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Real hypersurfaces in complex space forms whose shape

operator commutes with the structure Jacobi operator

U-Hang Ki, Chunji Li and Setsuo Nagai

Abstract. It is known that there are no real hypersurfaces with
parallel Ricci tensor S in a nonflat complex space form ([6]). In this
paper we investigate real hypersurfaces in a nonflat complex space
form under condition that the structure Jacobi operator Rξ commutes
with the shape operator A.

Introduction

A Kähler manifold of constant holomorphic sectional curvature c is called
a complex space form, which is denoted by Mn (c).

As is well known, complete and simply connected complex space forms
are isometric to a complex projective space PnC, a complex Euclidean space
Cn or a complex hyperbolic space HnC according as c > 0, c = 0 or c < 0.

Let M be a real hypersurface of Mn (c) . Then M has an almost contact
metric structure (φ, ξ, η, g) induced from the complex structure J and the
Kaehlerian metric of Mn (c). The structure vector field ξ is said to be
principal if Aξ = αξ is satisfied, where A is the shape operator of M and
α = η (Aξ) . A real hypersurface is said to be a Hopf hypersurface if the
structure vector field ξ of M is principal.
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Typical examples of real hypersurfaces in a complex projective space
PnC are homogeneous ones, namely those real hypersurfaces are given as
orbits under subgroups of the projective unitary group PU(n + 1). The
complete classification of them was obtained by ([16]) as follows:

Theorem T ([16]) Let M be a homogeneous real hypersurface of PnC.
Then M is a tube of radius r over one of the following Kähler submanifolds:
(A1) A hyperplane Pn−1C, where 0 < r <

π

2
,

(A2) a totally geodesic PkC (1 5 k 5 n− 2), where 0 < r <
π

2
,

(B) a complex quadric Qn−1, where 0 < r <
π

4
,

(C) P1C× P(n−1)/2C, where 0 < r <
π

4
and n(= 5) is odd,

(D) a complex Grassmann G2,5C, where 0 < r <
π

4
and n = 9,

(E) a Hermitian symmetric space SO(10)/U(5), where 0 < r <
π

4
and n =

15.

Due to Takagi’s theorem we can see that every homogeneous real hy-
persurface in PnC is a Hopf hypersurface. However, in HnC there exists
a homogeneous real hypersurface which is not a Hopf hypersurface (see
[12]). Also Berndt([1]) classified all Hopf real hypersurfaces with constant
principal curvatures in a complex hyperbolic space HnC as follows:

Theorem B ([1]) Let M be a real hypersurface of HnC. Then M has
constant principal curvatures and ξ is principal if and only if M is locally
congruent to one of the following:

(A0) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere or a tube over a hyperplane Hn−1C,

(A2) a tube over a totally geodesic HkC(1 ≤ k ≤ n− 2),

(B) a tube over a totally real hyperbolic space HnR.

We denote by∇, S and Rξ be the Levi-Civita connection, the Ricci tensor
and the structure Jacobi operator with respect to the structure vector field
ξ of M respectively.

We know that there are no real hypersurfaces with parallel Ricci tensor
in Mn (c) , n ≥ 3, c 6= 0 ([6]).
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If we pay a particular attention to the fact that for each Hopf hypersur-
face M in Mn (c) , c 6= 0, then RξA = ARξ or Sξ = g (Sξ, ξ) ξ is satisfied.
Therefore, it is natural to consider a problem that if a real hypersurface
M in Mn (c) , c 6= 0 satisfies RξA = ARξ or Sξ = g (Sξ, ξ) ξ, is M a Hopf
hypersurface ? Recently, there are many studies on partial answers to this
problem ([3] ∼ [10] etc.). The following facts are used in this paper without
proof.

Theorem HKK ([3]) Let M be a real hypersurface of a nonflat complex
space form which satisfies ∇ξS = 0 and Sξ = g(Sξ, ξ)ξ. If g(∇ξξ,∇ξξ) =
µ2 is constant, then M is a Hopf hypersurface.

Theorem KN ([9]) Let M be a real hypersurface in a complex projective
space PnC. Then the following are equivalent:

(1) M is a Hopf hypersurface in the ambient space PnC.
(2) The structure vector ξ is an eigenvector with constant eigenvalue of

the Ricci tensor S of M and ∇φ∇ξξS = 0 holds.

Theorem KSN ([10]) Let M be a real hypersurface in PnC which satis-
fies RξS = SRξ and ∇φ∇ξξS = 0. If g(Sξ, ξ) is constant on M , then M is
a Hopf hypersurface.

The main purpose of the present paper is to establish the following:

Theorem. Let M be a real hypersurface in Mn(c), c 6= 0. Then the
followings are equivalent provided that 6(TrA)2 + c 6= 0:

(1) M is a Hopf hypersurface in the ambient space in Mn (c) .

(2) RξA = ARξ and ∇φ∇ξξS = 0 hold on M .

Corollary. Let M be a real hypersurface in PnC. Then the followings
are equivalent:

(1) M is a Hopf hypersurface in the ambient space PnC.

