

j 6=i

bijM
ajM

bjjL
, 1 ≤ i ≤ N,

that is a stronger condition than (1.5).

To state our previous result in [12] we introduce the notation and the

symbols: For a continuous and bounded function g on R, we set

A[g, t1, t2] =
1

t2 − t1

∫ t2

t1

g(s)ds,

where t1 < t2. We define the upper average M [g] and the lower average

m[g], respectively, by

M [g] = lim
s→∞

sup{A[g, t1, t2] | t2 − t1 ≥ s}; and

m[g] = lim
s→∞

inf{A[g, t1, t2] | t2 − t1 ≥ s}.

For i = 1, . . . , N , we put

f̃i(x) = fii(x, x), x ∈ R+.

By (1.3), f̃i, i = 1, . . . , N , has the inverse function f̃−1
i : R+ → R+. For

R > 0 and δ > 0, δ < R, we define two constants C∗(δ, R) and C∗(δ, R),

respectively, by

C∗(δ, R) = max{Dkfij(x, y) | 1 ≤ i, j ≤ N, k = 1, 2, (x, y) ∈ [δ, R]2},

C∗(δ, R) = min{D2fij(x, y) | 1 ≤ i, j ≤ N, (x, y) ∈ [δ, R]2}.

Let R > 0 and δ > 0. For system (GLV) we introduce the condition

m[ai] >
C∗(δ, R)

C∗(δ, R)

∑

j 6=i

bijMM [aj ]

bjjL
, 1 ≤ i ≤ N. (GA)

Condition (GA) is a generalization of the average condition that S. Ahmad

and A. C. Lazer [3, 4] supposed for system (LV):

m[ai] >
∑

j 6=i

bijMM [aj ]

bjjL
, 1 ≤ i ≤ N. (A)
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Remark 1.1. When bii, 1 ≤ i ≤ N , is positive constants, it is clear that

(1.5) implies condition (A).

Conditions (A) and (GA) have played an important role in studying

systems (LV) and (GLV) (see [3]–[5] and [12]). For example, in [12] we

have shown that condition (GA) and some additional conditions imply

limt→∞(ui(t) − vi(t)) = 0, 1 ≤ i ≤ N , where u = (u1, . . . , uN ) and

v = (v1, . . . , vN ) are arbitrary solutions of system (GLV) (see [12], The-

orem 2.3). Therefore when system (GLV) satisfies condition (GA) and

similar condition to (1.6), we naturally expect that (I)–(III) hold for sys-

tem (GLV). In this paper we will show that this conjecture is true; the

following is the main result of this paper.

Theorem 1.2. Let conditions (1.1), (1.2) and (1.3) hold . Suppose that for

some δ > 0 and R satisfying

R > max{f̃−1
i ((ai/bii)M ) | 1 ≤ i ≤ N}, (1.7)

condition (GA) and the condition

inf
t∈R

ai(t) −
∑

j 6=i fij(R, R)bij(t)

bii(t)
> max

1≤j≤N
{fjj(δ, δ)}, 1 ≤ i ≤ N (1.8)

hold. Then there exists a unique solution u∗ = (u∗
1, . . . , u∗

N ) of sys-

tem (GLV) defined on R such that (I)–(III) hold for any solution u =

(u1, . . . , uN ) of system (GLV) with u(t0) ∈ R
N
+ .

We give an example of system (GLV) for which above conditions hold

(see [12, Example 1.2]).

Example 1.3. We consider the following competition system for two species:

u′
1 = u1

[

(cos t + 7) − (sin t + 7) ·
( u1

2
+ 1
)

u1 −

{

1

10
(sin t + 1)

}

· u1u2

]

u′
2 = u2

[

(cos t + 9) −

{

1

6
(sin t + 1)

}

·
3u2u1

u2 + 1
− (sin t + 9) ·

( u2

3
+ 1
)

u2

]

,

where f11(x, y) = (y/2 + 1)y, f12(x, y) = xy, f21(x, y) = 3xy/(x + 1) and

f22(x, y) = (y/3 + 1)y.
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In [12] we have shown that for δ = 9/20 and R = 1, this system satisfies

conditions (GA) and (1.8). So this system has only one periodic solution

u∗ satisfying (I)–(III).

