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Forced oscillation criteria for quasilinear

elliptic inequalities with p(x)-Laplacian

via Riccati method∗

Norio Yoshida

Abstract. Forced oscillation criteria for quasilinear elliptic inequal-
ities with p(x)-Laplacian are derived by using the Riccati inequality.
The approach used is to reduce forced oscillation problems for quasi-
linear elliptic inequalities with p(x)-Laplacian to one-dimensional os-
cillation problems for Riccati inequalities with variable exponents.
More general quasilinear elliptic inequalities with mixed nonlineari-
ties are also investigated.

1. Introduction

There is much current interest in studying oscillations of half-linear el-
liptic equations with p-Laplacian(p = α + 1) of the form

∇ ·
(
a(x)|∇u|α−1∇u

)
+ c(x)|u|α−1u = 0,

where α > 0 is a constant, ∇ = (∂/∂x1, ..., ∂/∂xn) and the dot · denotes
the scalar product (cf. [1, 3–6, 11, 16]). The operator ∇ ·

(
|∇u|p(x)−2∇u

)
is said to be p(x)-Laplacian, and becomes p-Laplacian ∇ ·

(
|∇u|p−2∇u

)
if
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p(x) = p (constant). The study of various mathematical problems with
variable exponent growth condition has been received considerable atten-
tion in recent years (see [7]). These problems arise from nonlinear elasticity
theory, electrorheological fluids (cf. [14,20]). In 2007 Zhang [19] studied os-
cillation problems for the p(t)-Laplacian equation(

|u′|p(t)−2u′)′ + t−θ(t)g(t, u) = 0, t > 0.

It is noted that the elliptic equation with p(x)-Laplacian (p(x) = α(x) + 1)

∇ ·
(
A(x)|∇v|α(x)−1∇v

)
+ C(x)|v|α(x)−1v = 0

is not half-linear if α(x) is not a constant. However, it is shown that the
elliptic inequality with p(x)-Laplacian (p(x) = α(x) + 1)

vQ0[v] ≤ 0 (1)

is half-linear in the sense that a constant multiple of a solution v of (1) is
also a solution of (1), where

Q0[v] := ∇ ·
(
A(x)|∇v|α(x)−1∇v

)
− A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

+|∇v|α(x)−1B(x) · ∇v + C(x)|v|α(x)−1v. (2)

In fact, it can be shown that

(kv)Q0[kv] = |k|α(x)+1vQ[v] (k ∈ R)

(cf. Yoshida [17, Proposition 2.1]). We refer to Allegretto [2] and Yoshida
[18] for Picone identity arguments for elliptic operators with p(x)-Laplacian.

The objective of this paper is to investigate oscillatory behavior of so-
lutions of the quasilinear elliptic inequality vQ[v] ≤ 0 with p(x)-Laplacian
(p(x) = α(x) + 1) and a forcing term, where

Q[v] := ∇ ·
(
A(x)|∇v|α(x)−1∇v

)
− A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

+|∇v|α(x)−1B(x) · ∇v

+C(x)|v|α(x)−1v + D(x)|v|β(x)−1v + E(x)|v|γ(x)−1v − f(x). (3)

We note that log |v| in (2), (3) has singularities at zeros of v, but v log |v|
becomes continuous at the zeros of v if we define v log |v| = 0 at the zeros, in
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light of the fact that limε→+0 ε log ε = 0. Therefore, we conclude that vQ[v]
has no singularities and is continuous in Ω. We remark that vQ[v] ≤ 0 is
not half-linear.

The approach used is to reduce the multi-dimensional oscillation prob-
lems to one-dimensional oscillation problems for Riccati differential inequal-
ities, and to utilize the Riccati techniques.

In Section 2 we establish Riccati inequality for vQ[v] ≤ 0, and in Section 3
we give oscillation results for vQ[v] ≤ 0 on the basis of the Riccati inequality
obtained in Section 2.

