Real hypersurfaces in complex space forms whose shape operator commutes with the structure Jacobi operator

U-Hang Ki, Chunji Li and Setsuo Nagai

Abstract

It is known that there are no real hypersurfaces with parallel Ricci tensor S in a nonflat complex space form ([6]). In this paper we investigate real hypersurfaces in a nonflat complex space form under condition that the structure Jacobi operator R_{ξ} commutes with the shape operator A.

Introduction

A Kähler manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_{n}(c)$.

As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_{n} \mathbb{C}$, a complex Euclidean space \mathbb{C}_{n} or a complex hyperbolic space $H_{n} \mathbb{C}$ according as $c>0, c=0$ or $c<0$.

Let M be a real hypersurface of $M_{n}(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the complex structure J and the Kaehlerian metric of $M_{n}(c)$. The structure vector field ξ is said to be principal if $A \xi=\alpha \xi$ is satisfied, where A is the shape operator of M and $\alpha=\eta(A \xi)$. A real hypersurface is said to be a Hopf hypersurface if the structure vector field ξ of M is principal.

[^0]Typical examples of real hypersurfaces in a complex projective space $P_{n} \mathbb{C}$ are homogeneous ones, namely those real hypersurfaces are given as orbits under subgroups of the projective unitary group $P U(n+1)$. The complete classification of them was obtained by ([16]) as follows:

Theorem $\mathrm{T}([16])$ Let M be a homogeneous real hypersurface of $P_{n} \mathbb{C}$. Then M is a tube of radius r over one of the following Kähler submanifolds: $\left(A_{1}\right)$ A hyperplane $P_{n-1} \mathbb{C}$, where $0<r<\frac{\pi}{2}$,
(A_{2}) a totally geodesic $P_{k} \mathbb{C}(1 \leqq k \leqq n-2)$, where $0<r<\frac{\pi}{2}$,
(B) a complex quadric Q_{n-1}, where $0<r<\frac{\pi}{4}$,
(C) $P_{1} \mathbb{C} \times P_{(n-1) / 2} \mathbb{C}$, where $0<r<\frac{\pi}{4}$ and $n(\geqq 5)$ is odd,
(D) a complex Grassmann $G_{2,5} \mathbb{C}$, where $0<r<\frac{\pi}{4}$ and $n=9$,
(E) a Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\frac{\pi}{4}$ and $n=$ 15.

Due to Takagi's theorem we can see that every homogeneous real hypersurface in $P_{n} \mathbb{C}$ is a Hopf hypersurface. However, in $H_{n} \mathbb{C}$ there exists a homogeneous real hypersurface which is not a Hopf hypersurface (see [12]). Also Berndt([1]) classified all Hopf real hypersurfaces with constant principal curvatures in a complex hyperbolic space $H_{n} \mathbb{C}$ as follows:

Theorem B ([1]) Let M be a real hypersurface of $H_{n} \mathbb{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a self-tube, that is, a horosphere,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
$\left(\mathrm{A}_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}(1 \leq k \leq n-2)$,
(B) a tube over a totally real hyperbolic space $H_{n} \mathbb{R}$.

We denote by ∇, S and R_{ξ} be the Levi-Civita connection, the Ricci tensor and the structure Jacobi operator with respect to the structure vector field ξ of M respectively.

We know that there are no real hypersurfaces with parallel Ricci tensor in $M_{n}(c), n \geq 3, c \neq 0([6])$.

If we pay a particular attention to the fact that for each Hopf hypersurface M in $M_{n}(c), c \neq 0$, then $R_{\xi} A=A R_{\xi}$ or $S \xi=g(S \xi, \xi) \xi$ is satisfied. Therefore, it is natural to consider a problem that if a real hypersurface M in $M_{n}(c), c \neq 0$ satisfies $R_{\xi} A=A R_{\xi}$ or $S \xi=g(S \xi, \xi) \xi$, is M a Hopf hypersurface ? Recently, there are many studies on partial answers to this problem ([3] ~ [10] etc.). The following facts are used in this paper without proof.

Theorem HKK ([3]) Let M be a real hypersurface of a nonflat complex space form which satisfies $\nabla_{\xi} S=0$ and $S \xi=g(S \xi, \xi) \xi$. If $g\left(\nabla_{\xi} \xi, \nabla_{\xi} \xi\right)=$ μ^{2} is constant, then M is a Hopf hypersurface.

Theorem KN ([9]) Let M be a real hypersurface in a complex projective space $P_{n} \mathbb{C}$. Then the following are equivalent:
(1) M is a Hopf hypersurface in the ambient space $P_{n} \mathbb{C}$.
(2) The structure vector ξ is an eigenvector with constant eigenvalue of the Ricci tensor S of M and $\nabla_{\phi \nabla_{\xi} \xi} S=0$ holds.

Theorem KSN ([10]) Let M be a real hypersurface in $P_{n} \mathbb{C}$ which satisfies $R_{\xi} S=S R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} S=0$. If $g(S \xi, \xi)$ is constant on M, then M is a Hopf hypersurface.

The main purpose of the present paper is to establish the following:

Theorem. Let M be a real hypersurface in $M_{n}(c), c \neq 0$. Then the followings are equivalent provided that $6(\operatorname{Tr} A)^{2}+c \neq 0$:
(1) M is a Hopf hypersurface in the ambient space in $M_{n}(c)$.
(2) $R_{\xi} A=A R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} S=0$ hold on M.

Corollary. Let M be a real hypersurface in $P_{n} \mathbb{C}$. Then the followings are equivalent:
(1) M is a Hopf hypersurface in the ambient space $P_{n} \mathbb{C}$.
(2) $R_{\xi} A=A R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} S=0$ hold on M.

1. Preliminaries

Let M be a real hypersurface of a complex space form $M_{n}(c)$ with parallel almost complex structure J and N be a unit normal vector field on M. By $\tilde{\nabla}$ we denote the Levi-Civita connection with respect to the Fubini-Study metric \tilde{g} of $M_{n}(c)$. Then the Gauss and Weingarten formulas are given respectively by

$$
\tilde{\nabla}_{Y} X=\nabla_{Y} X+g(A Y, X) N, \tilde{\nabla}_{X} N=-A X
$$

for any vector fields X and Y on M, where ∇ and g denote the Riemannian connection and the Riemannian metric induced from \tilde{g} respectively, and A denotes the shape operator in the direction of N. For any vector field X tangent to M, we put

$$
J X=\phi X+\eta(X) N, J N=-\xi
$$

Then we may see that the structure (ϕ, ξ, η, g) is an almost contact metric structure on M, that is, we have

$$
\begin{gathered}
\phi^{2} X=-X+\eta(X) \xi, g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \\
\eta(\xi)=1, \phi \xi=0, \eta(X)=g(X, \xi)
\end{gathered}
$$

for any vector fields X and Y on M.
From the fact $\tilde{\nabla} J=0$ and by using of the Gauss and Weingarten formulas, we obtain

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{1.1}\\
\nabla_{X} \xi=\phi A X \tag{1.2}
\end{gather*}
$$

Since the ambient manifold is of constant holomorphic sectional curvature c, we have the following Gauss and Codazzi equations respectively:

$$
\begin{align*}
R(X, Y) Z= & \frac{c}{4}\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X \\
& -g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\}+g(A Y, Z) A X \tag{1.3}\\
& -g(A X, Z) A Y
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\frac{c}{4}\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{1.4}
\end{equation*}
$$

for any vector fields X, Y and Z on M, where R denotes Riemannian curvature tensor of M

In the following, to write our formulas in convention forms, we denote by $\alpha=\eta(A \xi), \beta=\eta\left(A^{2} \xi\right), \gamma=\eta\left(A^{3} \xi\right)$ and $h=\operatorname{Tr} A$, and for a function f we denote by ∇f the gradient vector field of f.