(2) RξA = ARξ and ∇φ∇ξξS = 0 hold on M .
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1. Preliminaries

Let M be a real hypersurface of a complex space form Mn(c) with parallel
almost complex structure J and N be a unit normal vector field on M . By
∇̃ we denote the Levi-Civita connection with respect to the Fubini-Study
metric g̃ of Mn(c). Then the Gauss and Weingarten formulas are given
respectively by

∇̃Y X = ∇Y X + g(AY, X)N, ∇̃XN = −AX,

for any vector fields X and Y on M , where ∇ and g denote the Riemannian
connection and the Riemannian metric induced from g̃ respectively, and A

denotes the shape operator in the direction of N . For any vector field X

tangent to M , we put

JX = φX + η(X)N, JN = −ξ.

Then we may see that the structure (φ, ξ, η, g) is an almost contact metric
structure on M , that is, we have

φ2X = −X + η(X)ξ, g(φX, φY ) = g(X, Y )− η(X)η(Y ),
η(ξ) = 1, φξ = 0, η(X) = g(X, ξ)

for any vector fields X and Y on M .
From the fact ∇̃J = 0 and by using of the Gauss and Weingarten for-

mulas, we obtain

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ,(1.1)

∇Xξ = φAX.(1.2)

Since the ambient manifold is of constant holomorphic sectional curva-
ture c, we have the following Gauss and Codazzi equations respectively:

R(X,Y )Z = c
4 {g(Y,Z)X − g(X,Z)Y + g(φY, Z)φX

−g(φX, Z)φY − 2g(φX, Y )φZ}+ g(AY, Z)AX

−g(AX,Z)AY,

(1.3)
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(∇XA)Y − (∇Y A)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}(1.4)

for any vector fields X, Y and Z on M , where R denotes Riemannian
curvature tensor of M

In the following, to write our formulas in convention forms, we denote
by α = η(Aξ), β = η(A2ξ), γ = η(A3ξ) and h = TrA, and for a function f

we denote by ∇f the gradient vector field of f .
We denote the Ricci tensor of type (1, 1) by S. Then we have from (1.3)

SX =
c

4
{(2n + 1)X − 3η(X)ξ}+ hAX −A2X,(1.5)

which together with (1.2) implies that

(∇XS)Y = −3
4c {g(φAX, Y )ξ + η(Y )φAX}+ (Xh)AY

+(hI −A)(∇XA)Y − (∇XA)AY,
(1.6)

where I is the identity tensor.
We put U = ∇ξξ, then U is orthogonal to the structure vector fields ξ.

Then, using (1.2), we see that

φU = −Aξ + αξ,(1.7)

which shows that g(U,U) = β − α2. We easyly see that ξ is a principal
curvature vector, that is, Aξ = αξ if and only if β − α2 = 0.

If Aξ − g(Aξ, ξ)ξ 6= 0, then we can put

Aξ = αξ + µW,(1.8)

where W is a unit vector field orthogonal to ξ. Then by (1.2) we see that
U = µφW and hence g(U,U) = µ2. So we have

µ2 = β − α2.(1.9)

Further, W is also orthogonal to U .
Using (1.2) and (1.8), we see that

µg(∇XW, ξ) = g(AU,X),(1.10)

g(∇Xξ, U) = µg(AW,X).(1.11)
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Now, differentiating (1.7) covariantly along M and making use of (1.1)
and (1.2), we find

g(φX,∇Y U) + η(X)g(AU +∇α, Y )
= g((∇Y A)X, ξ)− g(AφAX, Y ) + αg(AφX, Y ),

(1.12)

which enables us to obtain

(∇ξA)ξ = 2AU +∇α(1.13)

because of (1.4).
Because of properties of the almost contact metric structure, we also

have from (1.12)

∇XU + g(A2ξ, X)ξ = φ(∇XA)ξ + φAφAX + αAX.(1.14)

By the definition of U , (1.2) and (1.12), it is verified that

∇ξU = 3φAU + αAξ − βξ + φ∇α,(1.15)

which shows that

µg(∇ξU,W ) = αµ2 − 3g(AU,U)− Uα.(1.16)

From the Gauss equation (1.3) the structure Jacobi operator Rξ is given
by

RξX = R(X, ξ)ξ =
c

4
(X − η(X)ξ) + αAX − η(AX)Aξ

for any vector field X on M .
From this and (1.5), we have

g(RξY, AX)− g(RξX,AY )
= g(A2ξ, Y )g(Aξ, X)− g(A2ξ, X)g(Aξ, Y )

+ c
4 {g(Aξ, Y )η(X)− g(Aξ, X)η(Y )} .

(1.17)

2. Structure Jacobi operator of real hypersurfaces

Let M be a real hypersurface of a complex space form Mn(c), c 6= 0. If
it satisfies RξA = ARξ, then we have from (1.17)

A2ξ = ρAξ +
c

4
ξ,(2.1)
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which shows that

β = ρα +
c

4
.(2.2)

We set Ω = {p ∈ M |µ(p) 6= 0}, and suppose that Ω 6= ∅, that is, ξ is not
a principal curvature vector on M . From now on we discuss our arguments
on the open set Ω of M unless otherwise stated.

