Toyama Math. J. Vol. 33(2010), 43-53

Interpolation sequence for the spaces $H^q_+(\phi)(q \ge 1)$

Maher M. H. MARZUQ

Abstract. Let ϕ be a subadditive increasing real valued function defined on $[0,\infty)$ and which satisfies $\phi(x) = 0$ if and only if x = 0. For $q \ge 1$ we define $H^q(\phi)$ to be the set of all functions f which are analytic in the open unit disc and satisfy

$$\sup_{0 \le r < 1} \int_0^{2\pi} \left[\phi \left(|f(r \mathrm{e}^{\mathrm{i}\theta})| \right]^q \mathrm{d}\theta < \infty.$$

And $H^q_+(\phi)$ to be the subspace of $H^q(\phi)$ of functions which satisfy

$$\lim_{r \to 1} \int_0^{2\pi} \left[\phi \left(|f(r \mathbf{e}^{\mathbf{i}\theta})| \right) \right]^q \mathrm{d}\theta = \int_0^{2\pi} \left[\phi \left(|f(\mathbf{e}^{\mathbf{i}\theta})| \right) \right]^q \mathrm{d}\theta.$$

In this paper we prove some interpolation theorems for $H^q_+(\phi)$

1. Introduction

Let us recall some definitions. We call a real-valued function ϕ defined on $[0, \infty)$ a modulus function, if ϕ is an increasing continuous subadditive function that satisfies the condition that $\phi(x) = 0$ if and only if x = 0.

Let $q \geq 1$. By the class $H^{q}(\phi)$ we mean the collection of all analytic functions f defined in the open unit disc Δ which satisfy

$$\sup_{0 \le r < 1} \int_0^{2\pi} \left[\phi \left(|f(r \mathrm{e}^{\mathrm{i}\theta})| \right) \right]^q \mathrm{d}\theta < \infty.$$

For q = 1 the spaces were studied in details in [2, 3]. If $\phi(x) = x$, then $H^q(\phi)$ becomes the usual Banach space H^q . For $\phi(x) = x^p$, 0

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B45, 46A45.

and q = 1, then $H^q(\phi)$ becomes the usual *F*-spaces H^q . If q = 1 and $\phi(x) = \log(1+x^p)$, then $H^q(\phi)$ becomes N_p . If q = 1 and $\phi(x) = \log(1+x)$, then $H^q(\phi)$ becomes the class *N* of functions of bounded characteristic. For $N_p = N_+$ for 0 [8], where

$$N_{p} = \{ f \in H^{+}(D) \cap H^{p}(\phi) : \lim_{r \to 1} \int_{0}^{2\pi} \log(1 + |f(re^{i\theta})|^{p}) d\theta \\ = \int_{0}^{2\pi} \log(1 + |f(e^{i\theta})|^{p}) d\theta \},$$

and

$$N^{+} = \{ f \in N : \lim_{r \to 1} \int_{0}^{2\pi} \log^{+}(|f(re^{it})|) dt = \int_{0}^{2\pi} \log^{+}(|f(e^{it})|) dt \}.$$

In general the spaces $H^q(\phi)$ are not *F*-Spaces; see [13, p. 453] for an example. We shall assume that ϕ satisfies the additional condition that $\phi(e^t)$ is a convex function of *t*, and consequently $H^q(\phi) \subseteq N$.

A function $f \in H^q(\phi)$ is said to belong to the class $H^q_+(\phi)$ if

$$\lim_{r \to 1} \int_0^{2\pi} \left[\varphi \left(|f(r \mathrm{e}^{\mathrm{i}\theta})| \right) \right]^q \mathrm{d}\theta = \int_0^{2\pi} [\varphi (|f(\mathrm{e}^{\mathrm{i}\theta})|)]^q \,\mathrm{d}\theta.$$

For the class $H^q_+(\phi)$, which is a vector space , we define a distance function by

$$\rho(f,0) = \left[\frac{1}{2\pi} \int_0^{2\pi} [\varphi(|f(\mathbf{e}^{\mathbf{i}\theta})|)]^q \,\mathrm{d}\theta\right]^{\frac{1}{q}} \tag{1.1}$$

For the spaces $H^q(p \ge 1)$, $H^q(0 . [5], <math>N_+$ [13] $N_p^+(p > 0)$ and $(\log^+ H)^{\alpha}(a > 1)$, [12] become special cases of $H_+^q(\phi)$.