We denote the Ricci tensor of type $(1,1)$ by S. Then we have from (1.3)

$$
\begin{equation*}
S X=\frac{c}{4}\{(2 n+1) X-3 \eta(X) \xi\}+h A X-A^{2} X, \tag{1.5}
\end{equation*}
$$

which together with (1.2) implies that

$$
\begin{align*}
\left(\nabla_{X} S\right) Y= & -\frac{3}{4} c\{g(\phi A X, Y) \xi+\eta(Y) \phi A X\}+(X h) A Y \tag{1.6}\\
& +(h I-A)\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A\right) A Y,
\end{align*}
$$

where I is the identity tensor.
We put $U=\nabla_{\xi} \xi$, then U is orthogonal to the structure vector fields ξ. Then, using (1.2), we see that

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{1.7}
\end{equation*}
$$

which shows that $g(U, U)=\beta-\alpha^{2}$. We easyly see that ξ is a principal curvature vector, that is, $A \xi=\alpha \xi$ if and only if $\beta-\alpha^{2}=0$.

If $A \xi-g(A \xi, \xi) \xi \neq 0$, then we can put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W, \tag{1.8}
\end{equation*}
$$

where W is a unit vector field orthogonal to ξ. Then by (1.2) we see that $U=\mu \phi W$ and hence $g(U, U)=\mu^{2}$. So we have

$$
\begin{equation*}
\mu^{2}=\beta-\alpha^{2} . \tag{1.9}
\end{equation*}
$$

Further, W is also orthogonal to U.
Using (1.2) and (1.8), we see that

$$
\begin{align*}
& \mu g\left(\nabla_{X} W, \xi\right)=g(A U, X), \tag{1.10}\\
& g\left(\nabla_{X} \xi, U\right)=\mu g(A W, X) . \tag{1.11}
\end{align*}
$$

Now, differentiating (1.7) covariantly along M and making use of (1.1) and (1.2), we find

$$
\begin{align*}
& g\left(\phi X, \nabla_{Y} U\right)+\eta(X) g(A U+\nabla \alpha, Y) \tag{1.12}\\
= & g\left(\left(\nabla_{Y} A\right) X, \xi\right)-g(A \phi A X, Y)+\alpha g(A \phi X, Y),
\end{align*}
$$

which enables us to obtain

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha \tag{1.13}
\end{equation*}
$$

because of (1.4).
Because of properties of the almost contact metric structure, we also have from (1.12)

$$
\begin{equation*}
\nabla_{X} U+g\left(A^{2} \xi, X\right) \xi=\phi\left(\nabla_{X} A\right) \xi+\phi A \phi A X+\alpha A X \tag{1.14}
\end{equation*}
$$

By the definition of U, (1.2) and (1.12), it is verified that

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha, \tag{1.15}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
\mu g\left(\nabla_{\xi} U, W\right)=\alpha \mu^{2}-3 g(A U, U)-U \alpha . \tag{1.16}
\end{equation*}
$$

From the Gauss equation (1.3) the structure Jacobi operator R_{ξ} is given by

$$
R_{\xi} X=R(X, \xi) \xi=\frac{c}{4}(X-\eta(X) \xi)+\alpha A X-\eta(A X) A \xi
$$

for any vector field X on M.
From this and (1.5), we have

$$
\begin{align*}
& g\left(R_{\xi} Y, A X\right)-g\left(R_{\xi} X, A Y\right) \\
= & g\left(A^{2} \xi, Y\right) g(A \xi, X)-g\left(A^{2} \xi, X\right) g(A \xi, Y) \tag{1.17}\\
& +\frac{c}{4}\{g(A \xi, Y) \eta(X)-g(A \xi, X) \eta(Y)\} .
\end{align*}
$$

2. Structure Jacobi operator of real hypersurfaces

Let M be a real hypersurface of a complex space form $M_{n}(c), c \neq 0$. If it satisfies $R_{\xi} A=A R_{\xi}$, then we have from (1.17)

$$
\begin{equation*}
A^{2} \xi=\rho A \xi+\frac{c}{4} \xi \tag{2.1}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
\beta=\rho \alpha+\frac{c}{4} . \tag{2.2}
\end{equation*}
$$

We set $\Omega=\{p \in M \mid \mu(p) \neq 0\}$, and suppose that $\Omega \neq \emptyset$, that is, ξ is not a principal curvature vector on M. From now on we discuss our arguments on the open set Ω of M unless otherwise stated.

Combining (1.8) to (2.1), we verify that

$$
\begin{equation*}
A W=\mu \xi+(\rho-\alpha) W \tag{2.3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
A^{2} W=\rho A W+\frac{c}{4} W \tag{2.4}
\end{equation*}
$$

by virtue of $\mu \neq 0$.
Differentiating (2.1) covariantly along Ω and making use of (1.2), we find

$$
\begin{align*}
& g\left(\left(\nabla_{X} A\right) \xi, Y\right)+g\left(A\left(\nabla_{X} A\right) \xi, Y\right)+g\left(A^{2} \phi A X, Y\right)-\rho g(A \phi A X, Y) \tag{2.5}\\
& =(X \rho) g(A \xi, Y)+\rho g\left(\left(\nabla_{X} A\right) \xi, Y\right)+\frac{c}{4} g(\phi A X, Y)
\end{align*}
$$

which together with (1.4) and (1.13) yields

$$
\left(\nabla_{\xi} A\right) A \xi=\rho A U-\frac{c}{4} U+\frac{1}{2} \nabla \beta
$$

If we put $X=\xi$ in (2.5) and use (1.13) and the last equation, we get

$$
\begin{equation*}
3 A^{2} U-2 \rho A U-\frac{c}{2} U=(\xi \rho) A \xi-A \nabla \alpha+\rho \nabla \alpha-\frac{1}{2} \nabla \beta \tag{2.6}
\end{equation*}
$$

where we have used (1.4).
Differentiating (2.3) covariantly, we find

$$
\begin{align*}
& \left(\nabla_{X} A\right) W+A \nabla_{X} W \\
= & (X \mu) \xi+\mu \nabla_{X} \xi+X(\rho-\alpha) W+(\rho-\alpha) \nabla_{X} W . \tag{2.7}
\end{align*}
$$

By taking the inner product (2.7) with W and taking account of (1.8) and (1.10), we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) W, W\right)=-2 g(A U, X)+X \rho-X \alpha \tag{2.8}
\end{equation*}
$$

since W is a unit vector field orthogonal to ξ. We also have by applying ξ to (2.7)

$$
\begin{equation*}
\mu g\left(\left(\nabla_{X} A\right) W, \xi\right)=(\rho-2 \alpha) g(A U, X)+\mu(X \mu) \tag{2.9}
\end{equation*}
$$

where we have used (1.10), which connected to (1.4) gives

$$
\begin{align*}
& \mu\left(\nabla_{W} A\right) \xi=(\rho-2 \alpha) A U-\frac{c}{2} U+\mu \nabla \mu \tag{2.10}\\
& \mu\left(\nabla_{\xi} A\right) W=(\rho-2 \alpha) A U-\frac{c}{4} U+\mu \nabla \mu
\end{align*}
$$

Putting $X=\xi$ in (2.8) and making use of (2.9), we find

$$
\begin{equation*}
W \mu=\xi \rho-\xi \alpha \tag{2.12}
\end{equation*}
$$

Now, define a 1-form u by $u(X)=g(U, X)$ for any vector field X. Using (1.4) and (2.5), we verrfy that

$$
\begin{align*}
& \frac{c}{4}\{u(Y) \eta(X)-u(X) \eta(Y)\}+\frac{c}{2}(\rho-\alpha) g(\phi Y, X) \\
& -g\left(A^{2} \phi A X, Y\right)+g\left(A^{2} \phi A Y, X\right)+2 \rho g(\phi A X, A Y) \\
& -\frac{c}{2}\{g(\phi A Y, X)-g(\phi A X, Y)\} \tag{2.13}\\
= & g\left(A Y,\left(\nabla_{X} A\right) \xi\right)-g\left(A X,\left(\nabla_{Y} A\right) \xi\right)+(Y \rho) g(A \xi, X) \\
& -(X \rho) g(A \xi, Y) .
\end{align*}
$$