2. Riccati inequality

Let Ω be an exterior domain in Rn, that is, Ω includes the domain {x ∈
Rn; |x| ≥ r0} for some r0 > 0. We assume that A(x) ∈ C(Ω; (0,∞)), B(x) ∈
C(Ω; Rn), C(x) ∈ C(Ω; R), D(x) ∈ C(Ω; [0,∞)), E(x) ∈ C(Ω; [0,∞)),
f(x) ∈ C(Ω; R), and that α(x) ∈ C1(Ω; (0,∞)), β(x) ∈ C(Ω; (0,∞)),
γ(x) ∈ C(Ω; (0,∞)), and that β(x) > α(x) > γ(x) > 0.

The domain DQ(Ω) of Q is defined to be the set of all functions v of class
C1(Ω; R) such that A(x)|∇v|α(x)−1∇v ∈ C1(Ω; Rn).

A solution v ∈ DQ(Ω) of vQ[v] ≤ 0 is said to be oscillatory in Ω if it has
a zero in Ωr for any r > 0, where

Ωr = Ω ∩ {x ∈ Rn; |x| > r}.

We use the notation:

A(r,∞) = {x ∈ Rn; |x| > r},

A[r,∞) = {x ∈ Rn; |x| ≥ r}.

Since Ω is an exterior domain in Rn, we see that

Ωr1 = A(r1,∞)

for some large r1 ≥ r0.
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Lemma 1. If v ∈ DQ(Ω) and |v(x)| ≥ λ in A[r2,∞) for some λ > 0 and
some r2 > r1, then we obtain the following:

−∇ ·

(
A(x)|∇v|α(x)−1∇v

|v|α(x)−1v

)
≥ C(x) + F (β(x), α(x), γ(x);D(x), E(x)) − λ−α(x)|f(x)|

+α(x)A(x)
∣∣∣∣∇v

v

∣∣∣∣α(x)+1

+ B(x) ·

(
|∇v|α(x)−1∇v

|v|α(x)−1v

)
− vQ[v]

|v|α(x)+1
(4)

in A[r2,∞), where

F (β(x), α(x), γ(x);D(x), E(x))

=
(

β(x) − γ(x)
α(x) − γ(x)

)(
β(x) − α(x)
α(x) − γ(x)

)α(x)−β(x)
β(x)−γ(x)

D(x)
α(x)−γ(x)
β(x)−γ(x) E(x)

β(x)−α(x)
β(x)−γ(x) .

Proof. Letting

φ(v) := |v|α(x)−1v = |v(x)|α(x)−1v(x),

we derive the following:

−∇ ·

(
A(x)|∇v|α(x)−1∇v

φ(v)

)
= −A(x)|∇v|α(x)−1∇

(
1

φ(v)

)
· ∇v

− 1
φ(v)

∇ ·
(
A(x)|∇v|α(x)−1∇v

)
(5)

and

A(x)|∇v|α(x)−1∇
(

1
φ(v)

)
· ∇v

= −α(x)A(x)
∣∣∣∣∇v

v

∣∣∣∣α(x)+1

− 1
φ(v)

A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v (6)

(see Yoshida [17, (2.5) and (2.7) in the proof of Lemma 2.1]). Combining
(5) with (6) yields

−∇ ·

(
A(x)|∇v|α(x)−1∇v

φ(v)

)

= α(x)A(x)
∣∣∣∣∇v

v

∣∣∣∣α(x)+1

− 1
φ(v)

[
∇ ·

(
A(x)|∇v|α(x)−1∇v

)
−A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

]
. (7)
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Using (3) we see that

1
φ(v)

[
∇ ·

(
A(x)|∇v|α(x)−1∇v

)
− A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

]
=

1
φ(v)

[
Q[v] − |∇v|α(x)−1B(x) · ∇v − C(x)|v|α(x)−1v

−D(x)|v|β(x)−1v − E(x)|v|γ(x)−1v + f(x)
]

=
vQ[v]

|v|α(x)+1
− B(x) ·

(
|∇v|α(x)−1∇v

|v|α(x)−1v

)
− C(x)

− 1
φ(v)

[
D(x)|v|β(x)−1v + E(x)|v|γ(x)−1v

]
+

1
φ(v)

f(x). (8)

Applying Young’s inequality, we obtain

1
φ(v)

[
D(x)|v|β(x)−1v + E(x)|v|γ(x)−1v

]
= D(x)|v|β(x)−α(x) + E(x)|v|γ(x)−α(x)

≥ F (β(x), α(x), γ(x);D(x), E(x)) (9)

(cf. Jaroš, Kusano and Yoshida [8, p.717]). It can be shown that

1
φ(v)

f(x) ≤ |f(x)|
|v|α(x)

≤ λ−α(x)|f(x)|. (10)

Combining (7)–(10), we arrive at the desired inequality (4).

