Toyama Math. J.
Vol. 28(2005), 55-79

Real hypersurfaces in complex space forms whose shape

operator commutes with the structure Jacobi operator

U-Hang K1, Chunji L1 and Setsuo NAGAI

Abstract. It is known that there are no real hypersurfaces with
parallel Ricci tensor S in a nonflat complex space form ([6]). In this
paper we investigate real hypersurfaces in a nonflat complex space
form under condition that the structure Jacobi operator R¢ commutes
with the shape operator A.

Introduction

A Kahler manifold of constant holomorphic sectional curvature c is called
a complex space form, which is denoted by M, (¢).

As is well known, complete and simply connected complex space forms
are isometric to a complex projective space P,C, a complex Euclidean space
C,, or a complex hyperbolic space H,C according as ¢ > 0,c =0 or ¢ < 0.

Let M be a real hypersurface of M, (¢). Then M has an almost contact
metric structure (¢,&,n, g) induced from the complex structure J and the
Kaehlerian metric of M, (¢). The structure vector field £ is said to be
principal if A& = af is satisfied, where A is the shape operator of M and
a = n(AE). A real hypersurface is said to be a Hopf hypersurface if the

structure vector field £ of M is principal.
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Typical examples of real hypersurfaces in a complex projective space
P, C are homogeneous ones, namely those real hypersurfaces are given as
orbits under subgroups of the projective unitary group PU(n + 1). The
complete classification of them was obtained by ([16]) as follows:

THEOREM T ([16]) Let M be a homogeneous real hypersurface of P,C.
Then M is a tube of radius r over one of the following Kdahler submanifolds:

A1) A hyperplane P,_1C, where 0 < r < g,
A2) a totally geodesic P,C (1 <k <n —2), where 0 <r < g,

B) a complex quadric Q,_1, where 0 <1 < Z

(
(
(
(C) PiC x Py,_1y/2C, where 0 <1 < Z and n(2 5) is odd,
(
(

)
)

D) a complex Grassmann G2 5C, where 0 < r < Z and n =9,
)

E) a Hermitian symmetric space SO(10)/U(5), where 0 < r < Z andn =
15.

Due to Takagi’s theorem we can see that every homogeneous real hy-
persurface in P,C is a Hopf hypersurface. However, in H,C there exists
a homogeneous real hypersurface which is not a Hopf hypersurface (see
[12]). Also Berndt([1]) classified all Hopf real hypersurfaces with constant

principal curvatures in a complex hyperbolic space H,C as follows:

THEOREM B ([1]) Let M be a real hypersurface of H,C. Then M has
constant principal curvatures and & is principal if and only if M is locally
congruent to one of the following:

(Ag) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere or a tube over a hyperplane H,_1C,

(A2) a tube over a totally geodesic HyC(1 < k <mn — 2),

(B) a tube over a totally real hyperbolic space H,R.

We denote by V, .S and R be the Levi-Civita connection, the Ricci tensor
and the structure Jacobi operator with respect to the structure vector field
& of M respectively.

We know that there are no real hypersurfaces with parallel Ricci tensor

in My, (c),n>3,¢#0 ([6]).
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If we pay a particular attention to the fact that for each Hopf hypersur-
face M in M, (c),c # 0, then ReA = AR, or S§ = g (5¢,€) € is satisfied.
Therefore, it is natural to consider a problem that if a real hypersurface
M in M, (c),c # 0 satisfies ReA = AR¢ or S¢ = g(S,€)¢&, is M a Hopf
hypersurface 7 Recently, there are many studies on partial answers to this
problem ([3] ~ [10] etc.). The following facts are used in this paper without

proof.

THEOREM HKK ([3]) Let M be a real hypersurface of a nonflat complex
space form which satisfies V¢S = 0 and S§ = g(SE,€)E. If g(Ve&, V) =
u? is constant, then M is a Hopf hypersurface.

THEOREM KN ([9]) Let M be a real hypersurface in a complex projective
space P,C. Then the following are equivalent:

(1) M is a Hopf hypersurface in the ambient space P,C.

(2) The structure vector & is an eigenvector with constant eigenvalue of

the Ricci tensor S of M and V4y.eS =0 holds.

THEOREM KSN ([10]) Let M be a real hypersurface in P,C which satis-
fies ReS = SR and Vv, eS = 0. If g(SE,§) is constant on M, then M is
a Hopf hypersurface.

The main purpose of the present paper is to establish the following:

THEOREM. Let M be a real hypersurface in M, (c), ¢ # 0. Then the
ollowings are equivalent provided that r +c :
foll l ded that 6(Tr A)? # 0

(1) M is a Hopf hypersurface in the ambient space in M, (c) .

