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Forced oscillation criteria for quasilinear
elliptic inequalities with p(x)-Laplacian
via Riccati method*

Norio YOSHIDA

Abstract. Forced oscillation criteria for quasilinear elliptic inequal-
ities with p(z)-Laplacian are derived by using the Riccati inequality.
The approach used is to reduce forced oscillation problems for quasi-
linear elliptic inequalities with p(x)-Laplacian to one-dimensional os-
cillation problems for Riccati inequalities with variable exponents.
More general quasilinear elliptic inequalities with mixed nonlineari-
ties are also investigated.

1. Introduction
There is much current interest in studying oscillations of half-linear el-
liptic equations with p-Laplacian(p = o+ 1) of the form

V- (a(@)|Vul* V) + c(@)|u]*tu =0,

where a > 0 is a constant, V = (9/9z1,...,0/0x,) and the dot - denotes
the scalar product (cf. [1,3-6,11,16]). The operator V - (|Vu[P®)~2Vu)
is said to be p(z)-Laplacian, and becomes p-Laplacian V - (|Vu|P~?Vu) if
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p(z) = p (constant). The study of various mathematical problems with
variable exponent growth condition has been received considerable atten-
tion in recent years (see [7]). These problems arise from nonlinear elasticity
theory, electrorheological fluids (cf. [14,20]). In 2007 Zhang [19] studied os-

cillation problems for the p(t)-Laplacian equation
(]u’]p(t)_Qu’)/ +t%®g(t,u) =0, t>0,
It is noted that the elliptic equation with p(z)-Laplacian (p(z) = a(x)+1)
V- (A(z)|Vol*@71V0) + C(a)o|*@ 1y = 0

is not half-linear if a(z) is not a constant. However, it is shown that the

elliptic inequality with p(x)-Laplacian (p(z) = a(x) + 1)

vQolv] <0 (1)

is half-linear in the sense that a constant multiple of a solution v of (1) is

also a solution of (1), where

Qolv] = V- (A(2)|Vo|*@=1Vy) — A(z)(log |v])|Vo|* @1 Va(z) - Vo
+|Vo|*@ 1 B(z) - Vo + C(a)|v]*®) . (2)

In fact, it can be shown that
(kv)Qo[kv] = [K|**1uQ[v] (k € R)

(cf. Yoshida [17, Proposition 2.1]). We refer to Allegretto [2] and Yoshida
[18] for Picone identity arguments for elliptic operators with p(z)-Laplacian.

The objective of this paper is to investigate oscillatory behavior of so-
lutions of the quasilinear elliptic inequality vQ[v] < 0 with p(x)-Laplacian
(p(z) = a(z) + 1) and a forcing term, where

Q] = V- (A(x)|Vu[*®1Vv) — A(z)(log [v])|[Vv[*@~Va(z) - Vv
+|Vo|*@®=1B(z) - Vu
+C()|[v|*® Yy 4+ D(2)|v|P@ 1y + E(z)|o[ '@ — f(z). (3)

We note that log |v| in (2), (3) has singularities at zeros of v, but vlog |v|

becomes continuous at the zeros of v if we define v log |v| = 0 at the zeros, in
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light of the fact that lim._,+eloge = 0. Therefore, we conclude that vQ[v]
has no singularities and is continuous in 2. We remark that vQ[v] < 0 is
not half-linear.

The approach used is to reduce the multi-dimensional oscillation prob-
lems to one-dimensional oscillation problems for Riccati differential inequal-
ities, and to utilize the Riccati techniques.

In Section 2 we establish Riccati inequality for vQ[v] < 0, and in Section 3
we give oscillation results for vQ[v] < 0 on the basis of the Riccati inequality

obtained in Section 2.
2. Riccati inequality

Let Q be an exterior domain in R™, that is, Q includes the domain {z €
R™; |x| > 7o} for some rg > 0. We assume that A(z) € C(£;(0,00)), B(x) €
C(;R™), C(x) € C(EGR), D(z) € C(]0,00)), E(x) € C(£;]0,00)),
f(z) € C(R), and that a(z) € C1(;(0,00)), B(z) € C(£;(0,0)),
~v(x) € C(£2;(0,00)), and that S(z) > a(z) > v(z) > 0.

The domain Dg(2) of Q is defined to be the set of all functions v of class
C(%;R) such that A(x)|Vo|*®)~1Vy € CH(Q;R?).

A solution v € Dg(Q2) of vQ[v] < 0 is said to be oscillatory in € if it has

a zero in €, for any r > 0, where
Q. =Qn{z eR"; |z| >r}.
We use the notation:

A(r,00) = {w € R™; [z] > 1},
Alr,0) = {w € R [a] = ).