If we replace X by μW to both sides of (2.12) and use (1.13), (2.3), (2.4), (2.9) and (2.10), then we obtain

$$
\begin{align*}
& (3 \alpha-2 \rho) A^{2} U+\left(2 \rho^{2}-2 \rho \alpha+c\right) A U+\frac{c}{4}(\alpha-\rho) U \\
& =\mu A \nabla \mu+(\alpha-\rho) \mu \nabla \mu+\mu^{2}(\nabla \rho-\nabla \alpha)-\mu(W \rho) A \xi \tag{2.14}
\end{align*}
$$

Putting $X=\mu W$ in (1.14) and using (2.3) and (2.10), we find

$$
\begin{align*}
\mu \nabla_{W} U= & (2 \rho-3 \alpha) \phi A U+\mu \phi \nabla \mu \\
& +\mu\left(\rho \alpha-\alpha^{2}+\frac{c}{2}\right) W-\mu^{2}(\rho-\alpha) \xi \tag{2.15}
\end{align*}
$$

3. Real hypersurface satisfying $\nabla_{\phi U} S=0$ and $R_{\xi} A=A R_{\xi}$

In this section, we will continue our arguments under the same hypothesis $R_{\xi} A=A R_{\xi}$ as in Section 2. Further, assume that $\nabla_{\phi U} S=0$ and hence $\nabla_{W} S=0$ on Ω because of $\mu \neq 0$. By replacing X by μW in (1.6), we find

$$
\begin{align*}
& -\frac{3}{4} c(\rho-\alpha)\{u(Y) \xi+\eta(Y) U\}+\mu(W h) A Y+\mu h\left(\nabla_{W} A\right) Y \tag{3.1}\\
& =\mu A\left(\nabla_{W} A\right) Y+\mu\left(\nabla_{W} A\right) A Y
\end{align*}
$$

where we have used (1.2) and (2.3). Putting $Y=W$ in this and making use of (2.3), (2.8) and (2.10), we find

$$
\begin{align*}
& (W h) A W \\
= & (2 h-\rho) A U-2 A^{2} U-\frac{c}{2} U+A \nabla \rho-A \nabla \alpha \tag{3.2}\\
& +\frac{1}{2} \nabla \beta+(h-\rho) \nabla \alpha+(\rho-h-\alpha) \nabla \rho .
\end{align*}
$$

If we replace Y by ξ and take account of (2.3), (2.8) and (2.10), then we obtain

$$
\begin{align*}
& \mu A \nabla \mu+(\alpha-h) \mu \nabla \mu+\mu^{2}(\nabla \rho-\nabla \alpha) \\
= & \mu(W h) A \xi+(2 \alpha-\rho) A^{2} U+(h \rho-2 \alpha h+\rho \alpha+c) A U \tag{3.3}\\
& +\frac{c}{4}(5 \alpha-3 \rho-2 h) U .
\end{align*}
$$

On the other hand, we have from (1.5) and (2.1)

$$
\begin{equation*}
S \xi=\frac{c}{4}(2 n-3) \xi+(h-\rho) A \xi \tag{3.4}
\end{equation*}
$$

Differentiating this covariantly, we find

$$
\begin{aligned}
& \left(\nabla_{X} S\right) \xi+S \nabla_{X} \xi \\
= & \frac{c}{4}(2 n-3) \nabla_{X} \xi+X(h-\rho) A \xi+(h-\rho)\left(\nabla_{X} A\right) \xi \\
& +(h-\rho) A \nabla_{X} \xi
\end{aligned}
$$

Replacing X by μW in this and using $\nabla_{X} S=0$ and (2.10), we obtain

$$
\begin{aligned}
(\rho-\alpha) S U= & \frac{c}{4}(2 n-3)(\rho-\alpha) U+\mu(W h-W \rho) A \xi \\
& +(h-\rho)\left\{(\rho-2 \alpha) A U-\frac{c}{2} U+\mu \nabla \mu\right\} \\
& +(\rho-\alpha)(h-\rho) A U
\end{aligned}
$$

where we have used the fact that $\mu \nabla_{W} \xi=(\rho-\alpha) U$, which together with (1.5) implies that

$$
\begin{align*}
& \mu W(\rho-h) A \xi+(\rho-h) \mu \nabla \mu \\
= & (\rho-\alpha) A^{2} U-c(\rho-\alpha) U-\frac{c}{2}(h-\rho) U \tag{3.5}\\
& +\{(h-\rho)(\rho-2 \alpha)-\rho(\rho-\alpha)\} A U
\end{align*}
$$

Remark 3.1. $\rho-\alpha \neq 0$ on Ω. In fact, if not, then we have $\rho-\alpha=0$ and hence $\mu^{2}=\frac{c}{4}$ by virtue of (2.2). Then (2.14) becomes $\alpha A^{2} U+c A U=$ $-\mu(W \alpha) A \xi$ and therefore $W \alpha=0$. So we have

$$
\begin{equation*}
\alpha A^{2} U+c A U=0 \tag{3.6}
\end{equation*}
$$

Further, (2.6), (3.2) and (3.5) are reduced respectively to

$$
\begin{equation*}
2 A^{2} U-2 \alpha A U-\frac{c}{2} U=(\xi \alpha) A \xi-A \nabla \alpha \tag{3.7}
\end{equation*}
$$

$$
\begin{align*}
& 2 A^{2} U=(2 h-\alpha) A U-\frac{c}{2} U \tag{3.8}\\
& (h-\rho)\left\{\alpha A U+\frac{c}{2} U\right\}=0 \tag{3.9}
\end{align*}
$$

because of $\nabla \mu=0$. Combining (3.6) to (3.9), we see that $(h-\rho) A U=0$, which connected to (3.8) gives $h-\rho=0$. Thus (3.8) is led to

$$
\begin{equation*}
2 A^{2} U=\alpha A U-\frac{c}{2} U \tag{3.10}
\end{equation*}
$$

Comparing (3.6) with (3.10), we have $3 \alpha^{2}+4 c=0$ and consequently α is constant. Therefore (3.7) turns out to be $3 A^{2} U-2 \alpha A U-\frac{c}{2} U=0$, which together with (3.6) and (3.10) will produce a contradiction. Accordingly $\rho-\alpha \neq 0$ on Ω is proved. In what follows $\rho-\alpha \neq 0$ is satisfied everywhere.

In the previous paper [9], two of the present authors proved the following fact:

Remark 3.2. (Lemma 3.2 of [9]) Let M be a real hypersurface of $M_{n}(c)$, $c \neq 0$. If it satisfies $\nabla_{\phi U} S=0$ and $S \xi=\sigma \xi$ for some constant σ, then we have $\xi \alpha=0, W \alpha=0, \xi h=0$ and $W h=0$ on Ω.

Lemma 3.3. $\xi \alpha=0, \xi \rho=0, W \alpha=0$ and $W h=0$ on Ω.

Proof. Since U is orthogonal to the structure vector ξ, if we take the inner product (2.6) with ξ, then we obtain

$$
\begin{equation*}
\xi \mu=W \alpha \tag{3.11}
\end{equation*}
$$

where we have used (1.8) and (2.2).
Taking the inner product (3.5) with ξ or W, and using (2.12) and (3.11), we also have respectively

$$
\begin{gather*}
\alpha(W \rho-W h)=(h-\rho) W \alpha \tag{3.12}\\
\mu(W \rho-W h)=(h-\rho)(\xi \rho-\xi \alpha)
\end{gather*}
$$

which enables us to obtain $(h-\rho)\{\mu(W \alpha)-\alpha(\xi \rho-\xi \alpha)\}=0$ and hence

$$
\begin{equation*}
\mu(W \alpha)=\alpha(\xi \rho-\xi \alpha) \tag{3.13}
\end{equation*}
$$

In fact, if not, then we have $h=\rho$. So (3.4) implies $S \xi=\frac{c}{4}(2 n-3) \xi$ on this subset. Thus, Remark 3.2 tells us that $W \alpha=0, \xi \rho=0$ and $\xi \alpha=0$, a contradiction. Therefore (3.13) is established.