Combining (1.8) to (2.1), we verify that

AW = µξ + (ρ− α)W(2.3)

and hence

A2W = ρAW +
c

4
W(2.4)

by virtue of µ 6= 0.
Differentiating (2.1) covariantly along Ω and making use of (1.2), we find

g((∇XA)ξ, Y ) + g(A(∇XA)ξ, Y ) + g(A2φAX, Y )− ρg(AφAX, Y )

= (Xρ)g(Aξ, Y ) + ρg((∇XA)ξ, Y ) + c
4g(φAX, Y ),

(2.5)

which together with (1.4) and (1.13) yields

(∇ξA)Aξ = ρAU − c

4
U +

1
2
∇β.

If we put X = ξ in (2.5) and use (1.13) and the last equation, we get

3A2U − 2ρAU − c

2
U = (ξρ)Aξ −A∇α + ρ∇α− 1

2
∇β,(2.6)

where we have used (1.4).
Differentiating (2.3) covariantly, we find

(∇XA)W + A∇XW

= (Xµ)ξ + µ∇Xξ + X(ρ− α)W + (ρ− α)∇XW.
(2.7)

By taking the inner product (2.7) with W and taking account of (1.8)
and (1.10), we obtain

g((∇XA)W,W ) = −2g(AU,X) + Xρ−Xα(2.8)
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since W is a unit vector field orthogonal to ξ. We also have by applying ξ

to (2.7)

µg((∇XA)W, ξ) = (ρ− 2α)g(AU,X) + µ(Xµ),(2.9)

where we have used (1.10), which connected to (1.4) gives

µ(∇W A)ξ = (ρ− 2α)AU − c

2
U + µ∇µ,(2.10)

µ(∇ξA)W = (ρ− 2α)AU − c

4
U + µ∇µ.(2.11)

Putting X = ξ in (2.8) and making use of (2.9), we find

Wµ = ξρ− ξα.(2.12)

Now, define a 1-form u by u(X) = g(U,X) for any vector field X. Using
(1.4) and (2.5), we verrfy that

c
4 {u(Y )η(X)− u(X)η(Y )}+ c

2(ρ− α)g(φY, X)

−g(A2φAX, Y ) + g(A2φAY, X) + 2ρg(φAX, AY )

− c
2 {g(φAY, X)− g(φAX, Y )}

= g(AY, (∇XA)ξ)− g(AX, (∇Y A)ξ) + (Y ρ)g(Aξ,X)
−(Xρ)g(Aξ, Y ).

(2.13)

If we replace X by µW to both sides of (2.12) and use (1.13), (2.3), (2.4),
(2.9) and (2.10), then we obtain

(3α− 2ρ)A2U + (2ρ2 − 2ρα + c)AU + c
4(α− ρ)U

= µA∇µ + (α− ρ)µ∇µ + µ2(∇ρ−∇α)− µ(Wρ)Aξ.
(2.14)

Putting X = µW in (1.14) and using (2.3) and (2.10), we find

µ∇W U = (2ρ− 3α)φAU + µφ∇µ

+µ(ρα− α2 + c
2)W − µ2(ρ− α)ξ.

(2.15)
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3. Real hypersurface satisfying ∇φUS = 0 and RξA = ARξ

In this section, we will continue our arguments under the same hypothesis
RξA = ARξ as in Section 2. Further, assume that ∇φUS = 0 and hence
∇W S = 0 on Ω because of µ 6= 0. By replacing X by µW in (1.6), we find

−3
4c(ρ− α) {u(Y )ξ + η(Y )U}+ µ(Wh)AY + µh(∇W A)Y

= µA(∇W A)Y + µ(∇W A)AY,
(3.1)

where we have used (1.2) and (2.3). Putting Y = W in this and making
use of (2.3), (2.8) and (2.10), we find

(Wh)AW

= (2h− ρ)AU − 2A2U − c
2U + A∇ρ−A∇α

+1
2∇β + (h− ρ)∇α + (ρ− h− α)∇ρ.

(3.2)

If we replace Y by ξ and take account of (2.3), (2.8) and (2.10), then we
obtain

µA∇µ + (α− h)µ∇µ + µ2(∇ρ−∇α)
= µ(Wh)Aξ + (2α− ρ)A2U + (hρ− 2αh + ρα + c)AU

+ c
4(5α− 3ρ− 2h)U.

(3.3)

On the other hand, we have from (1.5) and (2.1)

Sξ =
c

4
(2n− 3)ξ + (h− ρ)Aξ.(3.4)

Differentiating this covariantly, we find

(∇XS)ξ + S∇Xξ

= c
4(2n− 3)∇Xξ + X(h− ρ)Aξ + (h− ρ)(∇XA)ξ

+(h− ρ)A∇Xξ.

Replacing X by µW in this and using ∇XS = 0 and (2.10), we obtain

(ρ− α)SU = c
4(2n− 3)(ρ− α)U + µ(Wh−Wρ)Aξ

+(h− ρ)
{
(ρ− 2α)AU − c

2U + µ∇µ
}

+(ρ− α)(h− ρ)AU,
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where we have used the fact that µ∇W ξ = (ρ− α)U , which together with
(1.5) implies that

µW (ρ− h)Aξ + (ρ− h)µ∇µ

= (ρ− α)A2U − c(ρ− α)U − c
2(h− ρ)U

+ {(h− ρ)(ρ− 2α)− ρ(ρ− α)}AU.

