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Interpolation sequence for the spaces Hi(¢)(q > 1)

Maher M. H. MARZUQ

Abstract. Let ¢ be a subadditive increasing real valued function
defined on [0,00) and which satisfies ¢(x) = 0 if and only if z = 0.
For ¢ > 1 we define H9(¢) to be the set of all functions f which are
analytic in the open unit disc and satisfy

sup /0% [¢(|f(rei9)|rd0 < 0.

0<r<1
And H{(¢) to be the subspace of H?(¢) of functions which satisfy
2m ” q 27 ” q
tim [ [o(1£(re)))| a6 = /0 [6(17)D]" a6.

r—1 0

In this paper we prove some interpolation theorems for HY (¢)

1. Introduction

Let us recall some definitions. We call a real-valued function ¢ defined
on [0,00) a modulus function, if ¢ is an increasing continuous subadditive
function that satisfies the condition that ¢(z) = 0 if and only if z = 0.

Let ¢ > 1. By the class H%(¢) we mean the collection of all analytic
functions f defined in the open unit disc A which satisfy

sup /027r [¢(|f(rei9)|)rd9 < 0.

0<r<1

For ¢ = 1 the spaces were studied in details in [2, 3]. If ¢(x) = =, then
H1(¢) becomes the usual Banach space H?. For ¢(xz) = aP, 0 < p <1
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and ¢ = 1, then HY9(¢) becomes the usual F-spaces H?. If ¢ = 1 and
¢(z) = log(1+2P), then H4(¢) becomes N,. If ¢ = 1 and ¢(z) = log(1+z),
then H?(¢) becomes the class N of functions of bounded characteristic. For
N, = Ny for 0 < p <1 [8], where

2m
N, = {f € HH(D) 0 1P(0) : Ty [ log(1+ 1)) a0

27
_ /0 log(1 + | £(¢)[?) d6},

and
21 ) 2 )
Nt = (feN: lim [ log (Aot de= [ log (£ de)
r—1 0 0

In general the spaces H9(¢) are not F-Spaces; see [13, p. 453] for an
example. We shall assume that ¢ satisfies the additional condition that
¢(e?) is a convex function of ¢, and consequently H%(¢) C N.

A function f € H%(¢) is said to belong to the class HY (¢) if

27

2m
im Tei9 I = ei@ g .
i [ (s a0 = [ g a0

r—1

For the class Hjlr(qb), which is a vector space , we define a distance func-
tion by
1 q

5.0 = [ [ el (1)

For the spaces H%(p > 1), H1(0 < p < 1).[5], Ny [13] N, (p > 0) and
(log™ H)*(a > 1), [12] become special cases of H1(¢).

Let « = (o) = (a1,...,Qn,...), be a sequence of real numbers such
that o, — 0.
Let
© 1
19($,0) = {(cn) : ¢n € C and d((cy),0) = [Z an[¢(|cn)|)]q] " < o)
n=1

Let X be the class of analytic functions in A and {z,} is a given sequence
in A. When a complex sequence {c,} is given, the interpolation problem

asks if a function f € X exists such that f{z,} = ¢, for all n.
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Let Y be a class of complex sequences. If for every sequence (c,) € Y
there is an f € X such that f{z,} = ¢y, then the sequence {z,} is called
a universal interpolation sequence for the pair (X,Y’), simply written z,
is u.i.s. for (X,Y). We are interested in the pair H{(¢),1%(¢,a) where
a=(1-|z%.

A sequence {z,} in A is called uniformly separated sequence (u.s.s.) if

[e.9]

Z(l — |zn|) < oo, and H ‘Tmz’n

n=1

>0>0 (m=1,2,...).
o

L. Carleson [1] showed that {z,} is u.i.s. for (H*°,[*) if and only if
{zn} is u.s.s. For the pair (H{(¢),19(¢,a)) we have the following results:
for ¢ > 1,¢(x) = x, [11] proved that {z,} is u.i.s. for (HL(¢),1%(¢,))
if and only if {z,} is u.s.s. The same result was proved for ¢ = 1 and
¢(x) =2P,0 <p <1by [9]. For g =1,¢(x) = log(1 + z),[14] showed that
{zn} is w.s.s., then {z,} is u.i.s. and if {z,} is u.i.s., then

1
(1- |zn\2)logm — 0asn — oo,

where

H |Zm| -
1 — Zmz
m;én

In this paper we obtain results which generalize the above mentioned
results.