Let $\alpha = (\alpha_n) = (\alpha_1, \dots, \alpha_n, \dots)$, be a sequence of real numbers such that $\alpha_n \to 0$.

Let

$$l^{q}(\phi, \alpha) = \{(c_{n}) : c_{n} \in C \text{ and } d((c_{n}), 0) = \left[\sum_{n=1}^{\infty} \alpha_{n} [\varphi(|c_{n})|)]^{q}\right]^{\frac{1}{q}} < \infty\}$$

Let X be the class of analytic functions in Δ and $\{z_n\}$ is a given sequence in Δ . When a complex sequence $\{c_n\}$ is given, the interpolation problem asks if a function $f \in X$ exists such that $f\{z_n\} = c_n$ for all n. Let Y be a class of complex sequences. If for every sequence $(c_n) \in Y$ there is an $f \in X$ such that $f\{z_n\} = c_n$, then the sequence $\{z_n\}$ is called a universal interpolation sequence for the pair (X, Y), simply written z_n is u.i.s. for (X, Y). We are interested in the pair $H^q_+(\phi), l^q(\phi, \alpha)$ where $\alpha = (1 - |z_n|^2)$.

A sequence $\{z_n\}$ in Δ is called uniformly separated sequence (u. s. s.) if

$$\sum_{n=1}^{\infty} (1-|z_n|) < \infty, \text{ and } \prod_{\substack{n=1\\m \neq n}}^{\infty} \left| \frac{z_n - z_n}{1 - \bar{z}_m z_n} \right| \ge \delta > 0 \quad (m = 1, 2, \ldots).$$

L. Carleson [1] showed that $\{z_n\}$ is u. i. s. for (H^{∞}, l^{∞}) if and only if $\{z_n\}$ is u. s. s. For the pair $(H^q_+(\phi), l^q(\phi, \alpha))$ we have the following results: for $q \ge 1, \phi(x) = x$, [11] proved that $\{z_n\}$ is u. i. s. for $(H^q_+(\phi), l^q(\phi, \alpha))$ if and only if $\{z_n\}$ is u. s. s. The same result was proved for q = 1 and $\phi(x) = x^p, 0 by [9]. For <math>q = 1, \phi(x) = \log(1 + x), [14]$ showed that $\{z_n\}$ is u. s. s., then $\{z_n\}$ is u. i. s. and if $\{z_n\}$ is u. i. s., then

$$(1-|z_n|^2)\log\frac{1}{|\mathbf{B}_n(z_n)|}\to 0 \text{ as } n\to\infty,$$

where

$$B_n(z) = \prod_{\substack{m=1\\m\neq n}}^{\infty} \frac{|z_m|}{z_m} \frac{z_m - z}{1 - \bar{z}_m z}$$

In this paper we obtain results which generalize the above mentioned results.

In section 2 we will prove that $H^q_+(\phi)$ and $l^q(\phi, \alpha)$ are *F*-spaces in the sense of Banach, [4].