The paper is organized as follows. In Section 2 we present preparatory

results that are employed in proving Theorem 1.2. The proof of Theorem

1.2 are given in Section 3.

2. Preliminary results

In this section we give preliminary results to prove Theorem 1.2. The

proofs of Proposition 2.1 and Theorem 2.3 are based on [12].

Proposition 2.1. Let u = (u1, . . . , uN ) and v = (v1, . . . , vN ) be solutions

of (GLV). Suppose that there exist constants A, B > 0 and T = Tu, v ≥ t0

such that for j = 1, . . . , N and t ≥ T ,

A ≤ uj(t), vj(t) ≤ B. (2.1)

Suppose moreover that for system (GLV) there exist positive constants

α1, . . . , αN such that for j = 1, . . . , N ,

lim inf
t→∞



αjbjj(t) −
C∗(A, B)

C∗(A, B)

∑

i6=j

αibij(t)



 > 0. (2.2)

Then there exist some constants T̃ ≥ T , C = CA, B > 0 and γ = γA, B > 0

such that for t ≥ T̃ ,

N
∑

i=1

| ui(t) − vi(t) |≤

(

N
∑

i=1

| ui(T̃ ) − vi(T̃ ) |

)

Ce−γ(t−T̃ ). (2.3)

Proof. Firstly, by the mean value theorem, there exist 0 < wij < 1, 1 ≤

i, j ≤ N , satisfying for i, j = 1, . . . , N ,

fij(ui, uj) − fij(vi, vj)

=(ui − vi)D1fij(wijui + zijvi, wijuj + zijvj)

+ (uj − vj)D2fij(wijui + zijvi, wijuj + zijvj), (2.4)
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where zij = 1 − wij , 1 ≤ i, j ≤ N . By (2.1), we have

C∗(A, B) ≤ Dkfij(wijui + zijvi, wijuj + zijvj) ≤ C∗(A, B) (2.5)

for k = 1, 2 and i, j = 1, . . . , N . By (2.5), we can have (2.3) as in the

proof of [12, Proposition 1].

When condition (GA) holds, we can reduce (2.2) to a simpler one (see

[12, Proposition 2]).

Proposition 2.2. Suppose that condition (GA) holds with δ = A and

R = B; that is

m[ai] >
C∗(A, B)

C∗(A, B)

∑

j 6=i

bijMM [aj ]

bjjL
, 1 ≤ i ≤ N.

Then there exist some positive constants α1, . . . , αN such that for j =

1, . . . , N ,

αjbjjL −
C∗(A, B)

C∗(A, B)

∑

i6=j

αibijM > 0.

Therefore, if condition (GA) holds, so does (2.2) with A = δ and B = R.

By Proposition 2.1 and 2.2, the following theorem holds (see [12, Theo-

rem 2]):

Theorem 2.3. Let conditions (1.1), (1.2) and (1.3) hold . Suppose that for

some δ > 0 and R > 0 satisfying (1.7), condition (GA) and the condition

lim inf
t→∞

ai(t) −
∑

j 6=i fij(R, R)bij(t)

bii(t)
> max

1≤j≤N
{fjj(δ, δ)},

1 ≤ i ≤ N, (2.6)

hold . Then for solutions u = (u1, . . . , uN ) and v = (v1, . . . , vN ) of system

(GLV) with u(t0), v(t0) ∈ R
N
+ , the following statements (i) and (ii) hold :

(i) 0 < lim inft→∞ ui(t) ≤ lim supt→∞ ui(t) < ∞, i = 1, . . . , N ;

(ii) limt→∞(ui(t) − vi(t)) = 0, i = 1, . . . , N .
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Remark 2.4. We note that (1.8) implies (2.6). Therefore, by Theorem

2.3, in order to prove Theorem 1.2, it is sufficient to prove the existence of

a unique solution of system (GLV) satisfying (I) and (III).

Lemma 2.5. Let conditions (1.1), (1.2) and (1.3) hold . Let u = (u1, . . . , uN )

and v = (v1, . . . , vN ) be solutions of system (GLV) defined on (−∞, T ].

Suppose that there exist constants A, B > 0 satisfying

A ≤ uj(t), vj(t) ≤ B (2.7)

for j = 1, . . . , N and t ≤ T . Suppose moreover that for system (GLV)

there exist positive constants α1, . . . , αN satisfying

inf
t≤T



αjbjj(t) −
C∗(A, B)

C∗(A, B)

∑

i6=j

αibij(t)



 > 0 (2.8)

for j = 1, . . . , N . Then u ≡ v.