Lemma 2. If v ∈ DQ(Ω), vQ[v] ≤ 0 in Ω and |v(x)| ≥ λ in A[r2,∞) for
some λ > 0 and some r2 > r1, then we obtain the Riccati inequality:

∇ · W (x) + Fλ(x) + α(x)A(x)−1/α(x)|W (x)|1+(1/α(x))

+⟨W (x), A(x)−1B(x)⟩ ≤ 0 in A[r2,∞), (11)

where ⟨U, V ⟩ denotes the scalar product of U, V ∈ Rn,

W (x) =
A(x)|∇v|α(x)−1∇v

|v|α(x)−1v

and

Fλ(x) = C(x) + F (β(x), α(x), γ(x);D(x), E(x)) − λ−α(x)|f(x)|.
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Proof. Since

|W (x)| = A(x)
∣∣∣∣∇v

v

∣∣∣∣α(x)

,

we easily see that

∣∣∣∣∇v

v

∣∣∣∣α(x)+1

=
(
|W (x)|
A(x)

)α(x)+1
α(x)

=
|W (x)|1+(1/α(x))

A(x)1+(1/α(x))

and hence

α(x)A(x)
∣∣∣∣∇v

v

∣∣∣∣α(x)+1

= α(x)A(x)−1/α(x)|W (x)|1+(1/α(x)). (12)

It is clear that

B(x) ·

(
|∇v|α(x)−1∇v

|v|α(x)−1v

)
= ⟨W (x), A(x)−1B(x)⟩. (13)

Combining (4), (12), (13), and taking account of vQ[v] ≤ 0, we arrive at
the desired inequality (11).

Lemma 3. If v ∈ DQ(Ω), vQ[v] ≤ 0 in Ω and |v(x)| ≥ λ in A[r2,∞) for
some λ > 0 and some r2 > r1, then we obtain

∇ ·
(
ψ(x)W (x)

)
+ ψ(x)Fλ(x) + α(x)ψ(x)A(x)−1/α(x)|W (x)|1+(1/α(x))

+⟨W (x), ψ(x)A(x)−1B(x) −∇ψ(x)⟩ ≤ 0 (14)

in A[r2,∞) for any ψ(x) ∈ C1(A[r2,∞); R).

Proof. It is easy to see that

∇ ·
(
ψ(x)W (x)

)
= ψ(x)∇ · W (x) + ⟨W (x),∇ψ(x)⟩. (15)

Combining (11) with (15) yields the desired inequality (14).

The following two lemmas follow by the same arguments as were used in
Yoshida [17, Lemmas 2.4 and 2.5], and will be omitted.
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Lemma 4. If v ∈ DQ(Ω), vQ[v] ≤ 0 in Ω and |v(x)| ≥ λ in A[r2,∞) for
some λ > 0 and some r2 > r1, then we derive the Riccati inequality:

∇ ·
(
ψ(x)W (x)

)
+ F̂λ(x) +

α(x)
α(x) + 1

g(x)|W (x)|1+(1/α(x)) ≤ 0 (16)

in A[r2,∞) for any ψ(x) ∈ C1(A[r2,∞); (0,∞)), where

g(x) =
α(x) + 1

2
ψ(x)A(x)−1/α(x),

F̂λ(x) = ψ(x)Fλ(x)

− 1
α(x) + 1

g(x)−α(x)ψ(x)α(x)+1

∣∣∣∣B(x)
A(x)

− ∇ψ(x)
ψ(x)

∣∣∣∣α(x)+1

.

Lemma 5. Assume that the following hypothesis holds:

(H) α(x) ≡ α(|x|) in A[r1,∞).