In section 3 we prove that if $\{z_n\}$ is u.s.s. then $\{z_n\}$ is u.i.s. for $(H^q_+(\phi), l^q(\phi, \alpha))$, we also proved that if ϕ satisfies $\lim_{x\to\infty} \varphi^{-1}(ax)\varphi^{-1}(\frac{1}{x}) < \infty$ for all real a and $T_{\phi,q}(H^q_+(\phi)) = l^q(\phi, \alpha)$ then $\{z_n\}$ is u.s.s. where

$$T_{\phi,q}(f(z)) = \left(\left(\phi^{-1}(1 - |z_n|^2) \right)^{\frac{1}{q} - 1} f(z_n) \right).$$

2. The spaces $H^q_+(\phi), l^q(\phi, \alpha)$.

In this section we will show that the spaces $H^q_+(\phi)$ and $l^q(\phi, \alpha)$ are *F*-spaces.

Maher M. H. MARZUQ

Theorem 2.1. $H^q_+(\phi)$ is an *F*-space in the sense of Banach,[4]. That is

- i. Let f_n be functions in $H^q_+(\phi)$ such that $\rho(f_n, 0) \to 0$ as $n \to \infty$. Then for any $\alpha \in C$, $\rho(\alpha f_n, 0) \to 0$ as $n \to \infty$.
- ii. Let $\alpha_n \in C$ be such that $\alpha_n \to 0$. Then for each $f \in H^q_+(\phi)$, $\rho(\alpha_n f, 0) \to 0$ as $n \to \infty$.
- iii. $H^q_+(\phi)$ is complete with respect to the metric (1.1).
- Proof. i. Suppose $\{f_n\}$ is a sequence in $H^q_+(\phi)$, $\rho(f_n, 0) \to 0$ and $\beta \in C$. Now

$$\rho(\beta f_n, 0) = \left(\frac{1}{2\pi} \int_0^{2\pi} [\varphi(|\beta f_n(\theta)|^q \,\mathrm{d}\theta)\right)^{\frac{1}{q}} \le \left[|\beta| + 1\right] \rho(f_n, 0) \to 0,$$

where $[|\beta|]$ is the greatest integer in $|\beta|$.

ii. Suppose $\beta_n \in C, \beta_n \to 0$ and $f \in H^q_+(\phi)$, without loss of generality we may assume $|\beta_n| \leq 1$, so

$$[\varphi(|\beta_n f|)]^q \leq [\phi(|f|)]^q \text{ and } \varphi(|\beta_n f(\theta)|) \to 0 \text{ a.e.}$$

Hence by Lebesgue convergence theorem we get

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} \left[\phi(|\beta_n f(\theta)|) \right]^q d\theta = 0.$$

Thus $\rho(\beta_n f, 0) \to 0$ as $n \to \infty$.

iii. Suppose $\{f_n\}$ is a Cauchy sequence in $H^q_+(\phi)$. By Lemma 3 in [2] applied to $[\phi(|f|)]^q$ which is subharmonic for $q \ge 1$, from [6, Lemma 5.1], we get

$$|f(z)| \le \varphi^{-1} \left(\frac{c\rho(f,0)}{\left((1-|z|)^{\frac{1}{q}} \right)} \right) \quad \text{for } z \in \Delta$$

Therefore

$$|f_n(z) - f_m(z)| \le \varphi^{-1} \left(\frac{c\rho(f_n, f_m)}{\left((1-r)^{\frac{1}{q}} \right)} \right) < \varepsilon$$

Interpolation sequence for the spaces $H^q_+(\phi)(q \ge 1)$

for $n, m > N(\varepsilon)$ and for all $z \in \{w : |w| \le r < 1\}$. Hence $\{f_n(z)\}$ is a Cauchy sequence in C. Since $\{f_n(z)\}$ converges uniformly on compact subsets of Δ and $f_n(z)$ is analytic, then $\{f_n\}$ converges to an analytic function f. Clearly, $\{\phi(|f_n|)\}$ converges uniformly on compact subsets to $\phi(|f|)$. Therefore