Proof. Step 1. Firstly, from (2.8), there exists some ε > 0 such that for

j = 1, . . . , N and t ≤ T ,

αjbjj(t) −
C∗(A, B)

C∗(A, B)

∑

i6=j

αibij(t) ≥ ε. (2.9)

Next let

θ(t) =
N
∑

i=1

∣

∣

∣

∣

log

(

ui(t)

vi(t)

) ∣

∣

∣

∣

, t ≤ T.

Then we can claim the following:

Claim. There exists some η > 0 such that for t < T ,

θ(T ) ≤ θ(t) − η

∫ T

t

N
∑

i=1

| ui(s) − vi(s) | ds. (2.10)

In fact, since | log(ui(t)/vi(t)) |, 1 ≤ i ≤ N , is absolutely continuous on
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every finite interval I ⊂ (−∞, T ], for almost t ≤ T ,

θ′(t) =
N
∑

i=1

αi

[

u′
i

ui
−

v′i
vi

]

sgn(ui − vi)

=
N
∑

i=1

αi



−
N
∑

j=1

bij(t)(fij(ui, uj) − fij(vi, vj))



 sgn(ui − vi)

=
N
∑

j=1

[

− αjbjj(t)(f̃j(uj) − f̃j(vj))sgn(uj − vj)

−
∑

i6=j

αibij(t)(fij(ui, uj) − fij(vi, vj))sgn(ui − vi)

]

,

where u = u(t), v = v(t). By (2.4), we have

θ′(t) =
N
∑

j=1

[

− αjbjj(t)(D1fjj(wjjuj + zjjvj , wjjuj + zjjvj)

+ D2fjj(wjjuj + zjjvj , wjjuj + zjjvj))(uj − vj)sgn(uj − vj)

−
∑

i6=j

αibij(t)D1fij(wijui + zijvi, wijuj + zijvj)(ui − vi)sgn(ui − vi)

−
∑

i6=j

αibij(t)D2fij(wijui + zijvi, wijuj + zijvj)(uj − vj)sgn(ui − vi)

]

≤
N
∑

j=1



−C∗(A, B)αjbjj(t) | uj − vj | +
∑

i6=j

C∗(A, B)αibij(t) | uj − vj |



 .

By (2.9), we have

θ′(t) ≤ −εC∗(A, B)

N
∑

j=1

| uj − vj | a.e. t ≤ T.

Hence, putting η = εC∗(A, B), we can obtain (2.10).

Step 2. By (2.7), there exists some C > 0 such that θ(t) ≤ C, t ≤ T .

Since (2.10) can be rewritten as

η

∫ T

t

| ui(s) − vi(s) | ds ≤ θ(t) − θ(T ) ≤ θ(t) ≤ C
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for t < T and i = 1, . . . , N , we find

∫ T

−∞

| ui(s) − vi(s) | ds < ∞.

Here let

m(t) = max{| ui(t) − vi(t) | | 1 ≤ i ≤ N}.

Since m(t) ≤| u1(t) − v1(t) | + · · ·+ | uN (t) + vN (t) |, we have

∫ T

−∞

m(s)ds < ∞

and so we may assume that lim inft→−∞ m(t) = 0. Thus there exists some

sequence {tn}
∞
n=1 ⊂ (−∞, T ] such that

tn → −∞ and m(tn) → 0 as n → ∞.

Since for i = 1, . . . , N ,
∣

∣

∣

∣

ui(tn)

vi(tn)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

ui(tn) − vi(tn)

vi(tn)

∣

∣

∣

∣

≤
m(tn)

A
,

it follows that θ(tn) → 0 as n → ∞. Furthermore, since θ is nonincreasing

by (2.10),

0 ≤ θ(T ) ≤ θ(tn).

Hence θ(T ) = 0, that is, u(T ) = v(T ) and u ≡ v.

Remark 2.6. By Proposition 2.2, we note that condition (GA) implies

(2.8).

The following lemma has been employed in [11, 12]. However, its proof

has not been given explicitly therein. Therefore we give the sketch of the

proof.