(3.5)

Remark 3.1. ρ − α 6= 0 on Ω. In fact, if not, then we have ρ − α = 0
and hence µ2 =

c

4
by virtue of (2.2). Then (2.14) becomes αA2U + cAU =

−µ(Wα)Aξ and therefore Wα = 0. So we have

αA2U + cAU = 0.(3.6)

Further, (2.6), (3.2) and (3.5) are reduced respectively to

2A2U − 2αAU − c

2
U = (ξα)Aξ −A∇α,(3.7)

2A2U = (2h− α)AU − c

2
U,(3.8)

(h− ρ)
{

αAU +
c

2
U

}
= 0(3.9)

because of ∇µ = 0. Combining (3.6) to (3.9), we see that (h− ρ)AU = 0,
which connected to (3.8) gives h− ρ = 0. Thus (3.8) is led to

2A2U = αAU − c

2
U.(3.10)

Comparing (3.6) with (3.10), we have 3α2 + 4c = 0 and consequently α is
constant. Therefore (3.7) turns out to be 3A2U − 2αAU − c

2
U = 0, which

together with (3.6) and (3.10) will produce a contradiction. Accordingly
ρ−α 6= 0 on Ω is proved. In what follows ρ−α 6= 0 is satisfied everywhere.

In the previous paper [9], two of the present authors proved the following
fact:

Remark 3.2. (Lemma 3.2 of [9]) Let M be a real hypersurface of Mn(c),
c 6= 0. If it satisfies ∇φUS = 0 and Sξ = σξ for some constant σ, then we
have ξα = 0, Wα = 0, ξh = 0 and Wh = 0 on Ω.
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Lemma 3.3. ξα = 0, ξρ = 0, Wα = 0 and Wh = 0 on Ω.

Proof. Since U is orthogonal to the structure vector ξ, if we take the inner
product (2.6) with ξ, then we obtain

ξµ = Wα,(3.11)

where we have used (1.8) and (2.2).
Taking the inner product (3.5) with ξ or W , and using (2.12) and (3.11),

we also have respectively

α(Wρ−Wh) = (h− ρ)Wα,

µ(Wρ−Wh) = (h− ρ)(ξρ− ξα),
(3.12)

which enables us to obtain (h− ρ) {µ(Wα)− α(ξρ− ξα)} = 0 and hence

µ(Wα) = α(ξρ− ξα).(3.13)

In fact, if not, then we have h = ρ. So (3.4) implies Sξ =
c

4
(2n− 3)ξ on

this subset. Thus, Remark 3.2 tells us that Wα = 0, ξρ = 0 and ξα = 0, a
contradiction. Therefore (3.13) is established.

On the other hand, applying (2.14) by ξ and making use of (2.12) and
(3.11), we also have

α(Wρ) = (2α− ρ)Wα + 2µ(ξρ− ξα),

which together with (2.2) and (3.13) implies that

µα(Wρ) = (ρα +
c

2
)(ξρ− ξα).(3.14)

By the way, if we take the inner product (3.2) with W and take account
of (2.12), we obtain

(ρ− α)(Wh−Wρ)
= 2µ(ξρ− ξα) + (h− 2ρ + 2α)Wα + (ρ− h− α)Wρ.

(3.15)

So we verify, using (3.12) ∼ (3.14), that (ρ−h)Wα = 0 and hence Wα = 0
by virtue of Remark 3.2. Thus, (3.11) tells us that ξµ = 0, that is, ξβ =
2α(ξα). From this, (2.2) and (3.13) we see that (ρ−α)ξα = 0. Therefore it
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is seen that ξα = 0 because of Remark 3.1. From this, Wα = 0 and (3.13)
we verify that α(ξρ) = 0, which together with (3.14) yields ξρ = 0. Thus
(3.12) and (3.15) imply that (ρ− h)Wρ = 0. Therefore Wρ = Wh = 0 are
satisfied. This completes the proof of the lemma.

Because of Lemma 3.3 and (2.2), equations (2.6), (2.14), (3.2), (3.3) and
(3.5) are led to respectively to as follows:

A∇α = −3A2U + 2ρAU +
c

2
U +

1
2
(ρ∇α− α∇ρ),(3.16)

µA∇µ + (α− ρ)µ∇µ + µ2(∇ρ−∇α)

= (3α− 2ρ)A2U + (2ρ2 − 2ρα + c)AU + c
4(α− ρ)U,

(3.17)

A∇ρ−A∇α = 2A2U + (ρ− 2h)AU + c
2U

+(ρ− h)(∇α−∇ρ) + α∇ρ− 1
2∇β,

(3.18)

µA∇µ + (α− h)µ∇µ + µ2(∇ρ−∇α)
= (2α− ρ)A2U + (hρ− 2αh + ρα + c)AU

+ c
4(5α− 3ρ− 2h)U,

(3.19)

(h− ρ)µ∇µ

= (α− ρ)A2U + (2ρ2 + 2αh− hρ− 3ρα)AU

+ c
2(ρ + h− 2α)U.