Since € is an exterior domain in R", we see that
Q, = A(r1,00)

for some large r1 > rg.
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Lemma 1. Ifv € Dgo(Q) and [v(z)| > X in Alrz,00) for some A > 0 and

some rg > 11, then we obtain the following:

. (A(:g)|vu|a<w>—1w>

|U’a(x)—1v

> C(z) + F(B(x),az),7(x); D(x), B(z)) = A f(x)]

a(z)+1 o(x)—
Vo + B <|vv| (2) lvv> vQ[v] (@)

+a(z)A(x) ” wle@-1y | 7 Jojal)+

in Alra,00), where

a(z)—B(=)

_ (5(93) - ’Y(ﬂf)) (5((33) - a(x)) A=) D(x)g&c}:zggE(x)ggg:ig.

we derive the following:

. A<$)’vv‘a(:p)flvv - —A(x Uoz(a:)—l L Vo
v ( (0 > = AW ()
_ (Al Tole@ =17y
SD(U)V (A(z)|Vo| Vo) (5)
and
A@)|Vol*@ -1y (@) Vo
Vo a(z)+1 1
= —a(x)A(x) |-~ - WA(w)(log\UI)IVUIQ(I)_IVOZ(OE) - Vv (6)

(see Yoshida [17, (2.5) and (2.7) in the proof of Lemma 2.1]). Combining
(5) with (6) yields

V. (A(x)\Vva(m)1Vv>

o(v)
a(z)+1 1

~ L9 (a@) V@1,
) V- (A@)| V@ V)

— A(z)(log [v])|Vo|*@=1Va(z) - w} (7

Vo

= a(x)A(x) ”
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Using (3) we see that

90(11)) [V, (A($)|Vv|a(:r)71Vv) — A(z)(log |[v])|Vv|*® 'V a(z) - Vv}
B wéﬂQw}ﬁvﬂMﬂ&B@%Vv—C@mMM@4v

=D(@)el" @ ~ B(@) o]t + f(x)]
_ el B(z) - (\vv‘a(x)lvv) — C(z)

|,U|a(:p)+1 |U|a(m)flv
. Blx)—1 @-1,], L
Sty D@ B@ | + s f ). ®)

Applying Young’s inequality, we obtain

D@0+ Bl @]

so(v)
= D@l 4 Ba)fo] e
> F(B(x), a(x),y(x); D(x), E(x)) (9)
(cf. Jaros, Kusano and Yoshida [8, p.717]). It can be shown that
/@ < < es) (10
Combining (7)-(10), we arrive at the desired inequality (4). O

Lemma 2. Ifv € Dg(Q), vQ[v] <0 in Q and |v(z)| > X in Alrg,c0) for

some X\ > 0 and some ro > 11, then we obtain the Riccati inequality:
V- W(x) + Fa(z) + oa) A(z) @ W ()| /D)
+(W(x), A(z) "' B(z)) <0 in Alrz,00), (1)
where (U, V') denotes the scalar product of U, V € R™,

A(z)|Vo|*@)=-1vy

’U‘a(z)—lv

W(x) =
and

Fi(z) = O(x) + F(B(2), a(x),7(2); D(x), E(x)) = A~ @[ f(2)].



98 Norio YOSHIDA

Proof. Since

Vv
W) = A |2
we easily see that
@ a(z)+1 B ’W($)| a((:();;l B lw<m)’1+(1/a(w))
v - A(x) o A(z)1+(1/a(2)
and hence
Vo a(z)+1
a(z)Az) |— = a(z)A(z) O (2) @) (12)
v
It is clear that
Vol“@) =17y _
B(a)- <’|:()> ~ (W (@), Ax) ' B(@)) (13)

Combining (4), (12), (13), and taking account of vQ[v] < 0, we arrive at
the desired inequality (11). O

Lemma 3. If v € Dg(Q), vQ[v] <0 in Q and |v(x)| > A in Afrg, 00) for

some A > 0 and some r9 > 11, then we obtain

V- (@)W (@) + () Fa(@) + ale)(z) A@e) VO W ()|
(W (), ¥ (2) A(2) "' B(z) = Vi (2)) <0 (14)

in Alrg, 00) for any ¥ (x) € C1(A[re, 0); R).
Proof. It is easy to see that
V- (@)W (2)) = (@)V - W(2) + (W(z), Vi(2)). (15)

Combining (11) with (15) yields the desired inequality (14). O
The following two lemmas follow by the same arguments as were used in
Yoshida [17, Lemmas 2.4 and 2.5], and will be omitted.
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Lemma 4. If v € Dg(Q), vQ[v] < 0 in Q and |v(x)| > A in Afrg, 00) for

some XA > 0 and some ro > 11, then we derive the Riccati inequality:

~ a(x)

V- (Y(@)W (@) + Fa(z) + Wg(m)lW(ﬂﬂ)l”(l/“(”) <0  (16)

in Alrg,00) for any (x) € C1(A[re,00); (0,00)), where

alx) +1

g(x) = == —w(x) Ax) "/,
Fk(ﬂf) = (x)Fa(x)
1 )@ () (@) +1 B(x) B Vi (z) a(z)+1
a(zr) + 19( ) ¥(x) @) o)

Lemma 5. Assume that the following hypothesis holds:
(H) a(z) =a(|z|) in Alry,o00).
If v € Do), vQlv] <0 in Q and |v(z)| > X in Alrg, 00) for some A > 0

and some ro > 11, then we have the Riccati inequality:

Y’(T‘) +/g F)\(w) ds + a((;j;:)_l\l/(r)1/a(T)|Y(T)‘1+(1/a(T)) <0 (17)

for r > 1y, where
ST - {x € Rn; ‘.%" = T}a
W(r) = [ gla) () as
Sy

Y(r) = g (@) (W (x), v(z)) dS,

v(x) being the unit exterior normal vector x/r on S,.

3. Oscillation results

In this section we present oscillation results for vQ[v] < 0 by using Riccati

inequality in Section 2.

Theorem 1. Assume that the hypothesis (H) is satisfied, and that there
exists a function ¥(x) € C*(A[r1,0); (0,00)) such that the Riccati inequal-
ity (17) has no solution on [r,o0) for all large v and any A > 0. Then,
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for every solution v € Dg(R?) of vQ[v] < 0, either v is oscillatory in Q or
satisfies the condition
liminf |v(x)| = 0. (18)
|z|—o00
Proof. Suppose to the contrary that there is a nonoscillatory solution
v € Do(?) of vQ[v] < 0 such that liminf|, . |v(x)[ > 0. Then, there is a
number 7y > 71 such that |v(z)| > X in Afrg, co) for some A > 0. Lemma 5
implies that (17) has a solution Y (r) on [r2, 00) for some r2 > 71 and some
A > 0. This contradicts the hypothesis and completes the proof. O
Now we need to investigate sufficient conditions for Riccati inequality
(17) to have no solution on [r, co) for all large r and any p > 0.
Let

D:{(T’,S)ERQ; r>s>r},
Dy = {(r,s) e R?; r>s>r}

and we consider the kernel function H(r,s), which is defined, continuous

and sufficiently smooth on D, so that the following conditions are satisfied:
(K1) H(r,s) >0and H(r,r) =0 for r > s > rq;

(K2) there exists a constant kg > 0 such that

H(r,s)

. _ >
rlggo Hirm) ko for all s > rq;

(K3) %—H(T, s) <0, faa—H(r, s) = h(r,s)H(r,s) for (r,s) € Dy, where
s s

h(r,s) € C(Dg;R)

(cf. Kong [10], Philos [13]).
We let p(s) € C([r1,00);(0,00)) and define an integral operator A% by

Apyr) = [ HOSpl)ds, vz

where y € C([r,00); R). It is easily seen that A% is linear and positive, and

in fact satisfies the following:

(A1) A2(kryr + koyo; ) = k1 AR (y1;7) + ko AR (yos ) for ky, ke € R;
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(Ag) AZ(y;r) >0 fory >0;
(As) AZ(y'sr) = —H(r,T)y(r)p(r) + AZ([h — p~' p'ly; 7)
(see Wong [15]).

Theorem 2. Assume that the hypothesis (H) of Lemma 5 holds. If there
exist functions ¥ (x) € CY(Alr1,); (0,00)) and p(s) € C1([r1,00);(0,00))
such that for any X >0

1 o
: P _
lliris;.jp e, rl)A” </s Fy(z)dS

then, for every solution v € Dg(Q?) of vQ[v] < 0, either v is oscillatory in
Q or satisfies the condition (18).

afr)+1

T

Proof. The proof follows by using exactly the same arguments as in
Yoshida [17, Theorem 3.2}, and will be omitted. O

Following the classical idea of Kamenev [9], we define H(r,s) and p(s)
by

H(r,s) = (r— )", u> 1, (rs) € D,
p(s)=s", veR.

Then we obtain the following corollary.