If v ∈ DQ(Ω), vQ[v] ≤ 0 in Ω and |v(x)| ≥ λ in A[r2,∞) for some λ > 0
and some r2 > r1, then we have the Riccati inequality:

Y ′(r) +
∫

Sr

F̂λ(x) dS +
α(r)

α(r) + 1
Ψ(r)−1/α(r)|Y (r)|1+(1/α(r)) ≤ 0 (17)

for r ≥ r2, where

Sr = {x ∈ Rn; |x| = r},

Ψ(r) =
∫

Sr

g(x)−α(r)ψ(x)α(r)+1 dS,

Y (r) =
∫

Sr

ψ(x)⟨W (x), ν(x)⟩ dS,

ν(x) being the unit exterior normal vector x/r on Sr.

3. Oscillation results

In this section we present oscillation results for vQ[v] ≤ 0 by using Riccati
inequality in Section 2.

Theorem 1. Assume that the hypothesis (H) is satisfied, and that there
exists a function ψ(x) ∈ C1(A[r1,∞); (0,∞)) such that the Riccati inequal-
ity (17) has no solution on [r,∞) for all large r and any λ > 0. Then,
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for every solution v ∈ DQ(Ω) of vQ[v] ≤ 0, either v is oscillatory in Ω or
satisfies the condition

lim inf
|x|→∞

|v(x)| = 0. (18)

Proof. Suppose to the contrary that there is a nonoscillatory solution
v ∈ DQ(Ω) of vQ[v] ≤ 0 such that lim inf |x|→∞ |v(x)| > 0. Then, there is a
number r2 > r1 such that |v(x)| ≥ λ in A[r2,∞) for some λ > 0. Lemma 5
implies that (17) has a solution Y (r) on [r2,∞) for some r2 > r1 and some
λ > 0. This contradicts the hypothesis and completes the proof.

Now we need to investigate sufficient conditions for Riccati inequality
(17) to have no solution on [r,∞) for all large r and any µ > 0.

Let

D = {(r, s) ∈ R2; r ≥ s ≥ r1},

D0 = {(r, s) ∈ R2; r > s ≥ r1}

and we consider the kernel function H(r, s), which is defined, continuous
and sufficiently smooth on D, so that the following conditions are satisfied:

(K1) H(r, s) ≥ 0 and H(r, r) = 0 for r ≥ s ≥ r1;

(K2) there exists a constant k0 > 0 such that

lim
r→∞

H(r, s)
H(r, r1)

= k0 for all s ≥ r1;

(K3)
∂H

∂s
(r, s) ≤ 0, −∂H

∂s
(r, s) = h(r, s)H(r, s) for (r, s) ∈ D0, where

h(r, s) ∈ C(D0; R)

(cf. Kong [10], Philos [13]).
We let ρ(s) ∈ C1([r1,∞); (0,∞)) and define an integral operator Aρ

τ by

Aρ
τ (y; r) =

∫ r

τ
H(r, s)y(s)ρ(s) ds, r ≥ τ ≥ r1,

where y ∈ C([τ,∞); R). It is easily seen that Aρ
τ is linear and positive, and

in fact satisfies the following:

(A1) Aρ
τ (k1y1 + k2y2; r) = k1A

ρ
τ (y1; r) + k2A

ρ
τ (y2; r) for k1, k2 ∈ R;



Forced oscillation criteria for quasilinear elliptic inequalities with p(x)-Laplacian 101

(A2) Aρ
τ (y; r) ≥ 0 for y ≥ 0;

(A3) Aρ
τ (y′; r) = −H(r, τ)y(τ)ρ(τ) + Aρ

τ ([h − ρ−1ρ′]y; r)

(see Wong [15]).

Theorem 2. Assume that the hypothesis (H) of Lemma 5 holds. If there
exist functions ψ(x) ∈ C1(A[r1,∞); (0,∞)) and ρ(s) ∈ C1([r1,∞); (0,∞))
such that for any λ > 0

lim sup
r→∞

1
H(r, r1)

Aρ
r1

(∫
Sr

F̂λ(x) dS − 1
α(r) + 1

∣∣∣∣h − ρ′

ρ

∣∣∣∣α(r)+1

Ψ; r

)
= ∞,

then, for every solution v ∈ DQ(Ω) of vQ[v] ≤ 0, either v is oscillatory in
Ω or satisfies the condition (18).