$$\int_{0}^{2\pi} \left[\varphi \left(|f(r e^{i\theta})| \right]^{q} d\theta = \lim_{n \to \infty} \int_{0}^{2\pi} \left[\varphi \left(|f_{n}(r e^{i\theta})| \right) \right]^{q} d\theta$$
$$\leq \lim_{n \to \infty} \int_{0}^{2\pi} \left[\varphi \left(|f_{n}(\theta)| \right) \right]^{q} d\theta \leq M,$$

hence, $f \in H^q(\phi)$. But $H^q(\phi) \subseteq N$, so $\lim_{r \to 1} f(re^{i\theta}) = f(\theta)$ a.e. and $f_n(\theta) \to f(\theta)$ in measure. Now choose a subsequence f_{n_j} such that $f_{n_j}(\theta) \to f(\theta)$ a.e., then

$$\begin{split} \rho(f, f_n) &= \left(\frac{1}{2\pi} \int_0^{2\pi} [\varphi(|f(\theta) - f_n(\theta|)]^q \, \mathrm{d}\theta\right)^{\frac{1}{q}} \\ &\leq \lim_{j \to \infty} \left(\frac{1}{2\pi} \int_0^{2\pi} [\varphi(|f_{n_j}(\theta) - f_n(\theta)|]^q \, \mathrm{d}\theta\right)^{\frac{1}{q}} \\ &\leq \rho(f_{n_j}, f_n) + \varepsilon \quad \text{for large } j. \end{split}$$

Thus if n_j and n are sufficiently large, we have

$$\rho(f, f_n) \to 0$$
, as $n \to \infty$.

It remains to show that $f \in H^q_+(\phi)$. Since $f_{n_j}(\theta) \to f(\theta)$ a.e., then there exists a compact set $E \subset [0, 2\pi]$ such that $m(E) > 2\pi - \varepsilon$ and $f_{n_j} \to f$ uniformly on E, hence

$$\left(\frac{1}{2\pi}\int_0^{2\pi} [\varphi(|f_{n_j}(\theta)|)]^q \,\mathrm{d}\theta\right)^{\frac{1}{q}} \le \left(\frac{1}{2\pi}\int_E [\phi(|f(\theta)|)]^q \,\mathrm{d}\theta\right)^{\frac{1}{q}} + \varepsilon \quad \text{, for large } j.$$

Also,

$$\begin{split} \left(\int_{E^c} [\varphi(|f_{n_j}(\theta)|)]^q \, \mathrm{d}\theta \right)^{\frac{1}{q}} &\leq \left(\int_{E^c} [\varphi(|f_{n_j}(\theta) - f(\theta)|)]^q \, \mathrm{d}\theta \right)^{\frac{1}{q}} \\ &+ \left(\int_{E^c} [\varphi(|f(\theta)|)]^q \, \mathrm{d}\theta \right)^{\frac{1}{q}} \\ &\leq \rho(f_{n_j}, f) + \left(\int_{E^c} [\varphi(|f(\theta)|)]^q \, \mathrm{d}\theta \right)^{\frac{1}{q}} \\ &\leq \varepsilon + \left(\int_{E^c} [\varphi(|f(\theta)|)]^q \, \mathrm{d}\theta \right)^{\frac{1}{q}}, \end{split}$$

but $f_{n_j} \in H^q_+(\varphi)$, so

$$\left(\int_0^{2\pi} [\varphi(|f_{n_j}(r\mathrm{e}^{\mathrm{i}\theta})|)]^q \,\mathrm{d}\theta\right)^{\frac{1}{q}} \le \left(\int_0^{2\pi} [\varphi(|f(\theta)|)]^q \,\mathrm{d}\theta\right)^{\frac{1}{q}} + \varepsilon,$$

letting $j \to \infty$,

$$\left(\int_0^{2\pi} [\varphi(|f(r\mathrm{e}^{\mathrm{i}\theta})|)]^q \,\mathrm{d}\theta\right)^{\frac{1}{q}} \le \left(\int_0^{2\pi} [\varphi(|f(\theta)|)]^q \,\mathrm{d}\theta\right)^{\frac{1}{q}} + \varepsilon,$$

for any $\varepsilon > 0$. Hence

$$\lim_{r \to 1} \left(\int_0^{2\pi} [\varphi(|f(r\mathrm{e}^{\mathrm{i}\theta})|)]^q \,\mathrm{d}\theta \right)^{\frac{1}{q}} = \left(\int_0^{2\pi} [\varphi(|f(\theta)|)]^q \,\mathrm{d}\theta \right)^{\frac{1}{q}},$$

this proves that $f \in H^q_+(\phi)$.