In section 2 we will prove that H1(¢) and 19(¢, a) are F-spaces in the
sense of Banach, [4].

In section 3 we prove that if {z,} is u.s.s. then {z,} is u.i.s. for
(H%(¢),19(¢, ), we also proved that if ¢ satisfies wh_)rglo e l(az)p7 () <

oo for all real a and Ty 4(HY(¢)) = 1%(¢, o) then {2,} is u.s.s. where
Tyg(F(2) = (6710 = ) f(n).

2. The spaces Hi (¢),19(¢, a).

In this section we will show that the spaces H(¢) and 19(¢, o) are F-

spaces.



46 Maher M. H. MARZUQ

Theorem 2.1. HY(¢) is an F-space in the sense of Banach,[4]. That
is
i. Let f, be functions in Hi(¢) such that p(f,,0) — 0 asn — oo. Then

for any o € C, p(afy,,0) — 0 as n — oo.

ii. Let o, € C be such that o, — 0. Then for each f € HL(¢),

planf,0) — 0 as n — oc.
iii. Hi(¢) is complete with respect to the metric (1.1).

Proof. i. Suppose {fn} is a sequence in H{ (), p(fn,0) — 0 and
B € C. Now

1

2w
p3500) = (5= [ e85, )100)" < (1914 1]0(5.0) =0

where [|3]] is the greatest integer in |3].

ii. Suppose 8, € C, 0, — 0 and f € H%(¢), without loss of generality

we may assume |3,| <1, so

[p(1BnfDIT < [o(IFD]* and @ (|Bnf(0)]) — 0 a.e.

Hence by Lebesgue convergence theorem we get

Thus p(6,f,0) — 0 as n — oo.

iii. Suppose {f,} is a Cauchy sequence in H(¢). By Lemma 3 in [2] ap-
plied to [¢(|f])]? which is subharmonic for ¢ > 1, from [6, Lemma 5.1],

we get

cp(f,0)

(1 =121)7)

Fu(2) = fn(2)] < ot [ LUnatm) )
((1-@6)

1f(2) <! for z € A.

Therefore
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for n,m > N(e) and for all z € {w : |w| < r < 1}. Hence {fn(2)}
is a Cauchy sequence in C. Since {f,(z)} converges uniformly on
compact subsets of A and f,(z) is analytic, then {f,} converges to
an analytic function f. Clearly, {¢(|fn|)} converges uniformly on

compact subsets to ¢(|f]). Therefore

/0%[ (1£re)]]" a6 = 1im /% (1fu(re®))] 6

27
< lim [ [o(lfn(0))] 6 < M,

n—oo 0

hence, f € HY(¢). But H%(¢) C N, so lini f(rel?) = f(0) a.e. and
fn(0) — f(0) in measure. Now choose a subsequence f,; such that

fn; (0) — f(0) a.e., then
ol fu) = <21 / fn<e|>1qow>l
<z7r % #(1fn; (6) - (G)que)

< p(fnys fn) + € for large j.

1

7m
Jj—00

Thus if n; and n are sufficiently large, we have

p(f fn) = 0, as n — oo.

It remains to show that f € H{(¢). Since f,,(8) — f(6) a.e., then
there exists a compact set £ C [0, 27] such that m(E) > 27 — ¢ and

fn; — [ uniformly on E, hence

1

(5 [ 2”[so<fnj<e>\>1qde)l < (57 [lotr@nyas) e for targe .
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Also,

UECM% <0>qu9>3 - </Ec[w<|fw<e> - f(e)\)]ch)é

+ (/E [o(|£(0)])]? d9> :

<ot + ([ C[@(If(f))l)]qd9>é

<e+ ([ ur@nra)’,

but f,,, € Hi(p), so

=

1

(/()%[so(!fnj(reie)l)]qde)q < </02W[<p(|f(9))]ch>q +e,

letting 7 — oo,

1

(/OQW[SO(f(Tew)D]qu); < (/Ozﬂ[ap(!f(é?))]qw) " te

for any € > 0. Hence

1

o ([0 f<rew>>me)‘lz = ([Teureniran)’

this proves that f € Hi(¢).

Theorem 2.2. [9(p,«) is an F-space.

Proof. Parts (i), (ii) are exactly the same as in Theorem 2.1. For com-
pleteness, suppose {z,} is a Cauchy sequence, let ¢ > 0 be given, then
there exists N such that

d(zg, zm) <e forall k,m > N(e).