Proof. The proof follows by using exactly the same arguments as in
Yoshida [17, Theorem 3.2], and will be omitted.

Following the classical idea of Kamenev [9], we define H(r, s) and ρ(s)
by

H(r, s) = (r − s)µ, µ > 1, (r, s) ∈ D,

ρ(s) = sν , ν ∈ R.

Then we obtain the following corollary.

Corollary. Assume that the hypothesis (H) of Lemma 5 is satisfied, and,
moreover, that µ > 1 and ν is a real number. If there exists a function
ψ(x) ∈ C1(A[r1,∞); (0,∞)) such that for any λ > 0

lim sup
r→∞

1
rµ

∫ r

r1

[
ωnsν+n−1(r − s)µM [F̂λ](s)

− 1
α(s) + 1

sν−α(s)+1|νr − (µ + ν)s|α(s)+1(r − s)µ−α(s)−1Ψ(s)
]
ds = ∞,

then, for every solution v ∈ DQ(Ω) of vQ[v] ≤ 0, either v is oscillatory in
Ω or satisfies the condition (18), where ωn denotes the surface area of the
unit sphere S1 and M [F̂λ](r) denotes the spherical mean of F̂λ(x) over the
sphere Sr.

In addition to the hypotheses (K1)–(K3) we suppose the following:
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(K4)
∂H

∂r
(r, s) = h̃(r, s)H(r, s) for (r, s) ∈ D0, where h̃(r, s) ∈ C(D0; R).

Theorem 3. Assume that the hypothesis (H) of Lemma 5 holds. If there
are functions ψ(x) ∈ C1(A[r1,∞); (0,∞)) and ρ(s) ∈ C1([r1,∞); (0,∞))
such that for each ξ ≥ r1 and for any λ > 0

lim sup
r→∞

Aρ
ξ

(∫
Sr

F̂λ(x) dS − 1
α(r) + 1

∣∣∣∣h − ρ′

ρ

∣∣∣∣α(r)+1

Ψ; r

)
> 0,

lim sup
r→∞

Ãρ
ξ

(∫
Sr

F̂λ(x) dS − 1
α(r) + 1

∣∣∣∣h̃ +
ρ′

ρ

∣∣∣∣α(r)+1

Ψ; r

)
> 0,

then, for every solution v ∈ DQ(Ω) of vQ[v] ≤ 0, either v is oscillatory in
Ω or satisfies the condition (18).

Proof. The proof is quite similar to that of Yoshida [17, Theorem 3.4],
and hence is omitted.

Remark. In the case where n = 1, Li and Li [12] established oscillation
results for the second-order nonlinear differential equation[

a(t)|y′(t)|σ−1y′(t)
]′ + q(t)f(y(t)) = r(t)

which are related to Theorem 1.

Example. We consider the quasi-linear elliptic inequality

v
(
∇ ·

(
A(x)|∇v|α(x)−1∇v

)
− A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

+C(x)|v|α(x)−1v + D(x)|v|β(x)−1v + E(x)|v|γ(x)−1v − f(x)
)
≤ 0 (19)

in an exterior domain Ω, where

α(x) = α(|x|) = 1 + e−|x|, β(x) = 2 + e−|x|, γ(x) = e−|x|,

A(x) =
(α(x) + 1)α(x)+1

3 · 6α(x)|x|n+1
,

C(x) = |x|1−n, D(x) = |x|3−3n, E(x) = |x|n−1,

f(x) =
f̃(x)

|x|n−1+δ
(f̃(x) is a bounded function in Ω, 0 < δ < 1).
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A simple computation shows that

F (β(x), α(x), γ(x);D(x), E(x)) = 2D(x)1/2E(x)1/2

= 2|x|1−n

and that

Fλ(x) = C(x) + F (β(x), α(x), γ(x); D(x), E(x)) − λ−α(x)|f(x)|

= 3|x|1−n − e−(1+e−|x|) log λ|f(x)|.

