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Abstract. Extending the notion of a weakly positive operator in-
troduced by Wigner, we define a weakly selfadjoint operator as the
product of two selfadjoint operators, one of whose factors is positive,
and show some facts on the operator.

1. Throughout this note we consider bounded linear operators acting
on a Hilbert space H, calling simply operators. An operator A is positive
if (Ax, x) ≥ 0 for all x ∈ H, and is denoted by A ≥ 0. By Wigner [7],
a weakly positive operator was introduced as the product of two positive
invertible operators. In [4], M. Nakamura and one of the authors studied
such an operator in the light of the recent knowledge. In succession of
the consideration we define a weakly selfadjoint operator as the product of
two selfadjoint operators, one of whose factors is positive, and show some
results on the operator.

2. In the similar fashion as in [7] for a weakly positive operator, we can
define a weakly selfadjoint invertible operator T as an operator such that
T is similar to a selfadjoint operator S by some positive invertible operator
X, that is,
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(2.1) T = XSX−1.

It is easy to see that this definition is equivalent to that given as before,
for, if we put A = X2 and B = X−1SX−1, then T = AB with the first
factor A being positive and the second factor B being selfadjoint.

Now first we want to state a basic fact on invertibility for a weakly
selfadjoint operator:

Proposition 1. Let T = AB be a weakly selfadjoint operator. Then T is
invertible if and only if both A and B are invertible. For the spectrum σ(T )
of T we have

(2.2) σ(T ) = σ(A
1
2 BA

1
2 ) if A ≥ 0,

and

(2.2′) σ(T ) = σ(B
1
2 AB

1
2 ) if B ≥ 0.

Proof. If T is invertible, then A(BT−1) = (BT−1)∗A = I (the identity
operator on H), so that A is invertible. Hence B = A−1T is also invertible.
Conversely, if both A and B are invertible, then T is clearly invertible. For
(2.2), first if A is invertible, then T = A

1
2 (A

1
2 BA

1
2 )A−

1
2 , so that σ(T ) =

σ(A
1
2 BA

1
2 ). Next if A is not invertible, then T is not invertible from the

above discussion, and further easily we see that A
1
2 BA

1
2 is not invertible.

Hence 0 ∈ σ(T ), σ(A
1
2 BA

1
2 ). Now from the fact σ(XY )\{0} = σ(Y X)\{0}

for any operators X and Y (say, [3, p. 87]), we have

σ(T ) = [σ(A
1
2 (A

1
2 B))\{0}]∪{0} = [σ((A

1
2 B)A

1
2 )\{0}]∪{0} = σ(A

1
2 BA

1
2 ).

Similarly we can obtain (2.2′).

Corollary 2. If T is weakly selfadjoint, then

(2.3) σ(T ) ⊂ R = (−∞,∞).

Related to Corollary 2 the spectrum σ(T ) of T = AB is not always in R
if we only assume that both A and B are selfadjoint, without positivity of
one factor A or B. In fact, if
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A =

[
1 0
0 −1

]
and B =

[
−2 1
1 1

]
,

then T =

[
−2 1
−1 −1

]
and σ(T ) =

{−3±√3i

2

}
6⊂ R.

We denote by W (T ) and W (T ) the numerical range and its closure of
an operator T, respectively. Then as a fact between the spectrum and
numerical range of the product of two operators, we know the following
general result due to Nakamoto [5] related to (2.3): If A or B is positive
then

σ(AB) ⊂ W (A)W (B).

3. In [4], the following result due to Wang was shown by using the fact
σ(T ) ⊂ R+ = [0,∞) for a weakly positive operator T : If A ≥ 0, AB ≥ 0
and ‖ B ‖≤ 1, then A ≥ AB. As an extension of this fact, we have the
following:

Theorem 3. Let A be selfadjoint, AB ≥ 0 and ‖ B ‖≤ 1. Then |A| ≥ AB.

Proof. Since Tε := (|A| + εI)−1(AB) for ε > 0 is weakly selfadjoint, we
have σ(Tε) ⊂ R. Further, we have

‖ Tε ‖≤‖ (|A|+ εI)−1A ‖‖ B ‖≤ 1,

so that σ(Tε) ⊂ [−1, 1]. Hence

(|A|+ εI)−
1
2 AB(|A|+ εI)−

1
2 ≤ r(Tε)I ≤ I

or

AB ≤ |A|+ εI.
Taking the limit as ε → 0, we have the desired inequality.

With the similar method as in [4, Added in Proof. 2], applying mono-
tonicity of the square roots of positive operators, we can give a very short
alternative proof of the above theorem: Since AB ≥ 0 and ‖ B ‖≤ 1, we
see

(AB)2 = ABB∗A ≤‖ B ‖2 A2 ≤ A2,
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so that by taking the square roots of both sides, we have the desired in-
equality.