(2) ReA = AR¢ and V.S =0 hold on M.

COROLLARY. Let M be a real hypersurface in P,C. Then the followings
are equivalent:

(1) M is a Hopf hypersurface in the ambient space P,C.

(2) ReA = AR¢ and VyyeS =0 hold on M.
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1. Preliminaries

Let M be a real hypersurface of a complex space form M, (c) with parallel
almost complex structure J and N be a unit normal vector field on M. By
V we denote the Levi-Civita connection with respect to the Fubini-Study
metric g of M, (c). Then the Gauss and Weingarten formulas are given

respectively by
VyX = VyX + g(AY, X)N, VxN = —AX,

for any vector fields X and Y on M, where V and g denote the Riemannian
connection and the Riemannian metric induced from ¢ respectively, and A
denotes the shape operator in the direction of N. For any vector field X

tangent to M, we put
JX =X +n(X)N, JN = —¢.

Then we may see that the structure (¢, &, 7, ¢g) is an almost contact metric

structure on M, that is, we have

P*X = —X +1(X)E, g(¢X,dY) = g(X,Y) = n(X)n(Y),

for any vector fields X and Y on M.
From the fact V.J = 0 and by using of the Gauss and Weingarten for-

mulas, we obtain

(1.1) (Vx9)Y =n(Y)AX — g(AX,Y)S,

(1.2) Vxé = pAX.

Since the ambient manifold is of constant holomorphic sectional curva-

ture ¢, we have the following Gauss and Codazzi equations respectively:
RX,Y)Z = {9V, 2)X - g(X,2)Y + g(¢Y, Z)pX

(1.3) —9(6X, Z)pY — 29(X,Y)pZ} + g(AY, Z)AX
—g(AX, Z)Ay,
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(L4)  (VxAY = (VyA)X = T {n(X)eY —n(Y)eX - 29(6X,Y)¢}

for any vector fields X, Y and Z on M, where R denotes Riemannian
curvature tensor of M

In the following, to write our formulas in convention forms, we denote
by a = n(A€), B = n(A2%¢), v = n(A3¢) and h = Tr A, and for a function f
we denote by V f the gradient vector field of f.

We denote the Ricci tensor of type (1,1) by S. Then we have from (1.3)

(1.5) SX = 2 {2n+1)X — 3n(X)€} + hAX — A2X,
which together with (1.2) implies that

(VxS)Y = —3c{g(pAX,Y)E+n(Y)pAX} + (Xh)AY

(1.6)
+(hI — A)(VxAY — (VxA)AY,

where [ is the identity tensor.
We put U = V&, then U is orthogonal to the structure vector fields &.
Then, using (1.2), we see that

(1.7) oU = — A€ + at,

which shows that g(U,U) = 3 — a?. We easyly see that ¢ is a principal
curvature vector, that is, A& = a if and only if § — o? = 0.
If A — g(AE,€)€ # 0, then we can put

(1.8) A = at + ¥,

where W is a unit vector field orthogonal to £&. Then by (1.2) we see that
U = u¢W and hence g(U,U) = u?. So we have

(1.9) p?=p—a

Further, W is also orthogonal to U.
Using (1.2) and (1.8), we see that

(1.10) pg(VxW,§) = g(AU, X),

(1.11) 9(Vx&,U) = ng(AW, X).
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Now, differentiating (1.7) covariantly along M and making use of (1.1)
and (1.2), we find

(1.12) 9(6X, VyU) +n(X)g(AU + Va,Y)
which enables us to obtain

(1.13) (VeA)¢ = 24U + Va

because of (1.4).
Because of properties of the almost contact metric structure, we also
have from (1.12)

(1.14) VxU + g(A%, X)¢ = ¢(Vx A + pAPAX + aAX.
By the definition of U, (1.2) and (1.12), it is verified that

(1.15) VeU = 30AU + aA§ — B¢+ ¢V a,

which shows that

(1.16) ng(VeU, W) = au? — 3g(AU,U) — Ua.

From the Gauss equation (1.3) the structure Jacobi operator Ry is given
by
c
ReX = R(X, )¢ = (X —n(X)E) + aAX —n(AX)AL

for any vector field X on M.
From this and (1.5), we have

g(ReY, AX) — g(Re X, AY)

(1.17) = (A%, Y)g(AE, X) — g(A%E, X)g(AE,Y)
+5 {9(AE,Y)n(X) — g(AE, X)n(Y)}.