On the other hand, applying (2.14) by ξ and making use of (2.12) and (3.11), we also have

$$
\alpha(W \rho)=(2 \alpha-\rho) W \alpha+2 \mu(\xi \rho-\xi \alpha)
$$

which together with (2.2) and (3.13) implies that

$$
\begin{equation*}
\mu \alpha(W \rho)=\left(\rho \alpha+\frac{c}{2}\right)(\xi \rho-\xi \alpha) \tag{3.14}
\end{equation*}
$$

By the way, if we take the inner product (3.2) with W and take account of (2.12), we obtain

$$
\begin{align*}
& (\rho-\alpha)(W h-W \rho) \tag{3.15}\\
= & 2 \mu(\xi \rho-\xi \alpha)+(h-2 \rho+2 \alpha) W \alpha+(\rho-h-\alpha) W \rho
\end{align*}
$$

So we verify, using (3.12) $\sim(3.14)$, that $(\rho-h) W \alpha=0$ and hence $W \alpha=0$ by virtue of Remark 3.2. Thus, (3.11) tells us that $\xi \mu=0$, that is, $\xi \beta=$ $2 \alpha(\xi \alpha)$. From this, (2.2) and (3.13) we see that $(\rho-\alpha) \xi \alpha=0$. Therefore it
is seen that $\xi \alpha=0$ because of Remark 3.1. From this, $W \alpha=0$ and (3.13) we verify that $\alpha(\xi \rho)=0$, which together with (3.14) yields $\xi \rho=0$. Thus (3.12) and (3.15) imply that $(\rho-h) W \rho=0$. Therefore $W \rho=W h=0$ are satisfied. This completes the proof of the lemma.

Because of Lemma 3.3 and (2.2), equations (2.6), (2.14), (3.2), (3.3) and (3.5) are led to respectively to as follows:

$$
\begin{align*}
& A \nabla \alpha=-3 A^{2} U+2 \rho A U+\frac{c}{2} U+\frac{1}{2}(\rho \nabla \alpha-\alpha \nabla \rho), \tag{3.16}\\
& \mu A \nabla \mu+(\alpha-\rho) \mu \nabla \mu+\mu^{2}(\nabla \rho-\nabla \alpha) \\
& =(3 \alpha-2 \rho) A^{2} U+\left(2 \rho^{2}-2 \rho \alpha+c\right) A U+\frac{c}{4}(\alpha-\rho) U, \tag{3.17}\\
& A \nabla \rho-A \nabla \alpha=2 A^{2} U+(\rho-2 h) A U+\frac{c}{2} U \tag{3.18}\\
& +(\rho-h)(\nabla \alpha-\nabla \rho)+\alpha \nabla \rho-\frac{1}{2} \nabla \beta, \\
& \mu A \nabla \mu+(\alpha-h) \mu \nabla \mu+\mu^{2}(\nabla \rho-\nabla \alpha) \\
& =(2 \alpha-\rho) A^{2} U+(h \rho-2 \alpha h+\rho \alpha+c) A U \tag{3.19}\\
& +\frac{c}{4}(5 \alpha-3 \rho-2 h) U, \\
& (h-\rho) \mu \nabla \mu \\
& =(\alpha-\rho) A^{2} U+\left(2 \rho^{2}+2 \alpha h-h \rho-3 \rho \alpha\right) A U \tag{3.20}\\
& +\frac{c}{2}(\rho+h-2 \alpha) U .
\end{align*}
$$

From (3.16) and (3.18), we have

$$
\begin{equation*}
(h-\rho)(\nabla \rho-\nabla \alpha)=A \nabla \rho+A^{2} U+(2 h-3 \rho) A U-c U \tag{3.21}
\end{equation*}
$$

Since we have

$$
2 \mu A \nabla \mu=\alpha A \nabla \rho+(\rho-2 \alpha) A \nabla \alpha
$$

by virtue of (2.2) and (3.19), it follows that

$$
\begin{aligned}
& \alpha A \nabla \rho+(\rho-2 \alpha) A \nabla \alpha+2 \mu^{2}(\nabla \rho-\nabla \alpha)-2(h-\alpha) \mu \nabla \mu \\
& =2(2 \alpha-\rho) A^{2} U+2(h \rho-2 \alpha h+\rho \alpha+c) A U+\frac{c}{2}(5 \alpha-3 \rho-2 h) U
\end{aligned}
$$

Further, using (3.16) and (3.21), we have

$$
\begin{aligned}
& (\alpha-\rho) A^{2} U+\left(2 \rho^{2}+2 \alpha h-3 \rho \alpha-2 h \rho-2 c\right) A U \\
& +\frac{c}{2}(2 h+4 \rho-5 \alpha) U \\
= & 2(h-\alpha) \mu \nabla \mu+\frac{1}{2}(\rho-2 \alpha) \nabla \beta \\
& +\left(2 \alpha^{2}-\rho \alpha-\alpha h-\frac{c}{2}\right)(\nabla \rho-\nabla \alpha)+\left(2 \rho \alpha-\rho^{2}\right) \nabla \alpha,
\end{aligned}
$$

which together with (2.2) and (3.20) implies that

$$
\begin{align*}
& (2 h \rho+4 c) A U \\
= & c(3 \rho-3 \alpha+h) U+(h \alpha+c) \nabla \rho-(h \rho+c) \nabla \alpha .
\end{align*}
$$

If we apply this by A, then we obtain

$$
(2 h \rho+4 c) A^{2} U=c(3 \rho-3 \alpha+h) A U+(h \alpha+c) A \nabla \rho-(h \rho+c) A \nabla \alpha,
$$

which connected to (3.16), (3.20), (3.21) and (3.22) yields

$$
\begin{align*}
& 4 A^{2} U+2(3 \alpha-4 \rho-h) A U+(3 h \rho-3 h \alpha-c) U \\
& =(\alpha+h-2 \rho) \nabla \rho-(h-\rho) \nabla \alpha .
\end{align*}
$$

From this and (3.20), it follows that

$$
\begin{align*}
& 2\left(3 \alpha^{2}-\rho \alpha-5 \alpha h-6 c\right) A U \\
& +\left\{c(8 \rho-6 \alpha+h)-3 h(\rho-\alpha)^{2}\right\} U \tag{3.24}\\
= & \left(2 \rho^{2}-\rho \alpha-4 \alpha h+\alpha^{2}-h \rho-3 c\right) \nabla \rho \\
& +\left(3 \alpha h-3 \alpha \rho+\rho^{2}+2 h \rho+3 c\right) \nabla \alpha .
\end{align*}
$$

Lemma 3.4. $\alpha \neq 0$ on Ω.
Proof. If not, we have by (2.2) $\beta=\frac{c}{4}$ and hence $\mu^{2}=\frac{c}{4}$. Thus, (3.16), (3.17), (3.20) and (3.22) turn out respectively to

$$
\begin{gather*}
3 A^{2} U=2 \rho A U+\frac{c}{2} U, \tag{3.25}\\
\frac{c}{4} \nabla \rho=-2 \rho A^{2} U+\left(2 \rho^{2}+c\right) A U-\frac{c}{4} \rho U, \tag{3.26}\\
\rho A^{2} U=(2 \rho-h) \rho A U+\frac{c}{2}(\rho+h) U, \tag{3.27}
\end{gather*}
$$

$$
\begin{equation*}
2(h \rho+2 c) A U=c(h+3 \rho) U+c \nabla \rho \tag{3.28}
\end{equation*}
$$

because of $\alpha=0$. However we notice here that $\rho \neq 0$ on this set by virtue of (3.25) and (3.26).