-	-	_
L		
L		
L		_

Theorem 2.2. $l^q(\varphi, \alpha)$ is an *F*-space.

Proof. Parts (i), (ii) are exactly the same as in Theorem 2.1. For completeness, suppose $\{x_n\}$ is a Cauchy sequence, let $\varepsilon > 0$ be given, then there exists N such that

$$d(x_k, x_m) < \varepsilon$$
 for all $k, m > N(\varepsilon)$.

Hence

$$\sum_{n=1}^{\infty} \alpha_n \left(\varphi(|x_n^k - x_n^m|) \right)^q < \varepsilon^q, \tag{2.1}$$

where $x_k = (x_n^k), x_m = (x_n^m)$. Therefore

$$|x_n^k - x_n^m| < \varphi^{-1} \left[\frac{\varepsilon}{\alpha_n^{\frac{1}{q}}} \right].$$

Thus $\{x_n^k\}$ is a Cauchy sequence in C for each n. So it must converge to some $x_n \in C$.

Let $x = \{x_n\}$, then Minkowski's inequality gives

$$\left(\sum_{n=1}^{\infty} \alpha_n \left(\varphi(|x_n|)\right)^q\right)^{\frac{1}{q}} \le \left(\sum_{n=1}^{\infty} \alpha_n \left(\varphi(|x_n - x_n^k|)\right)^q\right)^{\frac{1}{q}} + \left(\sum_{n=1}^{\infty} \alpha_n \left(\varphi(|x_n^k|)\right)^q\right)^{\frac{1}{q}}$$

but $\{x_n\}$ is a Cauchy sequence, hence the second term of the right side is bounded by M which does not depend on k, also

$$\sum \alpha_n \left(\varphi(|x_n - x_n^k|)\right)^q = \lim_{m \to \infty} \sum \alpha_n \left(\varphi(|x_n^m - x_n^k|)\right)^q < \varepsilon^q$$
1). Thus $x_n \to x$ and $x \in l^q(\phi, \alpha)$.

by (2.1) (φ, α)

Interpolation Theorems 3.

We will assume an additional condition on f, for each $g \in H^1$ the function $\log \left[\varphi^{-1} \left(|g(z)| \right)^{\frac{1}{q}} + 1 \right]$ is integrable on the unit circle.

Now we prove a theorem which generalizes theorem 1 in [14].

Theorem 3.1. If $\{z_n\}$ is u. s. s. then $\{z_n\}$ is u. i. s. for $(H^q_+(\phi), l^q(\phi\alpha))$, where $\alpha = (1 - |z_n|^2)$.

Proof. Let $c = (c_n) \in l^q(\phi, \alpha)$ and let

$$g(z) = \sum_{n=1}^{\infty} (1 - |z_n|^2)^2 [\varphi|c_n|]^q \frac{B_n(z)}{B_n(z_n)} \cdot \frac{1}{(1 - \bar{z}_n z)^2}$$

clearly g is analytic in Δ since $\sum_{n=1}^{\infty} (1-|z_n|^2) [\varphi(|c_n|)]^q < \infty$. Also $g \in H^1$, because

$$\begin{aligned} \frac{1}{2\pi} \int_0^{2\pi} |g(re^{i\theta})| \, \mathrm{d}\theta &\leq \sum_{n=1}^\infty \left(1 - |z_n|^2\right)^2 \left[(\varphi|c_n|) \right]^q \frac{1}{|B_n(z_n)|} \frac{1}{2\pi} \int_0^{2\pi} \frac{\mathrm{d}\theta}{|1 - \bar{z}_n z|} \\ &\leq \frac{1}{\delta} \sum_{n=1}^\infty \left(1 - |z_n|^2\right) \left[\varphi(|c_n|) \right]^q < \infty. \end{aligned}$$