2. Structure Jacobi operator of real hypersurfaces

Let M be a real hypersurface of a complex space form M,(c), ¢ # 0. If
it satisfies R¢A = ARg, then we have from (1.17)

(2.1) A% = pAg + L6,
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which shows that

(2.2) B = pa+ %

We set Q = {p € M| u(p) # 0}, and suppose that  # (), that is, £ is not
a principal curvature vector on M. From now on we discuss our arguments
on the open set ) of M unless otherwise stated.

Combining (1.8) to (2.1), we verify that

(2.3) AW = p&+ (p— a)W
and hence
(2.4) APW = pAW + EW

by virtue of u # 0.
Differentiating (2.1) covariantly along €2 and making use of (1.2), we find

(2.5)
= (Xp)g(ALY) + pg((Vx A)E,Y) + §9(AX,Y),
which together with (1.4) and (1.13) yields
1
(VeA)AE = pAU — ZU +3VB.
If we put X = ¢ in (2.5) and use (1.13) and the last equation, we get
1
(2.6) 342U — 2pAU — gU = (6p) A — AVa + pVa — V5,

where we have used (1.4).

Differentiating (2.3) covariantly, we find

(Vx AW + AVxW

(2.7)
= (Xp)é+uVxl+X(p—a)W+(p—a)VxW.

By taking the inner product (2.7) with W and taking account of (1.8)
and (1.10), we obtain

(2.8) g(Vx AW, W) = =2¢9(AU, X) + Xp — X«
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since W is a unit vector field orthogonal to £&. We also have by applying &
o (2.7)

(2.9) 1g(Vx AW, ) = (p — 2a)g(AU, X) + (X p),
where we have used (1.10), which connected to (1.4) gives

(2.10) n(VwA) = (p — 20)AU — gU + uVp,

(2.11) p(Ve A)W = (p — 2a) AU — EU + uVp.
Putting X = ¢ in (2.8) and making use of (2.9), we find
(2.12) Wu=~&p—&a.

Now, define a 1-form u by u(X) = ¢g(U, X) for any vector field X. Using
(1.4) and (2.5), we verrfy that

1 {u(¥)n(X) = u(X)n(Y)} + 5(p — a)g(Y; X)

—g(A2PAX,Y) + g(A2pAY, X) + 2pg(pAX, AY)
(2.13) —5{9(0AY, X) — g(pAX,Y)}
= g(AY, (VxA)§) — g(AX, (Vy A)¢) + (Yp)g(AE, X)
—(Xp)g(AL,Y).

If we replace X by uW to both sides of (2.12) and use (1.13), (2.3), (2.4),
(2.9) and (2.10), then we obtain

(3a — 2p) AU + (2p* — 2pa + ¢) AU + $(a— p)U

(2.14)
= pAVp + (a — p)uVp+ p*(Vp — Va) — p(Wp) A€

Putting X = pW in (1.14) and using (2.3) and (2.10), we find

pVwU = (2p —3a)pAU + péVpu

(2.15)
+ulpa —a? + )W — p?(p — ).
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3. Real hypersurface satisfying V ;S =0 and R;A = AR,

In this section, we will continue our arguments under the same hypothesis
R¢A = AR¢ as in Section 2. Further, assume that V.S = 0 and hence
VwS =0 on  because of p # 0. By replacing X by uW in (1.6), we find

(3.1) —3c(p— ) {u(Y)E+n(Y)U} + w(Wh)AY + ph(Vw A)Y
' = pA(VwA)Y + p(Vi A)AY,

where we have used (1.2) and (2.3). Putting Y = W in this and making
use of (2.3), (2.8) and (2.10), we find
(Wh)AW
(3.2) = (2h— p)AU —2A%U — SU + AVp — AV«
+1VB+ (h—p)Va+ (p—h—a)Vp.
If we replace Y by £ and take account of (2.3), (2.8) and (2.10), then we

obtain

pAVE+ (o —h)pVu+ p?*(Vp — Va)
(3.3) = u(Wh)AE + (2a — p)A%U + (hp — 2ah + pa + ¢) AU
+5(5a — 3p — 2h)U.

On the other hand, we have from (1.5) and (2.1)
(3.4) S¢ = 2(271 —3)€+ (h — p)AE.
Differentiating this covariantly, we find

(sz)f + SVX§
£(2n — BV + X(h - p)AE + (h— p) (VA
+(h — p)AVxE.