From (3.25) and (3.27) we obtain

$$
\begin{equation*}
\rho(3 h-4 \rho) A U=\frac{c}{2}(2 \rho+3 h) U . \tag{3.29}
\end{equation*}
$$

On the other hand, we also have by using (3.26) and (3.28)

$$
4 \rho A^{2} U+\rho(h-4 \rho) A U=\frac{c}{2}(2 \rho+h) U
$$

or, using (3.27)

$$
3 h \rho A U=\frac{c}{2}(2 \rho+3 h) U .
$$

Thus, using (3.29), we have $\rho A U=0$ and hence $U=0$ because of (3.25) and $\rho \neq 0$, a contradiction. Consequently we have $\alpha \neq 0$ on Ω.

Lemma 3.5. $h-\rho \neq 0$ on Ω.
Proof. If not, we have $h-\rho=0$. So (3.20) becomes

$$
(\rho-\alpha)\left\{A^{2} U-\rho A U-c U\right\}=0
$$

on this set. Since $\rho-\alpha \neq 0$ by Remark 3.1, it follows that

$$
A^{2} U=\rho A U+c U
$$

Since $g(S \xi, \xi)=\frac{c}{4}(2 n-3)$ is constant because of (3.4), owing to Lemma 3.1 of [9], we see that $A U=\lambda U$, where $\mu^{2} \lambda=g(A U, U)$. Consequently we obtain

$$
\begin{equation*}
\lambda^{2}=\rho \lambda+c \tag{3.30}
\end{equation*}
$$

on this subset, which together with (3.21) yields

$$
\begin{equation*}
A \nabla \rho=0 . \tag{3.31}
\end{equation*}
$$

By the way, we also have from (3.23)

$$
(\alpha-\rho) \nabla \rho=\left\{4 \lambda^{2}+(6 \alpha-10 \rho) \lambda+3 \rho^{2}-3 \rho \alpha-c\right\} U,
$$

or, using (3.30)

$$
(\alpha-\rho) \nabla \rho=3\{(\rho-\alpha)(\rho-2 \lambda)+c\} U .
$$

From this and (3.31), we see that

$$
\begin{equation*}
(\rho-\alpha)(\rho-2 \lambda)+c=0, \tag{3.32}
\end{equation*}
$$

and hence $\nabla \rho=0$ on this set because $\rho-\alpha \neq 0$ on Ω. So, using (3.30), we see that λ is constant. Making use of (3.32), we have $\nabla \alpha=0$. Thus, (3.16) tells us that

$$
3 \lambda^{2}=2 \rho \lambda+\frac{c}{2},
$$

which together with (3.30) implies that

$$
\begin{equation*}
2 \lambda^{2}+3 c=0 \tag{3.33}
\end{equation*}
$$

and $5 \lambda=3 \rho$ because of $\lambda \neq 0$ on this set. So, using (3.30) and (3.32), we have $11 \rho=3 \alpha$.

From these and (2.2) we verify that

$$
\beta-\alpha^{2}+\frac{6}{11} \alpha^{2}-\frac{c}{4}=0
$$

Therefore, it is contradictory because of (3.33). Thus, $h-\rho \neq 0$ on Ω is proved.

From (3.22) and (3.24) we have

$$
\begin{equation*}
f U=\sigma \nabla \rho+\rho \nabla \alpha \tag{3.34}
\end{equation*}
$$

where we have put

$$
\begin{align*}
f= & \left(5 c \alpha-c \rho+3 \rho^{3}-6 \alpha \rho^{2}+3 \alpha^{2} \rho\right) h^{2} \\
& -2 c\left(6 \alpha^{2}-5 \alpha \rho-2 c+\rho^{2}\right) h \tag{3.35}\\
& +c(\rho-3 \alpha)\left(2 c+3 \alpha \rho-3 \alpha^{2}\right),
\end{align*}
$$

$$
\begin{align*}
\sigma= & (h \alpha+c)\left(3 \alpha^{2}-\alpha \rho-5 \alpha h-6 c\right) \tag{3.36}\\
& -(h \rho+2 c)\left(2 \rho^{2}-\alpha \rho-4 \alpha h+\alpha^{2}-h \rho-3 c\right),
\end{align*}
$$

$$
\begin{align*}
\tau= & \left(\alpha \rho+5 \alpha h-3 \alpha^{2}+6 c\right)(h \rho+c) \tag{3.37}\\
& -(h \rho+2 c)\left(3 \alpha h-3 \alpha \rho+\rho^{2}+2 h \rho+3 c\right) .
\end{align*}
$$

From (3.34) we obtain $f u(Y)=\sigma(Y \rho)+\tau(Y \alpha)$ for any vector field Y. Differentiating this covariantly and taking the skew-symmetric parts obtained, we find

$$
\begin{align*}
& (X f) u(Y)-(Y f) u(X)+f d u(X, Y) \\
= & (X \sigma) Y \rho-(Y \sigma) X \rho+(X \tau) Y \alpha-(Y \tau) X \alpha, \tag{3.38}
\end{align*}
$$

where the exterior derivative $d u$ of 1 -form u is given by

$$
d u(X, Y)=Y u(X)-X u(Y)-u([X, Y]) .
$$

Now we prove
Lemma 3.6. If $\xi h=0$, then we have $f=0$ on Ω.
Proof. Since $\xi h=0$ is assumed, by putting $X=\xi$ in (3.38) and using Lemma 3.3, we obtain $f d u(\xi, Y)=0$ because f, σ and τ are polynomials with respect to h, ρ and α. Hence $f=0$ on Ω. In fact, if not, we have $d u(\xi, X)=0$ for any vector X, that is, $g\left(\nabla_{\xi} U, X\right)+g\left(\nabla_{X} \xi, U\right)=0$, which together with (1.11), (1.15) and (2.3) implies that $\phi(3 A U+\nabla \alpha)+\mu \rho W=0$. Thus, it follows that

$$
\begin{equation*}
\nabla \alpha=\rho U-3 A U \tag{3.39}
\end{equation*}
$$

on this subset. Here we have used $\xi \alpha=0$. From this and (3.16), we deduce that

$$
\begin{equation*}
\alpha \nabla \rho=-\rho A U+\left(\rho^{2}+c\right) U \tag{3.40}
\end{equation*}
$$

on this set. From the last two equations, we verify that

$$
\mu \nabla \mu=(3 \alpha-2 \rho) A U+\left(\rho^{2}-\rho \alpha+\frac{c}{2}\right) U,
$$

where we have used (1.9) and (2.2). Thus, (3.20) tells us that

$$
\begin{equation*}
A^{2} U=h A U+\left(\rho^{2}-\rho h+c\right) U \tag{3.41}
\end{equation*}
$$

on this set because of Remark 3.1. Substituting (3.39), (3.40) and (3.41) into (3.21), we find $A U=h U$ and hence $\rho^{2}-\rho h+c=0$ on this subset. Therefore (3.40) implies that $\nabla \rho=0$ by virtue of Lemma 3.4. So we see that $\nabla h=0$ on this set. Since we have $A U=h U$ and hence $\nabla \alpha=(\rho-3 h) U$ because of (3.39), we verify that $h^{2} \rho-h \rho^{2}+2 c \rho-3 c \alpha=0$ and thus $\nabla \alpha=0$ because ρ and h are constant. Here we have used (3.22). Therefore (3.34) implies $f=0$ on this subset, a contradiction. This completes the proof of Lemma 3.6.

Lemma 3.7. $f=0$ on Ω.
Proof. If we replace Y by W in (3.38) and make use of Lemma 3.3, then we obtain $f d u(X, W)=0$ because f, σ and τ are polynomials with respect to h, ρ and α.

