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Oscillation of nonlinear hyperbolic equations with

distributed deviating arguments

Youshan Tao and Norio Yoshida∗

Abstract. Oscillations of solutions to nonlinear hyperbolic equations
with continuous distributed deviating arguments are studied. By em-
ploying some integral means of solutions, the multi-dimensional oscil-
lation problems are reduced to one-dimensional oscillation problems.

1. Introduction

Oscillation properties of hyperbolic equations without functional argu-
ments were studied by Kreith, Kusano and Yoshida [5], Yoshida [12] by
employing the averaging techniques. Parabolic equations with functional
arguments were investigated in the paper Yoshida [13] by making use of
the integral means of solutions.

The oscillation results for hyperbolic equations with delay were first ob-
tained by Mishev and Bainov [7]. Recently there has been an increasing
interest in studying the oscillation of hyperbolic equations with continuous
distributed deviating arguments. We refer the reader to [3, 4, 9, 10] for lin-
ear hyperbolic equations with continuous distributed deviating arguments,
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and to [2, 6, 8, 11] for nonlinear hyperbolic equations with continuous dis-
tributed deviating arguments. Deng [2], Liu and Fu [6] and Wang and Yu
[11] pertain to the hyperbolic equations of the form

∂

∂t

[
p(t)

∂

∂t

(
u(x, t) +

∑̀

i=1

hi(t)u(x, ρi(t))

)]
− a(t)∆u(x, t)

−
k∑

i=1

bi(t)∆u(x, τi(t)) +
∫ δ

γ
q(x, t, ζ)ϕ

(
u(x, σ(t, ζ))

)
dω(ζ)

= f(x, t), (1)

where hi(t) ≥ 0 and q(x, t, ζ) ≥ 0.
There appears to be no known oscillation results for the equation (1)

with hi(t) ≤ 0 and q(x, t, ζ) ≥ 0. In this paper we are concerned with the
oscillatory properties of solutions of hyperbolic equations with continuous
distributed arguments

∂

∂t

[
p(t)

∂

∂t

(
u(x, t)−

∫ β

α
h(t, ξ)u(x, ρ(t, ξ))dη(ξ)

)]
− a(t)∆u(x, t)

−
k∑

i=1

bi(t)∆u(x, τi(t)) + q0(x, t)u(x, t)

+
∫ δ

γ
q(x, t, ζ)ϕ

(
u(x, σ(t, ζ))

)
dω(ζ)

= f(x, t), (x, t) ∈ Ω ≡ G× (0,∞), (2)

where G is a bounded domain in Rn with piecewise smooth boundary ∂G.

It is assumed that :

(A1) p(t) ∈ C([0,∞); (0,∞)), a(t) ∈ C([0,∞); [0,∞)),
bi(t) ∈ C([0,∞); [0,∞)) (i = 1, 2, ..., k),
h(t, ξ) ∈ C([0,∞) × [α, β]; [0,∞)), q(x, t, ζ) ∈ C(Ω × [γ, δ]; [0,∞)),
q0(x, t) ∈ C(Ω; [0,∞)) and f(x, t) ∈ C(Ω;R) ;

(A2) τi(t) ∈ C([0,∞);R) (i = 1, 2, ..., k), ρ(t, ξ) ∈ C([0,∞) × [α, β];R),
σ(t, ζ) ∈ C([0,∞)× [γ, δ];R) such that lim

t→∞ τi(t) = ∞,
lim
t→∞ min

ξ∈[α,β]
ρ(t, ξ) = ∞ and lim

t→∞ min
ζ∈[γ,δ]

σ(t, ζ) = ∞ ;
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(A3) η(ξ) ∈ C([α, β];R) and ω(ζ) ∈ C([γ, δ];R) are increasing functions on
[α, β] and [γ, δ], respectively, and the integrals appearing in (2) are
Stieltjes integrals ;

(A4) ϕ(s) ∈ C(R;R), ϕ(−s) = −ϕ(s), ϕ(s) > 0 for s > 0, and ϕ(s) is
nondecreasing and convex in (0,∞).

The following two kinds of boundary conditions are considered :

(B1) u = ψ on ∂G× (0,∞),

(B2)
∂u

∂ν
+ µu = ψ̃ on ∂G× (0,∞),

where ψ, ψ̃ ∈ C(∂G× (0,∞);R), µ ∈ C(∂G× (0,∞); [0,∞)) and ν denotes
the unit exterior normal vector to ∂G.