Replacing X by pW in this and using VxS = 0 and (2.10), we obtain

(p—a)SU = §(2n—3)(p — )U + p(Wh — Wp)A¢
+(h—p) {(p = 20)AU — §U + pVp}
+(p — a)(h — p)AU,
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where we have used the fact that V& = (p — a)U, which together with
(1.5) implies that
pWip — )AL+ (p — R)uV
(3.5) = (p—a)A?U —c(p—a)U - §(h—p)U
+{(h=p)(p —2a) — p(p — )} AU.
Remark 3.1. p — a # 0 on . In fact, if not, then we have p —a = 0

and hence p? = E by virtue of (2.2). Then (2.14) becomes aA?U + cAU =
—u(Wa) A€ and therefore Wa = 0. So we have

(3.6) aA%U + cAU = 0.

Further, (2.6), (3.2) and (3.5) are reduced respectively to

(3.7) 242U — 20 AU — gU — (€a) A€ — AVa,
(3.8) 242U = (2h — ) AU — gU,
(3.9) (h—p) {aAU + %U} —0

because of Vi = 0. Combining (3.6) to (3.9), we see that (h — p)AU = 0,
which connected to (3.8) gives h — p = 0. Thus (3.8) is led to

(3.10) 242U = a AU — gU.

Comparing (3.6) with (3.10), we have 3a? + 4c = 0 and consequently « is
constant. Therefore (3.7) turns out to be 342U — 20 AU — gU = 0, which
together with (3.6) and (3.10) will produce a contradiction. Accordingly
p—a # 0 on (is proved. In what follows p — « # 0 is satisfied everywhere.

In the previous paper [9], two of the present authors proved the following
fact:

Remark 3.2. (Lemma 3.2 of [9]) Let M be a real hypersurface of M, (c),
c # 0. If it satisfies Vyy S = 0 and S§ = 0§ for some constant o, then we
have éa =0, Wa =0, h =0 and Wh =0 on .
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Lemma 3.3. £a=0,&p =0, Wa=0 and Wh =0 on Q.

Proof. Since U is orthogonal to the structure vector &, if we take the inner
product (2.6) with £, then we obtain

(3.11) En=Wa,

where we have used (1.8) and (2.2).

Taking the inner product (3.5) with £ or W, and using (2.12) and (3.11),
we also have respectively

a(Wp—=Wh) = (h—p)Wa,
u(Wp—Wh) = (h—p)(&p— &),

which enables us to obtain (h — p) {u(Wa) — a({p — £a)} = 0 and hence

(3.12)

(3.13) n(Wa) = a(gp — £a).

In fact, if not, then we have h = p. So (3.4) implies S = 2(271 —3)¢ on
this subset. Thus, Remark 3.2 tells us that Wa =0, £p =0 and éa =0, a
contradiction. Therefore (3.13) is established.

On the other hand, applying (2.14) by ¢ and making use of (2.12) and

(3.11), we also have
a(Wp) = 2a — p)Wa + 2u(ép — &),
which together with (2.2) and (3.13) implies that

(3.14) pa(Wp) = (pa+ 5)(&p — £0).

By the way, if we take the inner product (3.2) with W and take account
of (2.12), we obtain

(p—a)(Wh—Wp)

(3.15)
= 2u(p—E&a)+ (h—2p+2a)Wa+ (p—h—a)Wp.

So we verify, using (3.12) ~ (3.14), that (p —h)Wa = 0 and hence Wa = 0
by virtue of Remark 3.2. Thus, (3.11) tells us that {u = 0, that is, {6 =
2a(&ar). From this, (2.2) and (3.13) we see that (p—a)fa = 0. Therefore it
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is seen that £o = 0 because of Remark 3.1. From this, Wa = 0 and (3.13)
we verify that a(£p) = 0, which together with (3.14) yields £p = 0. Thus
(3.12) and (3.15) imply that (p — h)Wp = 0. Therefore Wp = Wh = 0 are
satisfied. This completes the proof of the lemma. O

Because of Lemma 3.3 and (2.2), equations (2.6), (2.14), (3.2), (3.3) and

(3.5) are led to respectively to as follows:

1
(3.16) AVa = —342U + 2pAU + gU +5(pVa —avp),

(3.17) pAVp A+ (o = p)uVp + p?(Vp — Va)
= (3a —2p)A%U + (2p* — 2pa + ¢)AU + £(a — p)U,
(318 AVp— AVa = 242U + (p — 2h)AU + SU

| +(p—h)(Var = Vp) +aVp — 5V,

pAVp + (a = h)pVu+ p*(Vp = Va)
(3.19) = (2a — p)A%U + (hp — 2ah + pa + ¢) AU
+$(5a — 3p — 2h)U,

(h = p)uVp
(3.20) = (a—p)A%U + (2p% + 2ah — hp — 3pa) AU

+<(p+h —2a)U.
From (3.16) and (3.18), we have
(3.21) (h—p)(Vp —Va) = AVp + A?U + (2h — 3p) AU — cU.