Corollary. Assume that the hypothesis (H) of Lemma 5 is satisfied, and,
moreover, that p > 1 and v is a real number. If there exists a function
Y(z) € CL(A[r1,0); (0,00)) such that for any A > 0

lim sup iu /T [wnSVanfl(r — 5)/‘M[F)\](S)

r—oco T ri

1
v—a(s)+1 a(s)+1 ,u—oz(s)—l\p
~a0) 75 lvr — (u+v)s| (r—s) (s)]ds- 00,

then, for every solution v € Dg(R?) of vQ[v] < 0, either v is oscillatory in
Q or satisfies the condition (18), where w, denotes the surface area of the
unit sphere Sy and M[F)\](r) denotes the spherical mean of Fy(z) over the
sphere S,..

In addition to the hypotheses (K;j)—(K3) we suppose the following:



102 Norio YOSHIDA

(K4) ——(r,s) = h(r,s)H(r,s) for (r,s) € Do, where h(r,s) € C(Do;R).

OH
or
Theorem 3. Assume that the hypothesis (H) of Lemma 5 holds. If there
are functions (x) € C1(A[r1,00);(0,00)) and p(s) € C([r1,0);(0,00))
such that for each &€ > r1 and for any A >0

. R 1 p/ a(r)+1
. ~ A 1 - a(r)+1

then, for every solution v € Dg(2) of vQ[v] < 0, either v is oscillatory in
Q or satisfies the condition (18).

Proof. The proof is quite similar to that of Yoshida [17, Theorem 3.4],

and hence is omitted. O

Remark. In the case where n = 1, Li and Li [12] established oscillation

results for the second-order nonlinear differential equation

la(®)ly )17 ' )]+ a(t) f(y(t) = r(t)

which are related to Theorem 1.

Example. We consider the quasi-linear elliptic inequality

v(v - (A(2)| Vo] @ 10) — A(z)(log [v]) [ Vu[* ™1V a(z) - Vo

+C(@)[v|*™ " o + D(@)[o]” ) o+ B(z) o1 — f(:c)) <0 (19)
in an exterior domain €2, where

a(z) = a(jz)) = 1+ el Bz) =2+ 71, y(z) = e,
(afx) + 1)@+

3. 6a(x)|$|n+1 ’
C(z) = |z|'™", D(z) = |=[**", E(z) = |z|"",

A(z) =

fx) = M (f(ac) is a bounded function in 2, 0 < § < 1).
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A simple computation shows that
F(B(x),a(z),y(2); D(x), E(x)) = 2D(x)"?E(x)"/?
— 2|:L,|17n

and that

F\(z) = C(x)+F(B(x),a(x),y(x); D(x), E(x)) = A~ @[ f(2)]
_ 3|x|17n i e*(lJre_l'r‘)log)\‘f(x)"

Choosing 1(z) = 1, we observe that F)(z) = F\(x) and

MIR(r) = 37177 = e 4R | (2 ).

Since )
g(z) = O‘(m)Q"FA(x)—l/a(:v%
we easily obtain
2a(7‘)rn71
¥(r) = M[A](r)

Letting 4 = 3 and v = 0, we see that

L [wn5”+"1(r — S MBy)(s)

103

),
1
o v—a(s)+1 - a(s)+17,.  \p—a(s)—1
oG T 78 lvr — (u+v)s| (r—s) \I'(s)] ds
1 (" .
= 3 [wnsnl(r — 5)3M[F)\](s)
1
1
s —as)+l a(s)+1r,.  N2—als)
als) T 78 |3s] (r—s) \IJ(S)] ds
= % [ o - i
1
3. 6a(s)8n+1
—(pr — g)2—a(s)
(r—2s) MTA](s) )+ 1)a(8)+1]ds
= % [3(7‘ —8)3 —(r— 3)17675] ds

2
S (r— 8)35”_16_(1+6_s)log)‘MHf(x)H(s) ds.
3 S

(20)
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It can be shown that

’ RY: :(7“—7"1)4: 4
(r = s)'ds = "= = O(r*) (r — o0), (21)

/r(r —8)7 T ds = 0(r?) (r — o0) (22)

T1

(see Yoshida [17, Example 4.1]). It is easy to check that e~(1+e™")logA < [y

and
K

M@ < o,
where K = max{1,e 21°¢*} and K is a positive constant. Hence, it follows
that for any A > 0

‘/W—WﬂleWKWWMW@W$%=KN&“3WHw)@$

T1

Combining (20)—(23) yields

i, {w [ Br=or = —ap=]a

T1

[ — e lem (e OB N ()] (5) dS} = 00 (24)

T

for any A > 0. Since all the hypotheses of Corollary are satisfied in view of
(20) and (24), it follows from Corollary that for every solution v € Dg(f2)
of (19), either v is oscillatory in € or satisfies the condition (18)
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