Definition 1. By a solution of equation (2) we mean a function u(x, t) ∈
C2(G× [t−1,∞);R) ∩ C(G× [t̃−1,∞);R) which satisfies (2), where

t−1 = min
{

0, min
1≤i≤k

{
inf
t≥0

τi(t)
}

, min
ξ∈[α,β]

{
inf
t≥0

ρ(t, ξ)
}}

,

t̃−1 = min
{

0, min
ζ∈[γ,δ]

{
inf
t≥0

σ(t, ζ)
}}

.

Definition 2. A solution u(x, t) of equation (2) is said to be oscillatory in
Ω if u(x, t) has a zero in G× (t,∞) for any t > 0.

In Section 2 we reduce the multi-dimensional oscillation problems to one-
dimensional oscillation problems for functional differential inequalities. In
Section 3 we derive sufficient conditions for functional differential inequali-
ties to have no eventually positive unbounded solutions. Oscillation results
for boundary value problems (2), (Bi) (i = 1, 2) are presented in Section 4.

2. Reduction to one-dimensional oscillation problems

In this section we reduce the multi-dimensional oscillation problems for
(2) to the nonexistence of eventually positive unbounded solutions of func-
tional differential inequalities.
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It is known that the first eigenvalue λ1 of the eigenvalue problem

−∆v = λv in G,

v = 0 on ∂G

is positive and the corresponding eigenfunction Φ(x) may be chosen so that
Φ(x) > 0 in G (see Courant and Hilbert [1]).

The following notation will be used :

F (t) =
(∫

G
Φ(x)dx

)−1 ∫

G
f(x, t)Φ(x)dx,

Ψ(t) =
(∫

G
Φ(x)dx

)−1 ∫

∂G
ψ

∂Φ
∂ν

(x)dS,

F̃ (t) =
1
|G|

∫

G
f(x, t)dx,

Ψ̃(t) =
1
|G|

∫

∂G
ψ̃ dS,

where |G| =
∫

G
dx.

Theorem 1. Assume that the hypotheses (A1)–(A4) hold. If the functional
differential inequalities

d

dt

[
p(t)

d

dt

(
y(t)−

∫ β

α
h(t, ξ)y(ρ(t, ξ))dη(ξ)

)]

+
∫ δ

γ
Q(t, ζ)ϕ

(
y(σ(t, ζ))

)
dω(ζ) ≤ ±G(t) (3)

have no eventually positive unbounded solutions, then every solution u of
the boundary value problem (2), (B1) with unbounded U(t) is oscillatory in
Ω, where

Q(t, ζ) = min
x∈G

q(x, t, ζ),

G(t) = F (t)− a(t)Ψ(t)−
k∑

i=1

bi(t)Ψ(τi(t)),

U(t) =
(∫

G
Φ(x)dx

)−1 ∫

G
u(x, t)Φ(x)dx.
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Proof. Suppose to the contrary that there exists a nonoscillatory solution
u of the problem (2), (B1) with the property that U(t) is unbounded. First
we assume that u > 0 in G×[t0,∞) for some t0 > 0. Then there is a number
t1 ≥ t0 such that u(x, τi(t)) > 0 in G×[t1,∞) (i = 1, 2, ..., k), u(x, σ(t, ζ)) >

0 in G × [t1,∞) × [γ, δ]. Multiplying (2) by
(∫

G Φ(x)dx
)−1 Φ(x) and then

integrating over G yields

d

dt

[
p(t)

d

dt

(
U(t)−

∫ β

α
h(t, ξ)U(ρ(t, ξ))dη(ξ)

)]

−a(t)KΦ

∫

G
∆u(x, t)Φ(x)dx−

k∑

i=1

bi(t)KΦ

∫

G
∆u(x, τi(t))Φ(x)dx

+KΦ

∫

G
q0(x, t)u(x, t)Φ(x)dx

+
∫ δ

γ
Q(t, ζ)KΦ

∫

G
ϕ
(
u(x, σ(t, ζ))

)
Φ(x)dxdω(ζ) ≤ F (t), t ≥ t1, (4)

where KΦ =
(∫

G Φ(x)dx
)−1. It follows from Green’s formula that

KΦ

∫

G
∆u(x, t)Φ(x)dx = −Ψ(t)− λ1U(t), t ≥ t1, (5)

KΦ

∫

G
∆u(x, τi(t))Φ(x)dx = −Ψ(τi(t))− λ1U(τi(t)), t ≥ t1 (6)

(see, e.g., [14, p.79]). An application of Jensen’s inequality shows that

KΦ

∫

G
ϕ
(
u(x, σ(t, ζ))

)
Φ(x)dx ≥ ϕ(U(σ(t, ζ))), t ≥ t1. (7)