Since we have
2uAV L = aAVp + (p — 2a) AV
by virtue of (2.2) and (3.19), it follows that
aAVp+ (p —2a2)AVa +2u2(Vp — Va) — 2(h — a)uVpu
= 2(2a — p)A?U + 2(hp — 2ah + pa + ¢) AU + §(5a — 3p — 2h)U.
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Further, using (3.16) and (3.21), we have
(a — p)A%U + (2p% + 2ah — 3pa — 2hp — 2¢) AU
+5(2h 4 4p — 5a)U
= 2(h—)uVp+ 3(p - 2a)Vp
+(2a% — pa — ah — §)(Vp — Va) + (2pa — p*)Va,
which together with (2.2) and (3.20) implies that

(2hp + 4c)AU

3.22
(3.22) = c¢(Bp—3a+h)U + (ha+c)Vp— (hp+c)Va.

If we apply this by A, then we obtain
(2hp + 4¢)A?U = ¢(3p — 3a + h)AU + (ha + ¢)AVp — (hp + ¢)AVa,
which connected to (3.16), (3.20), (3.21) and (3.22) yields

4A%U +2(3a — 4p — h) AU + (3hp — 3ha — c)U

(3.23) =(a+h—-2p)Vp—(h—p)Va.

From this and (3.20), it follows that

2(3a? — pa — 5ah — 6¢) AU

+{c(8p — 6+ h) — 3h(p — a)?} U
= (2p% - pa —4ah +a® — hp —3c)Vp

+(3ah — 3ap + p* + 2hp + 3¢)Va.

(3.24)

Lemma 3.4. o # 0 on Q.

Proof. If not, we have by (2.2) g = 2 and hence p? = Z Thus, (3.16),
(3.17), (3.20) and (3.22) turn out respectively to

(3.25) 3A%U = 2pAU + gU,
(3.26) EVp = —2pA%U + (20 + ¢) AU — SpU,

4

(3.27) pAU = (2p — h)pAU + g(p + ),
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(3.28) 2(hp +2¢)AU = ¢(h + 3p)U + cVp

because of @ = 0. However we notice here that p # 0 on this set by virtue
of (3.25) and (3.26).
From (3.25) and (3.27) we obtain

(3.29) p(3h — 4p) AU = g(Qp +3h)U.
On the other hand, we also have by using (3.26) and (3.28)
4pA2U + p(h — 4p) AU = g<2p +h)U,

or, using (3.27)
3hpAU = g(Zp + 3h)U.

Thus, using (3.29), we have pAU = 0 and hence U = 0 because of (3.25)
and p # 0, a contradiction. Consequently we have o # 0 on 2. O

Lemma 3.5. h—p # 0 on Q.
Proof. If not, we have h — p = 0. So (3.20) becomes
(p—a){AQU—pAU—cU} =0
on this set. Since p — a # 0 by Remark 3.1, it follows that
A%U = pAU + cU.

Since ¢g(S&,§) = Z(Qn — 3) is constant because of (3.4), owing to Lemma
3.1 of [9], we see that AU = AU, where ;2\ = g(AU,U). Consequently we

obtain
(3.30) M=pA+ec
on this subset, which together with (3.21) yields
(3.31) AVp = 0.
By the way, we also have from (3.23)

(a —p)Vp = {4X* + (6a — 10p)A + 3p*> — 3pa — ¢} U,
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or, using (3.30)
(a=p)Vp=3{(p—a)(p—2\) +c}U.
From this and (3.31), we see that
(3.32) (p—a)(p—2\)+c=0,

and hence Vp = 0 on this set because p — a # 0 on Q. So, using (3.30),
we see that A is constant. Making use of (3.32), we have Va = 0. Thus,
(3.16) tells us that

3% = 20\ + g

which together with (3.30) implies that
(3.33) 2X% +3¢=0

and 5\ = 3p because of A\ # 0 on this set. So, using (3.30) and (3.32), we
have 11p = 3a.
From these and (2.2) we verify that

6 c
— 2 —2—7:
15} a+11a 1 0.

Therefore, it is contradictory because of (3.33). Thus, h —p # 0 on Q is
proved. O

From (3.22) and (3.24) we have
(3.34) fU =0Vp+ pVa,
where we have put

f= (bca—cp+3p® — 6ap® + 3a?p)h?
(3.35) —2¢(6a? — 5ap — 2¢ + p?)h
+c(p — 3a)(2¢ + 3ap — 3a?),

o= (ha+c)(3a? — ap—5ah — 6c)

3.36
(3.36) —(hp +2¢)(20* — ap — 4ah + a® — hp — 3c),
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7= (ap+5ah —3a?+6¢)(hp + c)

(3.37) )
—(hp +2¢)(3ah — 3ap + p~ + 2hp + 3c).