4. Generalizing Carlin-Noble definition of the square root of a weakly
positive matrix [2], M. Nakamura and one of the authors [4] defined the
function of a weakly positive invertible operator for every continuous func-
tion defined on an interval containing its spectrum. With the similar way
we can extend the definition to any weakly selfadjoint invertible operator
as follows:

Theorem 4. Let T = AB be a weakly selfadjoint invertible operator with
selfajoint factors A and B. For any continuous function f defined on an
interval containing σ(T ), put

(4.1) f(T ) =

{
A

1
2 f(A

1
2 BA

1
2 )A−

1
2 if A ≥ 0,

B− 1
2 f(B

1
2 AB

1
2 )B

1
2 if B ≥ 0.

Then f(T ) is well-defined, that is, the definition does not depend on the
selfadjoint factors representing T as the product. Further, if both factors
A and B are positive, then the right two definitions of f(T ) in (4.1) are
identical.

As a result, if f is defined on R, then we can define f(T ) for any weakly
selfadjoint operator T by (4.1).

For the spectral mapping theorem with respect to a weakly selfadjoint
operator, using the definition (4.1), we can show the following:

Theorem 5. With the same assumption as in Theorem 4, the spectrum
σ(f(T )) is well-defined, and σ(f(T )) = f(σ(T )).

5. For a weakly positive operator the following theorem due to Bourin
is well-known:
Bourin’s theorem. (cf. [1], [4, Theorem 3].) Let T = AB be a weakly
positive operator with positive operators A and B. If B satisfies

(5.1) mBI ≤ B ≤ MBI

for some scalars 0 < mB < MB, then
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(5.2) ‖ T ‖2≤ KBr(T )2,

where r(T ) is the spectral radius of T and KB = K(mB,MB) =
(MB + mB)2

4MBmB
,

called the Kantorovich constant of B with respect to (5.1).

Since ‖ T ∗ ‖=‖ T ‖ and r(T ∗) = r(T ), we see that if

(5.3) mAI ≤ A ≤ MAI

for some scalars 0 < mA < MA, then we have

(5.4) ‖ T ‖2≤ KAr(T )2,

instead of (5.2). The inequality (5.2) is related to the Kantorovich constant
KB with respect to the right factor B and (5.4) is related to the Kantorovich
constant KA with respect to the left factor A, so we shall often call the
former the right Bourin’s inequality, and the latter the left Bourin’s one.

Now as a slight extension of Bourin’s theorem, we state the following
fact for a weakly selfadjoint operator:

Theorem 6. Let T = AB be a weakly selfadjoint invertible operator.
Suppose that A is positive (and invertible since T is invertible). Define
T̃ = A|B|. If mI ≤ |B| = (B2)

1
2 ≤ MI for some scalars 0 < m < M, then

‖ T̃ ‖=‖ T ‖ and

(5.5) ‖ T̃ ‖2≤ K|B|r(T̃ )2.

Proof. First note that ‖ T ‖2=‖ AB2A ‖=‖ A|B|2A ‖=‖ T̃ ‖2 . For the
inequality (5.5), it is immediate from the Bourin’s inequality applied to T̃ .

6. In [4], a parametrized decomposition of a weakly positive operator
was considered. We here want to discuss the similar decomposition of a
weakly selfadjoint operator. Let T = AB be a weakly selfadjoint invertible
operator. Consider the equation

(6.1) ABX = XBA

for a selfadjoint X. Then we can put X = A or B−1 as a solution of (6.1),
so that if we define
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(6.2) C(s, t) = sA + tB−1

with real parameters s and t, this operator is a little wider selfadjoint
solution of (6.1). Choosing s and t such that C(s, t) is invertible, we define

(6.3) A(s, t) = ABC(s, t) and B(s, t) = C(s, t)−1.

Then we have a decomposition

(6.4) T = A(s, t)B(s, t)

of T with selfadjoint operators A(s, t) and B(s, t). If we consider the equa-
tion

(6.5) XAB = BAX

instead of (6.1), then since X = A−1 and B satisfy (6.5), defining C ′(s, t)
by

(6.6) C ′(s, t) = sA−1 + tB,

we have another decomposition T = A′(s, t)B′(s, t) of T such that

(6.7) A′(s, t) = C ′(s, t)−1 and B′(s, t) = C ′(s, t)AB.

Now, say, corresponding to the decomposition (6.4) of T by the parame-
trized factors A(s, t) and B(s, t) in (6.3), we have the following Bourin’s
(left and right) inequalities: If we assume A(s, t) ≥ 0, then for T̃ =
A(s, t)|B(s, t)|

(6.8) ‖ T̃ ‖2=‖ T ‖2≤ KA(s,t)r(T̃ )2 (the left Bourin’s inequality)

and

(6.9) ‖ T̃ ‖2=‖ T ‖2≤ K|B(s,t)|r(T̃ )2 (the right Bourin’s inequality).