(3.20)

From (3.16) and (3.18), we have

(h− ρ)(∇ρ−∇α) = A∇ρ + A2U + (2h− 3ρ)AU − cU.(3.21)

Since we have
2µA∇µ = αA∇ρ + (ρ− 2α)A∇α

by virtue of (2.2) and (3.19), it follows that

αA∇ρ + (ρ− 2α)A∇α + 2µ2(∇ρ−∇α)− 2(h− α)µ∇µ

= 2(2α− ρ)A2U + 2(hρ− 2αh + ρα + c)AU + c
2(5α− 3ρ− 2h)U.
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Further, using (3.16) and (3.21), we have

(α− ρ)A2U + (2ρ2 + 2αh− 3ρα− 2hρ− 2c)AU

+ c
2(2h + 4ρ− 5α)U

= 2(h− α)µ∇µ + 1
2(ρ− 2α)∇β

+(2α2 − ρα− αh− c
2)(∇ρ−∇α) + (2ρα− ρ2)∇α,

which together with (2.2) and (3.20) implies that

(2hρ + 4c)AU

= c(3ρ− 3α + h)U + (hα + c)∇ρ− (hρ + c)∇α.
(3.22)

If we apply this by A, then we obtain

(2hρ + 4c)A2U = c(3ρ− 3α + h)AU + (hα + c)A∇ρ− (hρ + c)A∇α,

which connected to (3.16), (3.20), (3.21) and (3.22) yields

4A2U + 2(3α− 4ρ− h)AU + (3hρ− 3hα− c)U
= (α + h− 2ρ)∇ρ− (h− ρ)∇α.

(3.23)

From this and (3.20), it follows that

2(3α2 − ρα− 5αh− 6c)AU

+
{
c(8ρ− 6α + h)− 3h(ρ− α)2

}
U

= (2ρ2 − ρα− 4αh + α2 − hρ− 3c)∇ρ

+(3αh− 3αρ + ρ2 + 2hρ + 3c)∇α.

(3.24)

Lemma 3.4. α 6= 0 on Ω.

Proof. If not, we have by (2.2) β =
c

4
and hence µ2 =

c

4
. Thus, (3.16),

(3.17), (3.20) and (3.22) turn out respectively to

3A2U = 2ρAU +
c

2
U,(3.25)

c

4
∇ρ = −2ρA2U + (2ρ2 + c)AU − c

4
ρU,(3.26)

ρA2U = (2ρ− h)ρAU +
c

2
(ρ + h)U,(3.27)
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2(hρ + 2c)AU = c(h + 3ρ)U + c∇ρ(3.28)

because of α = 0. However we notice here that ρ 6= 0 on this set by virtue
of (3.25) and (3.26).

From (3.25) and (3.27) we obtain

ρ(3h− 4ρ)AU =
c

2
(2ρ + 3h)U.(3.29)

On the other hand, we also have by using (3.26) and (3.28)

4ρA2U + ρ(h− 4ρ)AU =
c

2
(2ρ + h)U,

or, using (3.27)
3hρAU =

c

2
(2ρ + 3h)U.

Thus, using (3.29), we have ρAU = 0 and hence U = 0 because of (3.25)
and ρ 6= 0, a contradiction. Consequently we have α 6= 0 on Ω.

Lemma 3.5. h− ρ 6= 0 on Ω.

Proof. If not, we have h− ρ = 0. So (3.20) becomes

(ρ− α)
{
A2U − ρAU − cU

}
= 0

on this set. Since ρ− α 6= 0 by Remark 3.1, it follows that

A2U = ρAU + cU.

Since g(Sξ, ξ) =
c

4
(2n − 3) is constant because of (3.4), owing to Lemma

3.1 of [9], we see that AU = λU , where µ2λ = g(AU,U). Consequently we
obtain

λ2 = ρλ + c(3.30)

on this subset, which together with (3.21) yields

A∇ρ = 0.(3.31)

By the way, we also have from (3.23)

(α− ρ)∇ρ =
{
4λ2 + (6α− 10ρ)λ + 3ρ2 − 3ρα− c

}
U,
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or, using (3.30)

(α− ρ)∇ρ = 3 {(ρ− α)(ρ− 2λ) + c}U.

From this and (3.31), we see that

(ρ− α)(ρ− 2λ) + c = 0,(3.32)

and hence ∇ρ = 0 on this set because ρ − α 6= 0 on Ω. So, using (3.30),
we see that λ is constant. Making use of (3.32), we have ∇α = 0. Thus,
(3.16) tells us that

3λ2 = 2ρλ +
c

2
,

which together with (3.30) implies that

2λ2 + 3c = 0(3.33)

and 5λ = 3ρ because of λ 6= 0 on this set. So, using (3.30) and (3.32), we
have 11ρ = 3α.

From these and (2.2) we verify that

β − α2 +
6
11

α2 − c

4
= 0.

Therefore, it is contradictory because of (3.33). Thus, h − ρ 6= 0 on Ω is
proved.

From (3.22) and (3.24) we have

fU = σ∇ρ + ρ∇α,(3.34)

where we have put

f = (5cα− cρ + 3ρ3 − 6αρ2 + 3α2ρ)h2

−2c(6α2 − 5αρ− 2c + ρ2)h
+c(ρ− 3α)(2c + 3αρ− 3α2),

(3.35)

σ = (hα + c)(3α2 − αρ− 5αh− 6c)
−(hρ + 2c)(2ρ2 − αρ− 4αh + α2 − hρ− 3c),

(3.36)



70 U-Hang Ki, Chunji Li and Setsuo Nagai

τ = (αρ + 5αh− 3α2 + 6c)(hρ + c)
−(hρ + 2c)(3αh− 3αρ + ρ2 + 2hρ + 3c).