From (3.34) we obtain fu(Y) = o(Yp) +7(Ya) for any vector field Y. Dif-
ferentiating this covariantly and taking the skew-symmetric parts obtained,

we find

(Xf)u(Y) = (Y flu(X) + fdu(X,Y)

(3.38)
= (Xo)Yp—(Yo)Xp+ (X1)Ya— (Y7)Xa,

where the exterior derivative du of 1-form w is given by
du(X,Y) =Yu(X) — Xu(Y) —u([X,Y)).
Now we prove

Lemma 3.6. If ¢h =0, then we have f =0 on ().

Proof. Since £¢h = 0 is assumed, by putting X = £ in (3.38) and using
Lemma 3.3, we obtain fdu(£,Y) = 0 because f, o and 7 are polynomials
with respect to h, p and a. Hence f = 0 on €. In fact, if not, we have
du(, X) = 0 for any vector X, that is, g(VeU, X) + g(Vx&,U) = 0, which
together with (1.11), (1.15) and (2.3) implies that ¢(3AU+Va)+ppW = 0.
Thus, it follows that

(3.39) Va = pU —3AU

on this subset. Here we have used {& = 0. From this and (3.16), we deduce
that

(3.40) aVp = —pAU + (p* + ¢)U
on this set. From the last two equations, we verify that

pVp = (3a —2p) AU + (p* — pa+ g)U,
where we have used (1.9) and (2.2). Thus, (3.20) tells us that

(3.41) AU = hAU + (p* — ph+ c)U



Real hypersurfaces in complex space forms 71

on this set because of Remark 3.1. Substituting (3.39), (3.40) and (3.41)
into (3.21), we find AU = hU and hence p? — ph + ¢ = 0 on this subset.
Therefore (3.40) implies that Vp = 0 by virtue of Lemma 3.4. So we see
that Vh = 0 on this set. Since we have AU = hU and hence Va = (p—3h)U
because of (3.39), we verify that h%p—hp?+2cp—3ca = 0 and thus Va = 0
because p and h are constant. Here we have used (3.22). Therefore (3.34)
implies f = 0 on this subset, a contradiction. This completes the proof of
Lemma 3.6. O

Lemma 3.7. f =0 on .

Proof. If we replace Y by W in (3.38) and make use of Lemma 3.3, then
we obtain f du(X, W) = 0 because f, o and 7 are polynomials with respect
to h, p and «.

Let Q be a set of points in 2 such that f(p) # 0 at p € Q and sup-
pose that Qg # (. Then we have du(W, X) = 0, that is, ¢(VwU, X) +
g(VxW,U) =0 on Q. Thus, using (1.11), (1.16) and (2.3), we are led to

(3.42) Ua = pp? — 39(AU,U)

on ).
If we take the inner product (2.15) with uW and make use of (1.9) and
(2.2), then we obtain the following on y:
12g(VwU, W)
= (Ba—2p)g(AU,U) + (a — $p)Ua
—saUp+ piP(ap — o + §),
which together with (3.42) implies that
(3.43) 12g(VwU,W) = —5pg(AU,U) — 5aUp
+1*(2ap — o — 5p° + §).

On the other hand, differentiating (3.22) covariantly, we find

2X (hp)AU + (2hp + 4¢) {(VxA)U + AVxU}
= cXBp—3a+h)U+c(Bp—3a+h)VxU+ X(hp)Vp
+(ha + ¢)V4p — X (hp)Va — (ha + ¢)Via,
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from which, taking the skew-symmetric part and using (1.4) and (1.7), we

have
2X (hp)g(AU,Y) = 2Y (hp)g(AU, X)
+5(hp + 20)p(n(X)w(Y) = n(Y)w(X))
+(2hp +4c) {g(AVxU,Y) — g(AVy U, X)}
= cX@Bp—3a+h)uY)—cY(3p—3a+ h)u(X)
+c¢(3p — 3a+ h)du(X,Y) + X (ha)Yp
Y (ha)Xp— X(hp)Ya+Y (hp)Xa,

on g, where we have defined a 1-form w by w(X) = g(W, X) for any vector
field X. Since du(W,X) = 0, by putting X = W and Y = £ in the last

equation, we obtain

(hp+2¢) {g(VwU, o€ + puW) — g(VeU, pé + (p — )W) — S}
= 0

on p, where we have used (1.8), (2.3) and Lemma 3.3. We notice here
that hp + 2¢ # 0. In fact, if not, then (b = 0 and hence f = 0 because of

Lemma 3.6. Therefore, the last equation is led to

g(VwU, W)+ (p—a)* =0
since we have (1.9), (1.11), (2.2) and (2.3), which connected to (3.43) gives
(3.44) aUp = (p*> + c)pu® — pg(AU,U).