Hence
o0

an (ellah = o))" < e (2.1)

n=1
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where g, = (x}), Ty = (2'). Therefore

& 1| €
| — 2| < o [1] :
%)

Thus {x*} is a Cauchy sequence in C for each n. So it must converge to
some x,, € C.

Let = {x,}, then Minkowski’s inequality gives

<Zan (Izal)) )és(fjan(so<|xn—xizn)q)i(ian(so<|:c£i|>)q);,

n=1

but {x,} is a Cauchy sequence, hence the second term of the right side is

bounded by M which does not depend on k, also

> o (pllan —2h)" = tim S an (ol — k)" <<

by (2.1). Thus x,, — x and = € [9(¢, a). O

3. Interpolation Theorems

We will assume an additional condition on f, for each ¢ € H' the function
1
log[¢ ™1 (|g(2)])* + 1] is integrable on the unit circle.

Now we prove a theorem which generalizes theorem 1 in [14].

Theorem 3.1. If{z,} is u.s.s. then {z,} is u.i.s. for (H{(¢),1%(¢a)),

where a = (1 — |z,[?).
Proof. Let ¢ = (¢,) € 19(¢, ) and let
o) = 31~ ) eleal P L L

n=1

[e.e]
clearly g is analytic in A since 3. (1—|z,|*)[(|cn])]? < 00. Also g € HY,

n=1
because
i ! dog < 1-— n2 n q/ M _ 5 .
a7 Jy 00reN0< D (= al) (e G Ear ) T

3
I

oq\»—t

Zl—|zn| o(lea))]? < 0.
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Since log [gp‘l(|g(z)|%) + 1] is integrable, hence by [7, p. 53] there exists
fi € H' such that | f1(2)| = ¢*1(\g(z)]%)+1. Since Bg(z,) = 0 for all k # n,
9 (#n) = 6 (leal)]”. Hence, [ fi(zn)] = |ea| +1 and fi(za) = (ea| + 1)e",
where ¢, = |cp|e!® and f3(2,) = €%, then (f1f2 — f3)(2n) = cn. Since

! (| f1(2)]) < lg(2)| + ¢? (1), we have f; € HY($) and so is fif2 — f3.
By Carleson’s Theorem there exists functions fo, f3 in H* such that

fa(zn) = ellan=0n), O
The following theorem generalizes the one given by [11].

Theorem 3.2. Suppose ¢ satisfies

1
lim go_l(ax)ap_1<—> < 00,
x

T—00

for all real a and Ty 4(H{(¢)) = 19(¢, ), then {z,} is u.s.s.
We need the following lemma:

Lemma. The sequence E = {e,} is bounded in 19(¢,«) in the sense
of topological vector space W. Rudin [10], where e,, = (0,0,...,0,1,0,...)
and 1 appears in the nth place.

Proof. Let s > 0 be given and let By = {z € 19(¢, ) ||z]| < s}. We need
to show that there exists rg such that £ C rB; for all » > rg. Let rg be
such that (¢9)71(s) = %, then for r > rq

ol = po(L) < r(L) =,
r r ro
this implies “* € Bs. Therefore E C rBs. O

Proof of Theorem 3.2. Let
Ng = {f e HL(p) : f(zn) =0 forall n}.

The quotient space H{ (¢)/N$ is an F-space and T 4 induces a one-to-one
bounded linear functional Ay, (since Ty 4 is bounded) from HY(p)/Ng
onto 19(¢, ). Hence, the inverse is bounded which implies that A;}](E)
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is bounded on HY (), i.e. there exists M > 0 such that A;;(E) C B,
which means that for all n, there exists f, € H{(¢) such that

Ifall <M, (3.1)
and ( )
1
11— |z 2)\a) ! n=k,
o = [ 1)
0 n # k.
For n > k, let
1—2z:z
Fo(2) = fil2) [ —2
Ltz — 2
7=1
J#k
then
HFnk” < kaH and Fnk € Hi(@)a
so by [2]
_ c||Fn
Py ()] < (””) (32)
(1—1z]?)«
but,
L 2k
‘Fnk(z)‘ = H . fk(zk) )
- 2k Z]
7=1
J#k
thus

B o) = 71— ) TT| 2222,

and by using (3.1) and (3.2) we get

- 1- ijk‘ —1 -1 cM 1 1 1

H —— | <S¢ (ap)y (—) =¢ (xR (—) < A < oo,
j=1 kT Zj af Tk
i#

for xy, large, where xp = 3% and A is a constant. Thus {z;} is u.s.s. O
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