(3.37)

From (3.34) we obtain fu(Y ) = σ(Y ρ)+ τ(Y α) for any vector field Y . Dif-
ferentiating this covariantly and taking the skew-symmetric parts obtained,
we find

(Xf)u(Y )− (Y f)u(X) + fdu(X, Y )
= (Xσ)Y ρ− (Y σ)Xρ + (Xτ)Y α− (Y τ)Xα,

(3.38)

where the exterior derivative du of 1-form u is given by

du(X, Y ) = Y u(X)−Xu(Y )− u([X, Y ]).

Now we prove

Lemma 3.6. If ξh = 0, then we have f = 0 on Ω.

Proof. Since ξh = 0 is assumed, by putting X = ξ in (3.38) and using
Lemma 3.3, we obtain fdu(ξ, Y ) = 0 because f , σ and τ are polynomials
with respect to h, ρ and α. Hence f = 0 on Ω. In fact, if not, we have
du(ξ,X) = 0 for any vector X, that is, g(∇ξU,X) + g(∇Xξ, U) = 0, which
together with (1.11), (1.15) and (2.3) implies that φ(3AU+∇α)+µρW = 0.
Thus, it follows that

∇α = ρU − 3AU(3.39)

on this subset. Here we have used ξα = 0. From this and (3.16), we deduce
that

α∇ρ = −ρAU + (ρ2 + c)U(3.40)

on this set. From the last two equations, we verify that

µ∇µ = (3α− 2ρ)AU + (ρ2 − ρα +
c

2
)U,

where we have used (1.9) and (2.2). Thus, (3.20) tells us that

A2U = hAU + (ρ2 − ρh + c)U(3.41)
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on this set because of Remark 3.1. Substituting (3.39), (3.40) and (3.41)
into (3.21), we find AU = hU and hence ρ2 − ρh + c = 0 on this subset.
Therefore (3.40) implies that ∇ρ = 0 by virtue of Lemma 3.4. So we see
that∇h = 0 on this set. Since we have AU = hU and hence∇α = (ρ−3h)U
because of (3.39), we verify that h2ρ−hρ2+2cρ−3cα = 0 and thus ∇α = 0
because ρ and h are constant. Here we have used (3.22). Therefore (3.34)
implies f = 0 on this subset, a contradiction. This completes the proof of
Lemma 3.6.

Lemma 3.7. f = 0 on Ω.

Proof. If we replace Y by W in (3.38) and make use of Lemma 3.3, then
we obtain f du(X, W ) = 0 because f , σ and τ are polynomials with respect
to h, ρ and α.

Let Ω0 be a set of points in Ω such that f(p) 6= 0 at p ∈ Ω and sup-
pose that Ω0 6= ∅. Then we have du(W,X) = 0, that is, g(∇W U,X) +
g(∇XW,U) = 0 on Ω0. Thus, using (1.11), (1.16) and (2.3), we are led to

Uα = ρµ2 − 3g(AU,U)(3.42)

on Ω0.
If we take the inner product (2.15) with µW and make use of (1.9) and

(2.2), then we obtain the following on Ω0:

µ2g(∇W U,W )
= (3α− 2ρ)g(AU,U) + (α− 1

2ρ)Uα

−1
2αUρ + µ2(αρ− α2 + c

2),

which together with (3.42) implies that

µ2g(∇W U,W ) = −1
2ρg(AU,U)− 1

2αUρ

+µ2(2αρ− α2 − 1
2ρ2 + c

2).
(3.43)

On the other hand, differentiating (3.22) covariantly, we find

2X(hρ)AU + (2hρ + 4c) {(∇XA)U + A∇XU}
= cX(3ρ− 3α + h)U + c(3ρ− 3α + h)∇XU + X(hρ)∇ρ

+(hα + c)∇2
Xρ−X(hρ)∇α− (hα + c)∇2

Xα,
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from which, taking the skew-symmetric part and using (1.4) and (1.7), we
have

2X(hρ)g(AU, Y )− 2Y (hρ)g(AU,X)

+ c
2(hρ + 2c)µ(η(X)w(Y )− η(Y )w(X))

+(2hρ + 4c) {g(A∇XU, Y )− g(A∇Y U,X)}
= cX(3ρ− 3α + h)u(Y )− cY (3ρ− 3α + h)u(X)

+c(3ρ− 3α + h)du(X,Y ) + X(hα)Y ρ

−Y (hα)Xρ−X(hρ)Y α + Y (hρ)Xα,

on Ω0, where we have defined a 1-form w by w(X) = g(W,X) for any vector
field X. Since du(W,X) = 0, by putting X = W and Y = ξ in the last
equation, we obtain

(hρ + 2c)
{
g(∇W U,αξ + µW )− g(∇ξU, µξ + (ρ− α)W )− c

4µ
}

= 0

on Ω0, where we have used (1.8), (2.3) and Lemma 3.3. We notice here
that hρ + 2c 6= 0. In fact, if not, then ξh = 0 and hence f = 0 because of
Lemma 3.6. Therefore, the last equation is led to

g(∇W U,W ) + (ρ− α)2 = 0

since we have (1.9), (1.11), (2.2) and (2.3), which connected to (3.43) gives

αUρ = (ρ2 + c)µ2 − ρg(AU,U).(3.44)