If we take the inner product (3.22) with U and make use of (3.42) and
(3.44), then we get

(p+ a)g(AU,U) = (2pa — 302 + 2ah + p* + ¢) 2,
which shows that
(3.45) (p + @)ég(AU,U) = 2ap*(£h)

on )y by virtue of Lemma 3.3.
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We also have from (3.24), (3.42) and (3.44)

(6 — 10a%p — a?h — 3ca + 2p> + 2ap? + 2pah
—p*h — 3¢p)g(AU,U)

= p*{3a(p — @)*h + c(6a* — 8pa — ath)
+(p? + ¢)(2p* — ap — dah + o — ph — 3c)
+3a?ph — 3a?p? + ap® + 2ap*h + 3cap},

which enables us to obtain

(60 — 10a%p — 3ca + 2p3 + 2ap? — 3cp — (p — a)?h)Eg(AU, U)
= (p—a)’g(AU, U)¢h + 1 {3a(p — a)* — ca — (p* + ¢)(p + 4a)
+3a%p + 2ap2} Eh,

on o, where we have used Lemma 3.3. From this and (3.45) we have on

Qo the following;:

20* {60 — 1002p — 3ca + 2p° + 2ap* — 3cp — (p — @)*h}
= (p+a)lp—a)g(AU,U) + p%(p+ a) {3a(p — @) — ca
—(p* +c)(p+ 4a) + 3a?p + 2ap? } .

Owing to Lemma 3.3 and Remark 3.1, we have
2% (€R) + (p + @)€g(AU,U) = 0

on €, which together with (3.45) yields £¢h = 0 and hence f = 0 on

because of Lemma 3.4 and Lemma 3.6. Thus, Lemma 3.7 is proved. O

4. Principal curvatures corresponding to V¢{

We continue our arguments under the same hypotheses R¢A = AR¢ and
at the same time VS = 0 as in Section 3. Then by Lemma 3.7 we see
that

(5ea — cp + 3p3 — 6ap? + 3a?p)h? — 2¢(6a2 — 5ap — 2¢ + p?)h

(4.1)
+c(p — 3a)(2¢ + 3ap — 3a?) = 0,

where we have used (3.34) and (3.35).
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Applying (3.24) by A, we find

2(302 — pa — bah — 6¢)A2U

= {3h(p—a)? —c(8p—6a+h)} AU
+(2p% — pa — dah + a® — hp — 3¢)AVp
+(3ah — 3ap + p* + 2hp + 3¢)AVa.

Substituting (3.16) and (3.21) into this and making use of (3.23), we find

MAU + XU
(42) = {5hap — 6ch — Ta® + 2p> — 4ha? — 11h*a + 17Thp* — 9h?p
' —27ap?® + 28a2p} Vp+ {6ch — 13hap + 5p° + 3ha? + 11h%«a

—8hp? + 9h2p + 2ap? — 3042;)} Va,

where we have put

A = 12ca — 32ch — 4cp — 54hap — 4203 + 8p3 + 40ha?
—42h%a + 50hp® + 2h%p — 90ap? + 11602 p,

Ao = 23chp — 13cha — 2cap + 3ca? + 21ha? — 5¢p® — 15hp3
+51hap? — 5Tha?p + 30h?ap — 15h%a? — 15h2p?.

By Lemma 3.7, we can deduce from (3.22) and (4.2) the following:

(21ca — cp + 15p% — 30ap? + 15a2p)h>
+(46cap + 16¢% + 15p* — 53ca? — 21cp? — 5lap?® — 21a’p
(4.3) +57a2p?)h? + (39ca® — 28c%a + 4c?p — 44cp® + 101cap?
—88ca?p)h — c(20cap + 63a* + 12p* — 12ca? — 16¢p?
—147ap® — 237a2p + 309a2p?) = 0.
Similarly, from (3.24) and (4.2) we obtain

(21ca — ep + 1203 + 3p3 + 6ap? — 21a2p)hs
+(2cap + 16¢? — 90a* + 75p* — 39ca? + 9cp?
—141ap® + 189a3p — 33a2p?)h?
(4.4) +(12p° — 24c%a — 21ca® — 8c?p — 120cp® — 144ap*
+108atp + 137cap? + 12ca’p + 360a2p3 — 336a3p?)h
—c(48cap + 117a* + 32p* — 18ca® — 46¢p?
—389ap® — 507a3p + T47a?p?) = 0.
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(In the above arguments we use a computer for calculations).