7. We here consider the left and right Bourin’s inequalities ((6.8) and
(6.9)) for the parametrized decompositions of a weakly selfadjoint operator
with a concrete example. Since their left hand sides are constant, we only
observe their right hand sides. Now let
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A =

[
2 0
0 1

]
and B =

[
1 1
1 −4

]
.

Then A ≥ 0, T = AB =

[
2 2
1 −4

]
, |B| = 1√

29

[
7 −3
−3 22

]
,

I ≤ A ≤ 2I,
−3 +

√
29

2
I ≤ |B| ≤ 3 +

√
29

2
I,

T̃ = A|B| = 1√
29

[
14 −6
−3 22

]
, ‖ T̃ ‖=‖ T ‖=

√
20 and

r(T̃ ) =
18 +

√
34√

29
.

For the Kantorovich constant, we then have KA = 9/8 and K|B| = 29/20.
Consequently, for the left and right Bourin’s inequalities ((5.4) and (5.2))
with respect to T̃ , both of the left hand sides are the same value, ‖ T̃ ‖2=
‖ T ‖2= 20, and the right hand sides are

KAr(T̃ )2 =
9(18 +

√
34)2

232
= 22.03 · · ·

and

K|B|r(T̃ )2 =
(18 +

√
34)2

20
= 28.39 · · · ,

respectively.

Now consider the parametrized operators A(s, t) and B(s, t), say, in the
case (6.3). Then from (6.2), we see

C(s, t) = sA + tB−1 =
1
5

[
10s + 4t t

t 5s− t

]
,

A(s, t) = ABC(s, t) =

[
4s + 2t 2s

2s −4s + t

]

and

B(s, t) = C(s, t)−1 =
1

t2 − 2st− 10s2

[
−5s + t t

t −10s− 4t

]
.
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To apply Theorem 6, we have to assume that A(s, t) or B(s, t) is positive
(and invertible). Say, assume that A(s, t) > 0. So we have to consider the
left and right Bourin’s inequalities (6.8) and (6.9) for our example. As
shown before, both the left hand sides of those (Bourin’s) inequalities have
the common value ‖ T ‖2= 20. However, the right hand sides of them
depend on the parameters s and t, and change the values as we shall show.

First note that A(s, t) > 0 is equivalent to

(7.1)

{
4s + 2t ≥ 0, −4s + t ≥ 0
detA(s, t) = 2(t2 − 2st− 10s2) > 0.

If we denote by DA, the set of all points (s, t) satisfying (7.1) in the
coordinate plane, then we have

(7.2) DA = D+ ∪D−,

where
D+ = {(s, t); s > 0, t > (1 +

√
11)s}

and
D− = {(s, t); s < 0, t > (1−√11)s}.

In this case we see that B(s, t) 6≥ 0 or detB(s, t) < 0, in fact, we see,
from (6.4), (7.1) and detT = −10,

detB(s, t) = detA(s, t)−1T =
detT

detA(s, t)
= − 10

detA(s, t)
< 0.

By an elementary computation, we then have

|B(s, t)| = 1
(t2 − 2st− 10s2)

√
29t2 + 50st + 25s2

×
[

7t2 − 20st− 25s2 −3t(t + 5s)
−3t(t + 5s) 2(11t2 + 35st + 25s2)

]
,

T̃ (s, t) = A(s, t)|B(s, t)| = 1√
29t2 + 50st + 25s2

[
14t + 10s −6t− 10s
−3t + 5s 22t + 20s

]

and
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(7.3) r(T̃ (s, t)) =
18t + 15s +

√
34t2 + 40st− 25s2

√
29t2 + 50st + 25s2

Further we can obtain the following inequalities:

(7.4) mA(s,t)−I ≤ A(s, t) ≤ mA(s,t)+I, m|B(s,t)|−I ≤ |B(s, t)| ≤ m|B(s,t)|+I,

where

mA(s,t)± =
3t±√t2 + 16st + 80s2

2
(> 0),

and

m|B(s,t)|± =
±3(t + 5s) +

√
29t2 + 50st + 25s2

2(t2 − 2st− 10s2)
(> 0).

Hence the Kantorovich constants KA(s,t) and K|B(s,t)| are given as

(7.5) KA(s,t) =
9t2

8(t2 − 2st− 10s2)
and K|B(s,t)| =

29t2 + 50st + 25s2

20(t2 − 2st− 10s2)
.