If we take the inner product (3.22) with U and make use of (3.42) and
(3.44), then we get

(ρ + α)g(AU,U) = (2ρα− 3α2 + 2αh + ρ2 + c)µ2,

which shows that

(ρ + α)ξg(AU,U) = 2αµ2(ξh)(3.45)

on Ω0 by virtue of Lemma 3.3.
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We also have from (3.24), (3.42) and (3.44)

(6α3 − 10α2ρ− α2h− 3cα + 2ρ3 + 2αρ2 + 2ραh

−ρ2h− 3cρ)g(AU,U)
= µ2

{
3α(ρ− α)2h + c(6α2 − 8ρα− αh)

+(ρ2 + c)(2ρ2 − αρ− 4αh + α2 − ρh− 3c)
+3α2ρh− 3α2ρ2 + αρ3 + 2αρ2h + 3cαρ

}
,

which enables us to obtain

(6α3 − 10α2ρ− 3cα + 2ρ3 + 2αρ2 − 3cρ− (ρ− α)2h)ξg(AU,U)
= (ρ− α)2g(AU,U)ξh + µ2

{
3α(ρ− α)2 − cα− (ρ2 + c)(ρ + 4α)

+3α2ρ + 2αρ2
}

ξh,

on Ω0, where we have used Lemma 3.3. From this and (3.45) we have on
Ω0 the following:

2αµ2
{
6α3 − 10α2ρ− 3cα + 2ρ3 + 2αρ2 − 3cρ− (ρ− α)2h

}

= (ρ + α)(ρ− α)2g(AU,U) + µ2(ρ + α)
{
3α(ρ− α)2 − cα

−(ρ2 + c)(ρ + 4α) + 3α2ρ + 2αρ2
}

.

Owing to Lemma 3.3 and Remark 3.1, we have

2αµ2(ξh) + (ρ + α)ξg(AU,U) = 0

on Ω0, which together with (3.45) yields ξh = 0 and hence f = 0 on Ω
because of Lemma 3.4 and Lemma 3.6. Thus, Lemma 3.7 is proved.

4. Principal curvatures corresponding to ∇ξξ

We continue our arguments under the same hypotheses RξA = ARξ and
at the same time ∇W S = 0 as in Section 3. Then by Lemma 3.7 we see
that

(5cα− cρ + 3ρ3 − 6αρ2 + 3α2ρ)h2 − 2c(6α2 − 5αρ− 2c + ρ2)h
+c(ρ− 3α)(2c + 3αρ− 3α2) = 0,

(4.1)

where we have used (3.34) and (3.35).
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Applying (3.24) by A, we find

2(3α2 − ρα− 5αh− 6c)A2U

=
{
3h(ρ− α)2 − c(8ρ− 6α + h)

}
AU

+(2ρ2 − ρα− 4αh + α2 − hρ− 3c)A∇ρ

+(3αh− 3αρ + ρ2 + 2hρ + 3c)A∇α.

Substituting (3.16) and (3.21) into this and making use of (3.23), we find

λ1AU + λ2U

=
{
5hαρ− 6ch− 7α3 + 2ρ3 − 4hα2 − 11h2α + 17hρ2 − 9h2ρ

−27αρ2 + 28α2ρ
}∇ρ +

{
6ch− 13hαρ + 5ρ3 + 3hα2 + 11h2α

−8hρ2 + 9h2ρ + 2αρ2 − 3α2ρ
}∇α,

(4.2)

where we have put

λ1 = 12cα− 32ch− 4cρ− 54hαρ− 42α3 + 8ρ3 + 40hα2

−42h2α + 50hρ2 + 2h2ρ− 90αρ2 + 116α2ρ,

λ2 = 23chρ− 13chα− 2cαρ + 3cα2 + 21hα3 − 5cρ2 − 15hρ3

+51hαρ2 − 57hα2ρ + 30h2αρ− 15h2α2 − 15h2ρ2.

By Lemma 3.7, we can deduce from (3.22) and (4.2) the following:

(21cα− cρ + 15ρ3 − 30αρ2 + 15α2ρ)h3

+(46cαρ + 16c2 + 15ρ4 − 53cα2 − 21cρ2 − 51αρ3 − 21α3ρ

+57α2ρ2)h2 + (39cα3 − 28c2α + 4c2ρ− 44cρ3 + 101cαρ2

−88cα2ρ)h− c(20cαρ + 63α4 + 12ρ4 − 12cα2 − 16cρ2

−147αρ3 − 237α3ρ + 309α2ρ2) = 0.

(4.3)

Similarly, from (3.24) and (4.2) we obtain

(21cα− cρ + 12α3 + 3ρ3 + 6αρ2 − 21α2ρ)hs

+(2cαρ + 16c2 − 90α4 + 75ρ4 − 39cα2 + 9cρ2

−141αρ3 + 189α3ρ− 33α2ρ2)h2

+(12ρ5 − 24c2α− 21cα3 − 8c2ρ− 120cρ3 − 144αρ4

+108α4ρ + 137cαρ2 + 12cα2ρ + 360α2ρ3 − 336α3ρ2)h
−c(48cαρ + 117α4 + 32ρ4 − 18cα2 − 46cρ2

−389αρ3 − 507α3ρ + 747α2ρ2) = 0.