Since $\log \left[\varphi^{-1}(|g(z)|^{\frac{1}{q}}) + 1 \right]$ is integrable, hence by [7, p. 53] there exists $f_1 \in H^1$ such that $|f_1(z)| = \phi^{-1}(|g(z)|^{\frac{1}{q}}) + 1$. Since $B_k(z_n) = 0$ for all $k \neq n$, $g(z_n) = [\phi(|c_n|)]^q$. Hence, $|f_1(z_n)| = |c_n| + 1$ and $f_1(z_n) = (|c_n| + 1)e^{i\theta_n}$, where $c_n = |c_n|e^{i\alpha_n}$ and $f_3(z_n) = e^{i\alpha_n}$, then $(f_1f_2 - f_3)(z_n) = c_n$. Since $\varphi^q(|f_1(z)|) \leq |g(z)| + \varphi^q$ (1), we have $f_1 \in H^q(\phi)$ and so is $f_1f_2 - f_3$.

By Carleson's Theorem there exists functions f_2, f_3 in H^{∞} such that $f_2(z_n) = e^{i(\alpha_n - \theta_n)}$.

The following theorem generalizes the one given by [11].

Theorem 3.2. Suppose ϕ satisfies

$$\lim_{x \to \infty} \varphi^{-1}(ax)\varphi^{-1}\left(\frac{1}{x}\right) < \infty,$$

for all real a and $T_{\phi,q}(H^q_+(\phi)) = l^q(\phi,\alpha)$, then $\{z_n\}$ is u.s.s.

We need the following lemma:

Lemma. The sequence $E = \{e_n\}$ is bounded in $l^q(\phi, \alpha)$ in the sense of topological vector space W. Rudin [10], where $e_n = (0, 0, ..., 0, 1, 0, ...)$ and 1 appears in the *n*th place.

Proof. Let s > 0 be given and let $B_s = \{x \in l^q(\phi, \alpha) ||x|| < s\}$. We need to show that there exists r_0 such that $E \subset rB_s$ for all $r > r_0$. Let r_0 be such that $(\phi^q)^{-1}(s) = \frac{1}{r_0}$, then for $r > r_0$

$$\left\|\frac{e_n}{r}\right\| = \varphi^q \left(\frac{1}{r}\right) < \varphi^q \left(\frac{1}{r_0}\right) = s,$$

this implies $\frac{e_n}{r} \in \mathbf{B}_s$. Therefore $E \subset r\mathbf{B}_s$.

Proof of Theorem 3.2. Let

$$N^q_{\varphi} = \{ f \in H^q_+(\varphi) : f(z_n) = 0 \quad \text{for all } n \}.$$

The quotient space $H^q_+(\varphi)/N^q_{\varphi}$ is an *F*-space and $T_{\phi,q}$ induces a one-to-one bounded linear functional $\Delta_{\varphi,q}$ (since $T_{\varphi,q}$ is bounded) from $H^q_+(\varphi)/N^q_{\varphi}$ onto $l^q(\phi, \alpha)$. Hence, the inverse is bounded which implies that $\Delta^{-1}_{\phi,q}(E)$

50

is bounded on $H^q_+(\varphi)$, i.e. there exists M > 0 such that $\Delta_{\phi,q}^{-1}(E) \subset B_M$, which means that for all n, there exists $f_n \in H^q_+(\varphi)$ such that

$$\|f_n\| \le \mathcal{M},\tag{3.1}$$

and

$$f_n(z_k) = \begin{cases} \varphi^{-1} (1 - |z_k|^2)^{\left(\frac{1}{q}\right) - 1} & n = k, \\ 0 & n \neq k. \end{cases}$$