Lemma 2.7. Let conditions (1.1), (1.2) and (1.3) hold . Let u = (u1, . . . , uN )

be a solution of system (GLV) with u(t0) ∈ R
N
+ . Suppose that for some

δ > 0 and R satisfying (1.7), (1.8) hold . Then the following statements (i)

and (ii) hold :
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(i) For 1 ≤ i ≤ N and t ≥ t0,

ui(t) ≤ max{ui(t0), f̃−1
i ((ai/bii)M )};

(ii) For 1 ≤ i ≤ N and t ≥ t0,

ui(t) ≥ min{ui(t0), δ}

if 0 < ui(t0) < f̃−1
i ((ai/bii)M ), 1 ≤ i ≤ N .

Proof. (i) If there exist some T and i ∈ {1, . . . , N} such that f̃i(ui(T )) >

(ai/bii)M , then

u′
i(T ) ≤ ui(T )[ai(T ) − bii(T )f̃i(ui(T ))] < 0.

This proves (i).

(ii) From (i), it follows that for i = 1, . . . , N and t ≥ t0,

ui(t) ≤ R.

Therefore, by (1.8), if there exist some T and i ∈ {1, . . . , N} such that

ui(T ) ≤ δ, then

u′
i(T ) ≥ ui(T )



ai(T ) −
∑

j 6=i

bij(T )fij(R, R) − bii(T )f̃i(ui(T ))



 > 0.

This proves (ii).

Remark 2.8. Suppose that for some δ > 0 and R satisfying (1.7), (1.8)

hold. By Lemma 2.7, if u is a solution of system (GLV) such that for

i = 1, . . . , N ,

δ < ui(t0) < f̃−1
i ((ai/bii)M ),

then for i = 1, . . . , N and t ≥ t0,

δ ≤ ui(t) ≤ f̃−1
i ((ai/bii)M ).

Note that the proof of Theorem 1.2 is essentially based on this simple

consideration.
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3. Proof of theorem 1.2

In this section we prove Theorem 1.2 by employing the results in the

previous section.

Proof of Theorem 1.2. (I) Step 1. For m = 1, 2, . . ., let um = (um1, . . . , umN )

be a solution of system (GLV) such that δ < umi(−m) < f̃−1
i ((ai/bii)M ),

1 ≤ i ≤ N . By Lemma 2.7, it follows that for i = 1, . . . , N and t ≥ −m,

δ ≤ umi(t) ≤ f̃−1
i ((ai/bii)M ). (3.1)

Step 2. We put I1 = [−1, 1]. By (3.1), a sequence {u′
m} are uniformly

bounded on I1. Therefore, by Arzelà-Ascoli theorem, there exists a subse-

quence {um, 1} ⊂ {um} such that {um, 1} converges to a solution of system

(GLV) uniformly on I1

For n = 1, 2, . . ., we put In = [−n, n]. Similarly to the above ar-

gument, {um, 1} has a subsequence {um, 2} that converges to a solution

of system (GLV) uniformly on I2. More generally {um, n−1} has a subse-

quence {um, n} that converges to a solution of system (GLV) uniformly on

In. Therefore the diagonal sequence {um, m} converges to a solution u∗ of

system (GLV) uniformly on every finite interval I ⊂ R.

Moreover, since for i = 1, . . . , N and t ∈ R,

δ ≤ u∗
i (t) ≤ f̃−1

i ((ai/bii)M ),

it follows from Proposition 2.2 and Lemma 2.5 that u∗ is the unique solution

satisfying property (I).

(II) This is a direct consequence of Theorem 2.3.

(III) From (I), u∗(t) and u∗(t + T ) satisfy (I). Since ai(t), bij(t), 1 ≤ i, j ≤

N , are periodic with period T > 0, it follows that for i = 1, . . . , N ,

u∗′

i (t + T ) = u∗
i (t + T )



ai(t + T ) −
N
∑

j=1

bij(t + T )fij(u
∗
i (t + T ), u∗

j (t + T ))





= u∗
i (t + T )



ai(t) −

N
∑

j=1

bij(t)fij(u
∗
i (t + T ), u∗

j (t + T ))



 .

Hence, by Proposition 2.2 and Lemma 2.5, u∗(t) ≡ u∗(t + T ), that is, u∗ is

T -periodic.
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