(4.4)
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(In the above arguments we use a computer for calculations).

Let Ψ be the resultant of (4.1) and (4.2) with respect to h, and Θ be
that of (4.1), (4.2) and (4.3), that

Ψ = −12c2(α− ρ)(2c + 3αρ− 3ρ2)∆,

Θ = −36(α− ρ)(3α4 + 3α2c + 2c2 − 7α3ρ− cαρ + 5α2ρ2 − 6cρ2 − αρ3)∆,

where we have put

∆ = −21627c2α10 + 6129c3α8 + 195c4α6 − 225c5α4 + 16c6α2 − 18225cα11ρ

+138996c2α9ρ− 29799c3α7ρ + 3282c4α5ρ− 242c5α3ρ + 151632cα10

−378783c2α8ρ2 + 59958c3α6ρ2 − 11723c4α4ρ2 + 2120c5α2ρ2 − 144c6ρ2

−564003cα9ρ3 + 569628c2α7ρ3 − 62631c3α5ρ3 + 12220c4α3ρ3 − 1662c5αρ3

−8748α10ρ4 + 1222884cα8ρ4 − 516246c2α6ρ4 + 36528c3α4ρ4 − 3475c4α2ρ4

−87c5ρ4 + 71928α9ρ5 − 1686798cα7ρ5 + 290484c2α5ρ5 − 14869c3α3ρ5

+114c4αρ5 − 260604α8ρ6 + 1512720cα6ρ6 − 100390c2α4ρ6 + 6066c3α2ρ6

−613c4ρ6 + 545184α7ρ7 − 860682cα5ρ7 + 17684c2α3ρ7 − 669c3αρ7

−724248α6ρ8 + 284568cα4ρ8 + 1233c2α2ρ8 − 713c3ρ8 + 632016α5ρ9

−41889cα3ρ9 − 728c2αρ9 − 361368α4ρ10 − 672cα2ρ10 − 251c2ρ10

+130464α3ρ11 + 525cαρ11 − 27324α2ρ12 − 60cρ12 + 2808αρ13 − 108ρ14.

From above two equations, we have

(3ρ2−3αρ−2c)(3α4 +3cα2 +2c2−7α3ρ−cαρ+5α2ρ2−6cρ2−αρ3)∆ = 0,

because of Remark 3.1. Further, from this we can deduce that both α and
ρ are constants. Thus (3.22) becomes

(2hρ + 4c)AU = c(3ρ− 3α + h)U.(4.5)

Now we demonstrate the following lemma:

Lemma 4.1. AU = λU on Ω, where the scalar λ is given by µ2λ =
g(AU,U).

Proof. If not, we have from (4.5)

hρ = −2c, h = 3(α− ρ)(4.6)
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on this subset. Since ρ and α are constant, (3.21) and (3.23) are reduced
respectively to

A2U + (2h− 3ρ)AU − cU = 0,(4.7)

4A2U − 2ρAU − (h2 + c)U = 0.(4.8)

From the last two equations, we obtain

2(4h− 5ρ)AU + (h2 − 3c)U = 0.

Because of our assumption, we have h2 = 3c and 4h = 5ρ. From (2.2),
(4.7), (4.8) and the last two equations produce a contradiction.

Because of (1.9) and (2.2) we see that µ is constant by virtue of ∇α =
∇ρ = 0. Thus, (3.17) implies that

(3α− 2ρ)λ2 + (2ρ2 − 2ρα + c)λ +
c

4
(α− ρ) = 0,(4.9)

where we have used Lemma 4.1.
By using ∇α = ∇ρ = 0 and Lemma 4.1, we verify that (3.16), (3.18)

and (4.5) turn out respectively to

3λ2 = 2ρλ +
c

2
,

2λ2 + (ρ− 2h)λ +
c

2
= 0,

2hρλ = c(3ρ− 3α + h− 4λ).

Combining these and (4.9), we have h = λ, 3α = 7λ and ρ = 3λ. So, we
are led to 6h2 + c = 0. Thus, we have

Theorem 4.2. Let M be a real hypersurface in PnC which satisfies RξA =
ARξ and ∇φ∇ξξS = 0. Then M is a Hopf hypersurface in PnC.

Finally, we consider real hypersurfaces in a complex hyperbolic space
satisfying RξA = ARξ and ∇φ∇ξξS = 0. Then we have

h2 = − c

6
.
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Let λ1, . . . , λ2n−2 be principal curvatures corresponding to arbitrary
principal curvature vectors orthogonal to U . Then, using AU = λU and
h = λ, we have λ1 + · · ·+ λ2n−2 = 0. Hence we have

∑

i<j

λiλj ≤ 0, h(2) = h2 − 2
∑

i<j

λiλj ,(4.10)

where h(2) = Tr tAA.

On the other hand, the scalar curvature r of M is given by

r = c(n2 − 1) + h2 − h(2)

by virtue of (1.5), which together with (4.10) implies r ≤ 0.

Thus, we have

Theorem 4.3. Let M be a real hypersurface in HnC which satisfies RξA =
ARξ and ∇φ∇ξξS = 0. If the scalar curvature of M is nonnegative, then
M is a Hopf hypersurface in HnC.
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