Now observe the right hand side of the left Bourin’s inequality. Write it
Rl(s, t). Then we have, from (7.3) and (7.5),

(7.6) Rl(s, t) = KA(s,t)r(T̃ )2 =
9t2(18t + 15s +

√
34t2 + 40st− 25s2)2

8(t2 − 2st− 10s2)(29t2 + 50st + 25s2)
(

=
9t2(|18t + 15s|+√

34t2 + 40st− 25s2)2

8(t2 − 2st− 10s2)(29t2 + 50st + 25s2)
, because 18t + 15s > 0

)

for (s, t) ∈ DA. Dividing by s4 both the numerator and denominator of the
last term of (7.6), and putting u = t/s and Rl(u) = Rl(s, t), we can rewrite
(7.6) as follows:

(7.7) Rl(u) =
9u2(|18u + 15|+√

34u2 + 40u− 25)2

8(u2 − 2u− 10)(29u2 + 50u + 25)

for u > 1 +
√

11 or u < 1−√11.

Now, for the behavior of Rl(u) we have:

(i) lim
u→±∞Rl(u) =

9(18 +
√

34)2

232
= KAr(T )2.

(ii) lim
u→1±√11

Rl(u) = ∞.
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(iii) Rl(u) is increasing for u < 1−√11, and decreasing for u > 1 +
√

11.

Similarly, for the right Bourin’s inequality, its right hand side, denoted
by Rr(s, t), is given as

(7.8) Rr(s, t) = K|B(s,t)|r(T̃ )2 =
(18t + 15s +

√
34t2 + 40st− 25s2)2

20(t2 − 2st− 10s2)

or, putting u = t/s and Rr(u) = Rr(s, t) in (7.8), we have

(7.9) Rr(u) =
(|18u + 15|+√

34u2 + 40u− 25)2

20(u2 − 2u− 10)

for u > 1 +
√

11 or u < 1−√11.

For the behavior of Rr(u) we have:

(iv) lim
u→±∞Rr(u) =

(18 +
√

34)2

20
= K|B|r(T )2.

(v) lim
u→1±√11

Rr(u) = ∞.

(vi) Rr(u) is decreasing for u < −5 or u > 1 +
√

11, and increasing for
−5 < u < 1−√11.

(vii) The minimum of Rr(u) is 20, which is attained at u = −5, so that,
say, for (s, t) = (−1, 5) the minimum is attained. The corresponding factors
of T are

A(−1, 5) =

[
6 −2
−2 9

]
, B(−1, 5) =

1
5

[
2 1
1 −2

]
,

and then T̃ =
1√
5

[
6 −2
−2 9

]
.

Finally, we want to state the outline for the case B(s, t) > 0. Let

DB = {(s, t); s > 0, (1−
√

11)s < t < (1 +
√

11)s}.

Then B(s, t) > 0 is equivalent to (s, t) ∈ DB. Let us define T̂ = |A(s, t)|B(s, t)
(similarly as T̃ = A(s, t)|B(s, t)| before). Then since

|A(s, t)| = 1√
t2 + 16st + 80s2

[
2(t2 + 10st + 20s2) 6st

6st −(t2 + 4st− 40s2)

]
,
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we have

T̂ =
1√

t2 + 16st + 80s2

[
2t + 20s 2t

−t 4t + 40s

]
.

The corresponding left and right Bourin’s inequalities are

‖ T̂ ‖2= 20 ≤ K|A(s,t)|r(T̂ )2

=
(3t + 30s +

√−t2 + 20st + 100s2)2

−8(t2 − 2st− 10s2)
(

=
(3u + 30 +

√−u2 + 20u + 100)2

−8(u2 − 2u− 10)

)

and

‖ T̂ ‖2= 20 ≤ KB(s,t)r(T̂ )2

=
9(t + 5s)2(3t + 30s +

√−t2 + 20st + 100s2)2

−20(t2 − 2st− 10s2)(t2 + 16st + 80s2)
(

=
9(u + 5)2(3u + 30 +

√−u2 + 20u + 100)2

−20(u2 − 2u− 10)(u2 + 16u + 80)

)
,

respectively, for 1−√11 < u = t/s < 1 +
√

11.

References

[1] J. Bourin, Compression, Dilation, and Matrix Inequalities, Mono-
graph in RGMIA, 2004.

[2] H. J. Carlin and G. A. Noble, Circuit properties of coupled dis-
persive lines with applications to wave guide modeling, Proc. Network
and Signal Theory, edited by J. K. Skwirzynski and J. O. Scanlan,
Peter Pergrinus, Inc., London, 1973, 258–269.

[3] T. Furuta, Invitation to Linear Operators, From Matrices to
Bounded Linear Operators on a Hilbert Space, Taylor and Francis Inc.,
New York, (2001).

[4] S. Izumino and M. Nakamura, Wigner’s weakly positive operators,
Scientiae Mathematicae Japonicae, 65 (2007), 1095–1102.



56 Saichi Izumino and Noboru Nakamura

[5] R. Nakamoto, On a theorem of Bouldin, Proc. Japan Acad., 47
(1971), 979–981.
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