Choosing ψ(x) = 1, we observe that F̂λ(x) = Fλ(x) and

M [F̂λ](r) = 3r1−n − e−(1+e−r) log λM [|f(x)|](r).

Since
g(x) =

α(x) + 1
2

A(x)−1/α(x),

we easily obtain

Ψ(r) = ωn
2α(r)rn−1

(α(r) + 1)α(r)
M [A](r).

Letting µ = 3 and ν = 0, we see that

1
rµ

∫ r

r1

[
ωnsν+n−1(r − s)µM [F̂λ](s)

− 1
α(s) + 1

sν−α(s)+1|νr − (µ + ν)s|α(s)+1(r − s)µ−α(s)−1Ψ(s)
]
ds

=
1
r3

∫ r

r1

[
ωnsn−1(r − s)3M [F̂λ](s)

− 1
α(s) + 1

s−α(s)+1|3s|α(s)+1(r − s)2−α(s)Ψ(s)
]
ds

=
ωn

r3

∫ r

r1

[
(r − s)3M [F̂λ](s)sn−1

−(r − s)2−α(s)M [A](s)
3 · 6α(s)sn+1

(α(s) + 1)α(s)+1

]
ds

=
ωn

r3

∫ r

r1

[
3(r − s)3 − (r − s)1−e−s

]
ds

−ωn

r3

∫ r

r1

(r − s)3sn−1e−(1+e−s) log λM [|f(x)|](s) ds. (20)



104 Norio Yoshida

It can be shown that∫ r

r1

(r − s)3ds =
(r − r1)4

4
= O

(
r4

)
(r → ∞), (21)∫ r

r1

(r − s)1−e−s
ds = O

(
r2

)
(r → ∞) (22)

(see Yoshida [17, Example 4.1]). It is easy to check that e−(1+e−s) log λ ≤ Kλ

and
M [|f(x)|](r) ≤ K

rn−1+δ
,

where Kλ = max{1, e−2 log λ} and K is a positive constant. Hence, it follows
that for any λ > 0∫ r

r1

(r − s)3sn−1e−(1+e−s) log λM [|f(x)|](s) ds = KλO
(
r4−δ

)
(r → ∞). (23)

Combining (20)–(23) yields

lim
r→∞

{
ωn

r3

∫ r

r1

[
3(r − s)3 − (r − s)1−e−s

]
ds

−ωn

r3

∫ r

r1

(r − s)3sn−1e−(1+e−s) log λM [|f(x)|](s) ds

}
= ∞ (24)

for any λ > 0. Since all the hypotheses of Corollary are satisfied in view of
(20) and (24), it follows from Corollary that for every solution v ∈ DQ(Ω)
of (19), either v is oscillatory in Ω or satisfies the condition (18)
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[14] M. Růžička, Electrorheological Fluids: Modeling and Mathematical
Theory, Lecture Notes in Mathematics, Vol. 1748, Springer-Verlag,
Berlin, 2000.



106 Norio Yoshida

[15] J. S. W. Wong, On Kamenev-type oscillation theorems for second-
order differential equations with damping, J. Math. Anal. Appl., 258
(2001), 244–257.

[16] N. Yoshida, A Picone identity for half-linear elliptic equations and its
applications to oscillation theory, Nonlinear Anal., 71 (2009), 4935–
4951.

[17] N. Yoshida, Oscillation criteria for half-linear elliptic inequalities with
p(x)-Laplacians via Riccati method, Nonlinear Anal., 74 (2011), 2563–
2575.

[18] N. Yoshida, Picone identities for half-linear elliptic operators with
p(x)-Laplacians and applications to Sturmian comparison theory, Non-
linear Anal., 74 (2011), 5631–5642.

[19] Q. H. Zhang, Oscillatory property of solutions for p(t)-Laplacian equa-
tions, J. Inequal. Appl., 2007, Art. ID 58548, 8 pp.

[20] V. V. Zhikov, Averaging of functionals of the calculus of variations
and elasticity theory, Math. USSR Izv., 29 (1987), 33–66.

Norio Yoshida

Department of Mathematics
University of Toyama
Toyama, 930-8555
Japan

(Received December 15, 2011)