Let ¥ be the resultant of (4.1) and (4.2) with respect to h, and © be
that of (4.1), (4.2) and (4.3), that

U = —12¢%(a — p)(2¢ + 3ap — 3p?) A,

O = —36(a — p)(3at + 3a%c + 2¢% — Tap — cap + 5a’p? — 6cp® — ap’)A,
where we have put

A= —21627c2a'0 4+ 6129¢30® + 195¢ a8 — 225c°a* + 16c5a2 — 18225¢callp
+138996c2a” p — 29799c3 p + 3282c¢*a®p — 242c¢°ap + 151632cal®
—378783c%a®p? + 59958308 p? — 11723c o p? + 2120c%a? p? — 144c5p?
—564003ca? p? + 5696282 p3 — 62631305 p + 12220c% 0 p® — 1662c°ap?
—8748a10p* + 1222884cadp* — 516246c2a8p* + 365283t p* — 3475¢1 a2 p?
—87c%p* + 719280 p° — 1686798ca” p® + 290484c%a’ p® — 14869c3ap?
+114ctap® — 26060408 p5 + 1512720ca’p® — 1003902 p® + 60663 a2 pb
—613¢*p8 + 54518407 p” — 860682ca’®p” 4+ 17684c2a3p” — 669c3ap”
—72424805 8 + 284568catp® + 1233c%2a?p® — 713¢3p® + 6320160° p°
—41889cap? — 728c%ap? — 361368 p'? — 672ca?p!® — 251c%p!0
+130464a3p't + 525cap't — 2732402 p2 — 60cp'? + 2808ap'® — 108p™.

From above two equations, we have
(3p% —3ap —2¢) (3ot 4+ 3ca® + 262 — 70 p— cap+ 52 p? — 6¢p® — ap®) A = 0,

because of Remark 3.1. Further, from this we can deduce that both o and

p are constants. Thus (3.22) becomes
(4.5) (2hp + 4¢)AU = ¢(3p — 3o+ h)U.
Now we demonstrate the following lemma:

Lemma 4.1. AU = MU on Q, where the scalar \ is given by p’\ =
9(AU,U).

Proof. If not, we have from (4.5)

(4.6) hp = —2¢, h=3(a—p)
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on this subset. Since p and « are constant, (3.21) and (3.23) are reduced

respectively to

(4.7) AU + (2h — 3p) AU — U =0,

(4.8) 4A%U — 2pAU — (h* 4 ¢)U = 0.
From the last two equations, we obtain
2(4h — 5p) AU + (h* — 3¢)U = 0.

Because of our assumption, we have h?> = 3¢ and 4h = 5p. From (2.2),

(4.7), (4.8) and the last two equations produce a contradiction. O

Because of (1.9) and (2.2) we see that p is constant by virtue of Va =
Vp = 0. Thus, (3.17) implies that

(4.9) (3a — 2p)A% + (2p* — 2pa + )\ + g(a —p) =0,

where we have used Lemma 4.1.
By using Va = Vp = 0 and Lemma 4.1, we verify that (3.16), (3.18)

and (4.5) turn out respectively to

302 = 2p)\ + g

2)\2—1—(,0—2h))\—|—%:O,
2hpA = c(3p — 3o+ h — 4\).

Combining these and (4.9), we have h = A\, 3a = 7A and p = 3\. So, we
are led to 6h? 4+ ¢ = 0. Thus, we have

Theorem 4.2. Let M be a real hypersurface in P,,C which satisfies R¢ A =
AR¢ and Vyy,.eS = 0. Then M is a Hopf hypersurface in P,C.

Finally, we consider real hypersurfaces in a complex hyperbolic space
satisfying ReA = AR¢ and Vyy,.eS = 0. Then we have

h?=—=.
6
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Let A1,...,A9,—2 be principal curvatures corresponding to arbitrary
principal curvature vectors orthogonal to U. Then, using AU = AU and

h =\, we have A\ + -+ 4+ A9,,_9 = 0. Hence we have

(4.10) D NN S0, hey =k =2 N,
1<j 1<j
where h(g) = Tr'AA.

On the other hand, the scalar curvature r of M is given by
r= c(n2 -1+ h? — h(2)

by virtue of (1.5), which together with (4.10) implies r < 0.

Thus, we have

Theorem 4.3. Let M be a real hypersurface in H,,C which satisfies R¢ A =
ARg¢ and Vgy,.eS = 0. If the scalar curvature of M is nonnegative, then
M is a Hopf hypersurface in H,C.
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