
Toyama Math. J.
Vol. 34(2011), 87-91

A note on convergence in Bergman spaces over bounded

symmetric domains in CN(N > 1)

Maher M. H. Marzuq

Abstract. In this paper we prove a result that generalizes the result
of [7] on the unit disk to bounded star-shaped circular domains.

1. Introduction

Let D be a bounded symmetric domain in CN (N > 1), and O ∈ D. D is
circular and star-shaped with respect to the origin, i. e. tz ∈ D when z ∈ D

and t ∈ C with |t| < 1, [4]. We denote by H(D) the space of holomorphic
functions on D.

For p > 0 the Bergman space A
p

is defined on D by

A
p = A

p(D) =
{

f : f ∈ H(D) and
∣∣f ∣∣

A
p =

(
1
V

∫
D

∣∣f(z)
∣∣pdvz

) 1
p

< ∞
}

,

or equivalently [5],

A′p =
{

f : f ∈ H(D) and
∣∣f ∣∣

A′p = sup
0≤r<1

(
1
V

∫
D

∣∣f(rz)
∣∣pdvz

) 1
p

< ∞
}

. (1)

Where V is the Euclidean volume of D and dvz is the Euclidean element
of volume at z ∈ D.

It is well known that a complete orthonormal system (CONS) of homoge-
nous polynomials {Ψkν}ν = 1, . . . ; mk =

(
N+k−1

k

)
; k = 0, 1, . . . exist on a

bounded star-shaped domain [2].
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We will have the following lemmas which will be used in the proof of
Theorem 2.1.

Lemma 1.1. Let D be a bounded star-shaped circular domain. Then any
holomorphic function on D has a Fourier series expansion

f(z) =
∞∑

k=0

mk∑
ν=1

ckν(f)ψkν(z); ckν(f) = lim
r→1

∫
D

f(rz)ψ̄kν dvz , (2)

where the series converges absolutely and uniformly on compact subsets
of D.

Proof. The proof of Lemma 1.1 follows the method of the proof of the
Lemma in [3] and the proof of Theorem [1].

Lemma 1.2.

A
p(D) = A′p(D) and ∥f∥Ap = ∥f∥A′p ,

[5] where D is bounded star-shaped circular domain in CN (N > 1).

2. The following Theorem will extend a special case of a result
of [7].

Theorem 2.1. Let D be a bounded star-shaped circular domain in CN

(N > 1) and f ∈ Ap(D) (0 < p < ∞), then ∥fr − f∥
Ap → 0 as r → 1,

where fr(z) = f(rz).
Furthermore, the set of polynomials in z is dense in Ap(D); also Ap(D)

is separable.

Proof. Since rz ∈ D̄ for fixed r, 0 ≤ r < 1, fr(z) = f(rz) is holomorphic
on D̄ and hence bounded on D̄. Thus fr ∈ Ap and hence to Lp. Also for
z ∈ D, limr→1 fr(z) = f(z), by continuity of f .

Finally by (1) and Lemma 1.2, we have ∥fr∥Ap → ∥f∥
Ap as r → 1.

Thus the hypothesis of [6] are satisfied, so that

∥fr − f∥Ap → 0 as r → 1 .
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Let f ∈ Ap (0 < p < ∞). Given ϵ > 0, there exists r0 (r0 < 1), such that∥∥f − fr0

∥∥
Ap <

ϵ

2
. (3)

Now let Sn,r0
(z) denote the nth partial sum of the Fourier series (2) of

fr0
(z). Since Sn,r0

→ fr0
uniformly on D̄ by Lemma 1.1,∥∥Sn,r0

− fr0

∥∥
Ap <

ϵ

2
, (4)

for n sufficiently large, thus by (3) and (4)∥∥Sn,r0
− f

∥∥
Ap <

∥∥Sn,r0
− fr0

∥∥
Ap +

∥∥f − fr0

∥∥
Ap <

ϵ

2
+

ϵ

2
= ϵ .

Hence, the linear combination of {Ψkν} is dense in Ap, but as in [3],
mk∑
ν=1

ckνψkν(z) =
mk∑
ν=1

AkνZkν , where Zkν denote the monomial z
ν1
1 . . . z

νn
N(

k = ν1 + · · · + νN ; k = 0, 1, . . . ; ν = 1, . . . ; mk =
(

N+k−1
k

))
.

Thus the polynomials are dense in Ap.

3. We have the following Corollaries:

Corollary 1. Let f, g ∈ A2(D), then

(f, g) = lim
r→1

(
1
V

∫
D

f(rz)g(rz)dvz

)
.

Proof.∣∣(f, g) − (fr, gr)
∣∣ ≤ 1

V

∫
D

∣∣f(z)g(z) − fr(z)gr(z)
∣∣ dvz

=
1
V

∫
D

∣∣f(z)
(
g(z) − gr(z)

)
+

(
f(z) − fr(z)

)
gr(z)

∣∣ dvz

≤ 1
V

∫
D

∣∣f(z)
∣∣ ∣∣g(z) − gr(z)

∣∣ dvz +
1
V

∫
D

∣∣f(z) − fr(z)
∣∣ ∣∣gr(z)

∣∣ dvz .

By Schwarz inequality,

|(f, g) − (fr, gr)| <
1
V

(∫
D

|f(z)|2 dvz

) 1
2
(∫

D

| ¯g(z) − g(rz)|2 dvz

) 1
2

+
1
V

(∫
D

|f(z) − f(rz)|2 dvz

) 1
2
(∫

D

|g(rz)|2 dvz

) 1
2

,
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or
|(f, g) − (fr, gr)| ≤ ∥f∥

A2 ∥g − gr∥A2 + ∥f − fr∥A2 ∥gr∥A2 . (5)

Now ∥gr∥A2 → ∥g∥
A2 as r → 1 by Lemma 1.2, so the right side of (5)

tends to zero by Theorem 2.1.
Therefore

(f, g) = lim
r→1

(fr, gr) = lim
r→1

(
1
V

∫
D

f(rz)g(rz) dvz

)
.

Corollary 2. For f ∈ Ap (1 ≤ p < ∞),

ckν(f) =
∫
D

f(z)ψ̄kν dvz , (6)

where ckν is given by (2).

Proof. By Holder’s inequality for 1 < p < ∞,∣∣∣∣∫
D

(
fr(z)ψ̄kν(z) − f(z)ψ̄kν(z)

)
dvz

∣∣∣∣
≤

(∫
D

∣∣f(rz) − f(z)
∣∣p dvz

) 1
p
(∫

D

∣∣ψkν(z)
∣∣q dvz

) 1
q

,

(7)

where 1
p + 1

q = 1. The right side of (7) equals ∥fr − f∥
Ap∥ψ1ν∥Aq . But ψkν

is homogeneous polynomial on CN (N > 1), so it is bounded on compact
set D̄ and hence is in Aq. By Theorem 2.1 ∥fr − f∥

Ap → 0 as r → 1. Thus
formula (6) follows. If p=1∣∣∣∣∫

D

(
fr(z)ψ̄kν − f(z)ψ̄kν

)
dvz

∣∣∣∣ ≤ (∫
D

|f(rz) − f(z)| dvz

)
sup
z∈D

∣∣ψkν(z)
∣∣ (8)

=
∥∥fr − f

∥∥
A1 sup

z∈D

∣∣ψkν(z)
∣∣ .

But sup
z∈D

|ψkν(z)| is finite since ψkν is bounded on D, so that the right

side of (8) tend to Zero as r → 1 by Theorem 2.1. Thus (6) follows for
p = 1.
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