Let Ω_{0} be a set of points in Ω such that $f(p) \neq 0$ at $p \in \Omega$ and suppose that $\Omega_{0} \neq \emptyset$. Then we have $d u(W, X)=0$, that is, $g\left(\nabla_{W} U, X\right)+$ $g\left(\nabla_{X} W, U\right)=0$ on Ω_{0}. Thus, using (1.11), (1.16) and (2.3), we are led to

$$
\begin{equation*}
U \alpha=\rho \mu^{2}-3 g(A U, U) \tag{3.42}
\end{equation*}
$$

on Ω_{0}.
If we take the inner product (2.15) with μW and make use of (1.9) and (2.2), then we obtain the following on Ω_{0} :

$$
\begin{aligned}
& \mu^{2} g\left(\nabla_{W} U, W\right) \\
= & (3 \alpha-2 \rho) g(A U, U)+\left(\alpha-\frac{1}{2} \rho\right) U \alpha \\
& -\frac{1}{2} \alpha U \rho+\mu^{2}\left(\alpha \rho-\alpha^{2}+\frac{c}{2}\right),
\end{aligned}
$$

which together with (3.42) implies that

$$
\begin{align*}
\mu^{2} g\left(\nabla_{W} U, W\right)= & -\frac{1}{2} \rho g(A U, U)-\frac{1}{2} \alpha U \rho \tag{3.43}\\
& +\mu^{2}\left(2 \alpha \rho-\alpha^{2}-\frac{1}{2} \rho^{2}+\frac{c}{2}\right) .
\end{align*}
$$

On the other hand, differentiating (3.22) covariantly, we find

$$
\begin{aligned}
& 2 X(h \rho) A U+(2 h \rho+4 c)\left\{\left(\nabla_{X} A\right) U+A \nabla_{X} U\right\} \\
= & c X(3 \rho-3 \alpha+h) U+c(3 \rho-3 \alpha+h) \nabla_{X} U+X(h \rho) \nabla \rho \\
& +(h \alpha+c) \nabla_{X}^{2} \rho-X(h \rho) \nabla \alpha-(h \alpha+c) \nabla_{X}^{2} \alpha,
\end{aligned}
$$

from which, taking the skew-symmetric part and using (1.4) and (1.7), we have

$$
\begin{aligned}
& 2 X(h \rho) g(A U, Y)-2 Y(h \rho) g(A U, X) \\
& +\frac{c}{2}(h \rho+2 c) \mu(\eta(X) w(Y)-\eta(Y) w(X)) \\
& +(2 h \rho+4 c)\left\{g\left(A \nabla_{X} U, Y\right)-g\left(A \nabla_{Y} U, X\right)\right\} \\
= & c X(3 \rho-3 \alpha+h) u(Y)-c Y(3 \rho-3 \alpha+h) u(X) \\
& +c(3 \rho-3 \alpha+h) d u(X, Y)+X(h \alpha) Y \rho \\
& -Y(h \alpha) X \rho-X(h \rho) Y \alpha+Y(h \rho) X \alpha
\end{aligned}
$$

on Ω_{0}, where we have defined a 1-form w by $w(X)=g(W, X)$ for any vector field X. Since $d u(W, X)=0$, by putting $X=W$ and $Y=\xi$ in the last equation, we obtain

$$
\begin{aligned}
& (h \rho+2 c)\left\{g\left(\nabla_{W} U, \alpha \xi+\mu W\right)-g\left(\nabla_{\xi} U, \mu \xi+(\rho-\alpha) W\right)-\frac{c}{4} \mu\right\} \\
= & 0
\end{aligned}
$$

on Ω_{0}, where we have used (1.8), (2.3) and Lemma 3.3. We notice here that $h \rho+2 c \neq 0$. In fact, if not, then $\xi h=0$ and hence $f=0$ because of Lemma 3.6. Therefore, the last equation is led to

$$
g\left(\nabla_{W} U, W\right)+(\rho-\alpha)^{2}=0
$$

since we have $(1.9),(1.11),(2.2)$ and (2.3), which connected to (3.43) gives

$$
\begin{equation*}
\alpha U \rho=\left(\rho^{2}+c\right) \mu^{2}-\rho g(A U, U) \tag{3.44}
\end{equation*}
$$

If we take the inner product (3.22) with U and make use of (3.42) and (3.44), then we get

$$
(\rho+\alpha) g(A U, U)=\left(2 \rho \alpha-3 \alpha^{2}+2 \alpha h+\rho^{2}+c\right) \mu^{2}
$$

which shows that

$$
\begin{equation*}
(\rho+\alpha) \xi g(A U, U)=2 \alpha \mu^{2}(\xi h) \tag{3.45}
\end{equation*}
$$

on Ω_{0} by virtue of Lemma 3.3.

We also have from (3.24), (3.42) and (3.44)

$$
\begin{aligned}
& \left(6 \alpha^{3}-10 \alpha^{2} \rho-\alpha^{2} h-3 c \alpha+2 \rho^{3}+2 \alpha \rho^{2}+2 \rho \alpha h\right. \\
& \left.-\rho^{2} h-3 c \rho\right) g(A U, U) \\
= & \mu^{2}\left\{3 \alpha(\rho-\alpha)^{2} h+c\left(6 \alpha^{2}-8 \rho \alpha-\alpha h\right)\right. \\
& +\left(\rho^{2}+c\right)\left(2 \rho^{2}-\alpha \rho-4 \alpha h+\alpha^{2}-\rho h-3 c\right) \\
& \left.+3 \alpha^{2} \rho h-3 \alpha^{2} \rho^{2}+\alpha \rho^{3}+2 \alpha \rho^{2} h+3 c \alpha \rho\right\},
\end{aligned}
$$

which enables us to obtain

$$
\begin{aligned}
& \left(6 \alpha^{3}-10 \alpha^{2} \rho-3 c \alpha+2 \rho^{3}+2 \alpha \rho^{2}-3 c \rho-(\rho-\alpha)^{2} h\right) \xi g(A U, U) \\
= & (\rho-\alpha)^{2} g(A U, U) \xi h+\mu^{2}\left\{3 \alpha(\rho-\alpha)^{2}-c \alpha-\left(\rho^{2}+c\right)(\rho+4 \alpha)\right. \\
& \left.+3 \alpha^{2} \rho+2 \alpha \rho^{2}\right\} \xi h,
\end{aligned}
$$

on Ω_{0}, where we have used Lemma 3.3. From this and (3.45) we have on Ω_{0} the following:

$$
\begin{aligned}
& 2 \alpha \mu^{2}\left\{6 \alpha^{3}-10 \alpha^{2} \rho-3 c \alpha+2 \rho^{3}+2 \alpha \rho^{2}-3 c \rho-(\rho-\alpha)^{2} h\right\} \\
= & (\rho+\alpha)(\rho-\alpha)^{2} g(A U, U)+\mu^{2}(\rho+\alpha)\left\{3 \alpha(\rho-\alpha)^{2}-c \alpha\right. \\
& \left.-\left(\rho^{2}+c\right)(\rho+4 \alpha)+3 \alpha^{2} \rho+2 \alpha \rho^{2}\right\} .
\end{aligned}
$$

Owing to Lemma 3.3 and Remark 3.1, we have

$$
2 \alpha \mu^{2}(\xi h)+(\rho+\alpha) \xi g(A U, U)=0
$$

on Ω_{0}, which together with (3.45) yields $\xi h=0$ and hence $f=0$ on Ω because of Lemma 3.4 and Lemma 3.6. Thus, Lemma 3.7 is proved.

4. Principal curvatures corresponding to $\nabla_{\xi} \xi$

We continue our arguments under the same hypotheses $R_{\xi} A=A R_{\xi}$ and at the same time $\nabla_{W} S=0$ as in Section 3. Then by Lemma 3.7 we see that

$$
\begin{align*}
& \left(5 c \alpha-c \rho+3 \rho^{3}-6 \alpha \rho^{2}+3 \alpha^{2} \rho\right) h^{2}-2 c\left(6 \alpha^{2}-5 \alpha \rho-2 c+\rho^{2}\right) h \tag{4.1}\\
& +c(\rho-3 \alpha)\left(2 c+3 \alpha \rho-3 \alpha^{2}\right)=0
\end{align*}
$$

where we have used (3.34) and (3.35).