For n > k, let

$$F_{n_k}(z) = f_k(z) \prod_{\substack{j=1 \ j \neq k}} \frac{1 - \bar{z}_j z}{z - z_j},$$

then

$$||F_{n_k}|| \le ||f_k||$$
 and $F_{n_k} \in H^q_+(\varphi)$,

so by [2]

$$|F_{n_k}(z)| \le \varphi^{-1} \left(\frac{c \|F_{n_k}\|}{\left(1 - |z|^2\right)^{\frac{1}{q}}} \right), \tag{3.2}$$

but,

$$|F_{n_k}(z)| = \left| \prod_{\substack{j=1\\j\neq k}}^n \frac{1 - \bar{z}_j z_k}{z_k - z_j} \right| \left| f_k(z_k) \right|,$$

thus

$$|F_{n_k}(z_k)| = \left[\varphi^{-1} \left(1 - |z_k|^2\right)^{\left(\frac{1}{q}\right) - 1}\right] \prod_{\substack{j=1\\j \neq k}}^n \left|\frac{1 - \bar{z}_j z_k}{z_k - z_j}\right|,$$

and by using (3.1) and (3.2) we get

$$\left|\prod_{\substack{j=1\\j\neq k}}^{n} \frac{1-\bar{z}_j z_k}{z_k - z_j}\right| \le \varphi^{-1}(\alpha_k)\varphi^{-1}\left(\frac{c\mathbf{M}}{\alpha_k}\right) = \varphi^{-1}(x_k)\varphi^{-1}\left(\frac{1}{x_k}\right) < \Delta < \infty,$$

for x_k large, where $x_k = \frac{\alpha_k}{cM}$ and Δ is a constant. Thus $\{z_k\}$ is u.s.s. \Box

Maher M. H. MARZUQ

References

- L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. of Math., 80 (1958), 921–930.
- [2] W. Deeb and M. Marzuq, $H(\phi)$ spaces, Cand. Math. Bull., Vol. 29(3), (1986), 295–301.
- [3] W. Deeb, R. Khalil and Marzuq, Isometric multiplication of Hardy-Orlicz spaces, Bull. Austral. Math. Soc. 34 (1986), 177–189.
- [4] N. Dunford and J. T., Shwartz Linear operators, 1: General theory, Pure and Appl. Math., Vol. 7, Interscience, N. Y. 1958.
- [5] P.L. Duren, Theory of H^q spaces, Academic Press, N.Y. 1970.
- [6] M. Hasumi and S. Kataoka, Remarks on Hardy-Orlicz classes, Arch. Math. 51(1988), 455–463.
- [7] K. Hoffman, Banach spaces of analytic functions, Prentice Hall Inc., N. J., (1962).
- [8] Z. Jianzhong, A note on Hardy-Orlicz spaces, Cand. Math. Bull. Vol. 33(1), (1990), 29–33.
- [9] V. Kabaila, Interpolation sequences for H^q classes in the case p < 1, Litov. Mat. Sb., 3 (1963), #1, 141–147 (Russian).
- [10] W. Rudin, Functional Analysis, McGraw-Hill, N.Y. (1973).
- [11] H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math., 83(1961), 513–532.
- [12] M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35(1977), 139–158.
- [13] N. Yanagihara, Multipliers and linear functional for the class N^+ , Trans. Amer. Math. Soc. 180(1973), 449–461.
- [14] N. Yanagihara, Interpolation theorems for the class N^+ , III. J. Math. 18(1974), 427–435.

Interpolation sequence for the spaces $H^q_+(\phi)(q \ge 1)$

Maher M. H. MARZUQ 84 Raymond Road Plymouth, MA 02360

(Received February 4, 2011)