Applying (3.24) by A, we find

$$
\begin{aligned}
& 2\left(3 \alpha^{2}-\rho \alpha-5 \alpha h-6 c\right) A^{2} U \\
= & \left\{3 h(\rho-\alpha)^{2}-c(8 \rho-6 \alpha+h)\right\} A U \\
& +\left(2 \rho^{2}-\rho \alpha-4 \alpha h+\alpha^{2}-h \rho-3 c\right) A \nabla \rho \\
& +\left(3 \alpha h-3 \alpha \rho+\rho^{2}+2 h \rho+3 c\right) A \nabla \alpha .
\end{aligned}
$$

Substituting (3.16) and (3.21) into this and making use of (3.23), we find

$$
\begin{align*}
= & \lambda_{1} A U+\lambda_{2} U \\
= & \left\{5 h \alpha \rho-6 c h-7 \alpha^{3}+2 \rho^{3}-4 h \alpha^{2}-11 h^{2} \alpha+17 h \rho^{2}-9 h^{2} \rho\right. \tag{4.2}\\
& \left.-27 \alpha \rho^{2}+28 \alpha^{2} \rho\right\} \nabla \rho+\left\{6 c h-13 h \alpha \rho+5 \rho^{3}+3 h \alpha^{2}+11 h^{2} \alpha\right. \\
& \left.-8 h \rho^{2}+9 h^{2} \rho+2 \alpha \rho^{2}-3 \alpha^{2} \rho\right\} \nabla \alpha,
\end{align*}
$$

where we have put

$$
\begin{aligned}
\lambda_{1}= & 12 c \alpha-32 c h-4 c \rho-54 h \alpha \rho-42 \alpha^{3}+8 \rho^{3}+40 h \alpha^{2} \\
& -42 h^{2} \alpha+50 h \rho^{2}+2 h^{2} \rho-90 \alpha \rho^{2}+116 \alpha^{2} \rho, \\
\lambda_{2}= & 23 c h \rho-13 c h \alpha-2 c \alpha \rho+3 c \alpha^{2}+21 h \alpha^{3}-5 c \rho^{2}-15 h \rho^{3} \\
& +51 h \alpha \rho^{2}-57 h \alpha^{2} \rho+30 h^{2} \alpha \rho-15 h^{2} \alpha^{2}-15 h^{2} \rho^{2} .
\end{aligned}
$$

By Lemma 3.7, we can deduce from (3.22) and (4.2) the following:

$$
\begin{gather*}
\left(21 c \alpha-c \rho+15 \rho^{3}-30 \alpha \rho^{2}+15 \alpha^{2} \rho\right) h^{3} \\
+\left(46 c \alpha \rho+16 c^{2}+15 \rho^{4}-53 c \alpha^{2}-21 c \rho^{2}-51 \alpha \rho^{3}-21 \alpha^{3} \rho\right. \\
\left.+57 \alpha^{2} \rho^{2}\right) h^{2}+\left(39 c \alpha^{3}-28 c^{2} \alpha+4 c^{2} \rho-44 c \rho^{3}+101 c \alpha \rho^{2}\right. \tag{4.3}\\
\left.-88 c \alpha^{2} \rho\right) h-c\left(20 c \alpha \rho+63 \alpha^{4}+12 \rho^{4}-12 c \alpha^{2}-16 c \rho^{2}\right. \\
\left.-147 \alpha \rho^{3}-237 \alpha^{3} \rho+309 \alpha^{2} \rho^{2}\right)=0 .
\end{gather*}
$$

Similarly, from (3.24) and (4.2) we obtain

$$
\begin{gather*}
\left(21 c \alpha-c \rho+12 \alpha^{3}+3 \rho^{3}+6 \alpha \rho^{2}-21 \alpha^{2} \rho\right) h s \\
+\left(2 c \alpha \rho+16 c^{2}-90 \alpha^{4}+75 \rho^{4}-39 c \alpha^{2}+9 c \rho^{2}\right. \\
\left.-141 \alpha \rho^{3}+189 \alpha^{3} \rho-33 \alpha^{2} \rho^{2}\right) h^{2} \\
+\left(12 \rho^{5}-24 c^{2} \alpha-21 c \alpha^{3}-8 c^{2} \rho-120 c \rho^{3}-144 \alpha \rho^{4}\right. \tag{4.4}\\
\left.+108 \alpha^{4} \rho+137 c \alpha \rho^{2}+12 c \alpha^{2} \rho+360 \alpha^{2} \rho^{3}-336 \alpha^{3} \rho^{2}\right) h \\
-c\left(48 c \alpha \rho+117 \alpha^{4}+32 \rho^{4}-18 c \alpha^{2}-46 c \rho^{2}\right. \\
\left.-389 \alpha \rho^{3}-507 \alpha^{3} \rho+747 \alpha^{2} \rho^{2}\right)=0 .
\end{gather*}
$$

(In the above arguments we use a computer for calculations).

Let Ψ be the resultant of (4.1) and (4.2) with respect to h, and Θ be that of (4.1), (4.2) and (4.3), that

$$
\begin{gathered}
\Psi=-12 c^{2}(\alpha-\rho)\left(2 c+3 \alpha \rho-3 \rho^{2}\right) \Delta \\
\Theta=-36(\alpha-\rho)\left(3 \alpha^{4}+3 \alpha^{2} c+2 c^{2}-7 \alpha^{3} \rho-c \alpha \rho+5 \alpha^{2} \rho^{2}-6 c \rho^{2}-\alpha \rho^{3}\right) \Delta
\end{gathered}
$$

where we have put

$$
\begin{aligned}
\Delta= & -21627 c^{2} \alpha^{10}+6129 c^{3} \alpha^{8}+195 c^{4} \alpha^{6}-225 c^{5} \alpha^{4}+16 c^{6} \alpha^{2}-18225 c \alpha^{11} \rho \\
& +138996 c^{2} \alpha^{9} \rho-29799 c^{3} \alpha^{7} \rho+3282 c^{4} \alpha^{5} \rho-242 c^{5} \alpha^{3} \rho+151632 c \alpha^{10} \\
& -378783 c^{2} \alpha^{8} \rho^{2}+59958 c^{3} \alpha^{6} \rho^{2}-11723 c^{4} \alpha^{4} \rho^{2}+2120 c^{5} \alpha^{2} \rho^{2}-144 c^{6} \rho^{2} \\
& -564003 c \alpha^{9} \rho^{3}+569628 c^{2} \alpha^{7} \rho^{3}-62631 c^{3} \alpha^{5} \rho^{3}+122202 c^{4} \alpha^{3} \rho^{3}-1662 c^{5} \alpha \rho^{3} \\
& -8748 \alpha^{10} \rho^{4}+122884 c \alpha^{8} \rho^{4}-516246 c^{2} \alpha^{6} \rho^{4}+36528 c^{3} \alpha^{4} \rho^{4}-3475 c^{4} \alpha^{2} \rho^{4} \\
& -87 c^{5} \rho^{4}+71928 \alpha^{9} \rho^{5}-1686798 c \alpha^{7} \rho^{5}+290484 c^{2} \alpha^{5} \rho^{5}-14869 c^{3} \alpha^{3} \rho^{5} \\
& +114 c^{4} \alpha \rho^{5}-260604 \alpha^{8} \rho^{6}+1512720 c \alpha^{6} \rho^{6}-100390 c^{2} \alpha^{4} \rho^{6}+6066 c^{3} \alpha^{2} \rho^{6} \\
& -613 c^{4} \rho^{6}+545184 \alpha^{7} \rho^{7}-860682 c \alpha^{5} \rho^{7}+17684 c^{2} \alpha^{3} \rho^{7}-669 c^{3} \alpha \rho^{7} \\
& -724248 \alpha^{6} \rho^{8}+28458 c \alpha^{4} \rho^{8}+1233 c^{2} \alpha^{2} \rho^{8}-713 c^{3} \rho^{8}+632016 \alpha^{5} \rho^{9} \\
& -41889 c \alpha^{3} \rho^{9}-728 c^{2} \alpha \rho^{9}-361368 \alpha^{4} \rho^{10}-672 c \alpha^{2} \rho^{10}-251 c^{2} \rho^{10} \\
& +130464 \alpha^{3} \rho^{11}+525 c \alpha \rho^{11}-27324 \alpha^{2} \rho^{12}-60 c \rho^{12}+2808 \alpha \rho^{13}-108 \rho^{14} .
\end{aligned}
$$

From above two equations, we have
$\left(3 \rho^{2}-3 \alpha \rho-2 c\right)\left(3 \alpha^{4}+3 c \alpha^{2}+2 c^{2}-7 \alpha^{3} \rho-c \alpha \rho+5 \alpha^{2} \rho^{2}-6 c \rho^{2}-\alpha \rho^{3}\right) \Delta=0$,
because of Remark 3.1. Further, from this we can deduce that both α and ρ are constants. Thus (3.22) becomes

$$
\begin{equation*}
(2 h \rho+4 c) A U=c(3 \rho-3 \alpha+h) U . \tag{4.5}
\end{equation*}
$$

Now we demonstrate the following lemma:
Lemma 4.1. $A U=\lambda U$ on Ω, where the scalar λ is given by $\mu^{2} \lambda=$ $g(A U, U)$.

Proof. If not, we have from (4.5)

$$
\begin{equation*}
h \rho=-2 c, \quad h=3(\alpha-\rho) \tag{4.6}
\end{equation*}
$$

on this subset. Since ρ and α are constant, (3.21) and (3.23) are reduced respectively to

$$
\begin{align*}
& A^{2} U+(2 h-3 \rho) A U-c U=0, \tag{4.7}\\
& 4 A^{2} U-2 \rho A U-\left(h^{2}+c\right) U=0 . \tag{4.8}
\end{align*}
$$

From the last two equations, we obtain

$$
2(4 h-5 \rho) A U+\left(h^{2}-3 c\right) U=0 .
$$

Because of our assumption, we have $h^{2}=3 c$ and $4 h=5 \rho$. From (2.2), (4.7), (4.8) and the last two equations produce a contradiction.

Because of (1.9) and (2.2) we see that μ is constant by virtue of $\nabla \alpha=$ $\nabla \rho=0$. Thus, (3.17) implies that

$$
\begin{equation*}
(3 \alpha-2 \rho) \lambda^{2}+\left(2 \rho^{2}-2 \rho \alpha+c\right) \lambda+\frac{c}{4}(\alpha-\rho)=0, \tag{4.9}
\end{equation*}
$$

where we have used Lemma 4.1.
By using $\nabla \alpha=\nabla \rho=0$ and Lemma 4.1, we verify that (3.16), (3.18) and (4.5) turn out respectively to

$$
\begin{gathered}
3 \lambda^{2}=2 \rho \lambda+\frac{c}{2}, \\
2 \lambda^{2}+(\rho-2 h) \lambda+\frac{c}{2}=0, \\
2 h \rho \lambda=c(3 \rho-3 \alpha+h-4 \lambda) .
\end{gathered}
$$

Combining these and (4.9), we have $h=\lambda, 3 \alpha=7 \lambda$ and $\rho=3 \lambda$. So, we are led to $6 h^{2}+c=0$. Thus, we have

Theorem 4.2. Let M be a real hypersurface in $P_{n} \mathbb{C}$ which satisfies $R_{\xi} A=$ $A R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} S=0$. Then M is a Hopf hypersurface in $P_{n} \mathbb{C}$.

Finally, we consider real hypersurfaces in a complex hyperbolic space satisfying $R_{\xi} A=A R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} S=0$. Then we have

$$
h^{2}=-\frac{c}{6} .
$$

Let $\lambda_{1}, \ldots, \lambda_{2 n-2}$ be principal curvatures corresponding to arbitrary principal curvature vectors orthogonal to U. Then, using $A U=\lambda U$ and $h=\lambda$, we have $\lambda_{1}+\cdots+\lambda_{2 n-2}=0$. Hence we have

$$
\begin{equation*}
\sum_{i<j} \lambda_{i} \lambda_{j} \leq 0, \quad h_{(2)}=h^{2}-2 \sum_{i<j} \lambda_{i} \lambda_{j}, \tag{4.10}
\end{equation*}
$$

where $h_{(2)}=\operatorname{Tr}^{t} A A$.
On the other hand, the scalar curvature r of M is given by

$$
r=c\left(n^{2}-1\right)+h^{2}-h_{(2)}
$$

by virtue of (1.5), which together with (4.10) implies $r \leq 0$.
Thus, we have

Theorem 4.3. Let M be a real hypersurface in $H_{n} \mathbb{C}$ which satisfies $R_{\xi} A=$ $A R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} S=0$. If the scalar curvature of M is nonnegative, then M is a Hopf hypersurface in $H_{n} \mathbb{C}$.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math., 395 (1989), 132141.
[2] J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar, 80 (1998), 155-167.
[3] T. Y. Hwang, U-H. Ki and N.-G. Kim, Ricci tensors of real hypersurfaces in a nonflat complex space form, Math. J. Toyama Univ., 27 (2004), 1-22.
[4] E.-H. Kang and U-H. Ki, On real hypersurfaces of a complex hyperbolic space, Bull. Korean Math. Soc., 34 (1997), 173-184.
[5] E.-H. Kang and U-H. Ki, Real hypersurfaces satisfying $\nabla_{\xi} S=0$ of a complex space form, Bull. Korean Math. Soc., 35 (1998), 819-835.
[6] U-H. Ki, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math., 13 (1989), 73-81.
[7] U-H. Ki, N.-G. Kim and S.-B. Lee, On certain real hypersurfaces of a complex space form, J. Korean Math. Soc., 29 (1992), 63-77.
[8] U-H. Ki and C. Li, Real hypersurfaces concerned with the structure Jacobi operator in a nonflat complex space form, preprint.
[9] U-H. Ki and S. Nagai, Real hypersurfaces of a nonflat complex space form in terms of the Ricci tensor, Tsukuba J. Math., 29 (2005), 511532.
[10] U-H. Ki and S. Nagai, The Ricci tensor and structure Jacobi operator of real hypersurfaces in a complex projective space, preprint.
[11] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II, Tsukuba J. Math., 15 (1991), 547-561.
[12] M. Lohnherr and H. Reckziegel, On ruled real hypersurfaces in complex space forms, Geom. Dedicata, 74 (1999), 267-286.
[13] S. Maeda, Ricci tensors of real hypersurfaces in a complex projective space, Proc. Amer. Math. Soc., 122 (1994), 1229-1235.
[14] R. Niebergall and P.J. Ryan, Real Hypersurfaces in Complex Space Forms, Tight and Taut Submanifolds (Eds. T. E. Cecil and S. S. Chern), 233-305, Cambridge University Press, 1998.
[15] Y. J. Suh, On real hypersurfaces of a complex space form with η parallel Ricci tensor, Tsukuba J. Math., 14 (1990), 27-37.
[16] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495-506.
[17] K. Yano and M. Kon, Structures on Manifolds, World Scientific Publ. Singapore, 1984.

U-Hang Ki
The National Academy of Sciences
Korea
Department of Mathematics
Kyungpook National University
Daegu, 702-701
Korea
E-mail address: uhangki2005@yahoo.co.kr
Chunji Li
Institute of System Science
College of Sciences
Northeastern University
Shenyang, 110-004
P. R. China
E-mail address: chunjili@hanmail.net
Setsuo NAGai
Department of Education
University of Toyama
Toyama, 930-8555
Japan
E-mail address: EZW00314@nifty.com

[^0]: 2000 Mathematics Subject Classification. Primary 53C40; Secondary 53C15.
 Key words and phrases. real hypersurface, structure Jacobi operator, Ricci tensor, Hopf hypersurface.