Combining (4)–(7) yields

d

dt

[
p(t)

d

dt

(
U(t)−

∫ β

α
h(t, ξ)U(ρ(t, ξ))dη(ξ)

)]

+λ1a(t)U(t) + λ1

k∑

i=1

bi(t)U(τi(t)) + KΦ

∫

G
q0(x, t)u(x, t)Φ(x)dx

+
∫ δ

γ
Q(t, ζ)ϕ

(
U(σ(t, ζ))

)
dω(ζ) ≤ G(t), t ≥ t1,

and therefore
d

dt

[
p(t)

d

dt

(
U(t)−

∫ β

α
h(t, ξ)U(ρ(t, ξ))dη(ξ)

)]

+
∫ δ

γ
Q(t, ζ)ϕ

(
U(σ(t, ζ))

)
dω(ζ) ≤ G(t), t ≥ t1.
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It is clear that U(t) > 0 on [t1,∞). Hence, U(t) is an eventually positive
unbounded solution of (3) with +G(t). This contradicts the hypothesis.
If u < 0 in G × [t0,∞) for some t0 > 0, we observe that V (t) = −U(t)
is an eventually positive unbounded solution of (3) with −G(t). This also
contradicts the hypothesis. The proof is complete.

Theorem 2. Assume that the hypotheses (A1)–(A4) hold. If the functional
differential inequalities

d

dt

[
p(t)

d

dt

(
y(t)−

∫ β

α
h(t, ξ)y(ρ(t, ξ))dη(ξ)

)]

+
∫ δ

γ
Q(t, ζ)ϕ

(
y(σ(t, ζ))

)
dω(ζ) ≤ ±G̃(t) (8)

have no eventually positive unbounded solutions, then every solution u of
the boundary value problem (2), (B2) with unbounded Ũ(t) is oscillatory in
Ω, where

G̃(t) = F̃ (t) + a(t)Ψ̃(t) +
k∑

i=1

bi(t)Ψ̃(τi(t)),

Ũ(t) =
1
|G|

∫

G
u(x, t)dx.

Proof. Assume on the contrary that there is a nonoscillatory solution u

of the problem (2), (B2) with the property that Ũ(t) is unbounded. First
we assume that u > 0 in G × [t0,∞) for some t0 > 0. Then there is a
number t1 ≥ t0 such that u(x, τi(t)) > 0 in G × [t1,∞) (i = 1, 2, ..., k),
u(x, σ(t, ζ)) > 0 in G × [t1,∞) × [γ, δ]. Dividing (2) by |G| and then
integrating over G yields

d

dt

[
p(t)

d

dt

(
Ũ(t)−

∫ β

α
h(t, ξ)Ũ(ρ(t, ξ))dη(ξ)

)]

−a(t)
1
|G|

∫

G
∆u(x, t)dx−

k∑

i=1

bi(t)
1
|G|

∫

G
∆u(x, τi(t))dx

+
1
|G|

∫

G
q0(x, t)u(x, t)dx

+
∫ δ

γ
Q(t, ζ)

1
|G|

∫

G
ϕ
(
u(x, σ(t, ζ))

)
dxdω(ζ) ≤ F̃ (t), t ≥ t1. (9)
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The divergence theorem implies that

1
|G|

∫

G
∆u(x, t)dx =

1
|G|

∫

∂G

∂u

∂ν
(x, t)dS

=
1
|G|

∫

∂G

(
−µ · u(x, t) + ψ̃

)
dS

≤ Ψ̃(t), t ≥ t1. (10)

Analogously we obtain

1
|G|

∫

G
∆u(x, τi(t))dx ≤ Ψ̃(τi(t)), t ≥ t1. (11)

An application of Jensen’s inequality yields

1
|G|

∫

G
ϕ
(
u(x, σ(t, ζ))

)
dx ≥ ϕ(Ũ(σ(t, ζ))), t ≥ t1. (12)

Combining (9)–(12) and taking account of the hypothesis (A1), we have

d

dt

[
p(t)

d

dt

(
Ũ(t)−

∫ β

α
h(t, ξ)Ũ(ρ(t, ξ))dη(ξ)

)]

+
∫ δ

γ
Q(t, ζ)ϕ

(
Ũ(σ(t, ζ))

)
dω(ζ) ≤ G̃(t), t ≥ t1. (13)

Consequently we observe that Ũ(t) is an eventually positive unbounded
solution of (8) with +G̃(t). This contradicts the hypothesis. The case
where u < 0 can be treated similarly, and we are led to a contradiction.
The proof is complete.

3. Functional differential inequalities

In this section we derive sufficient conditions for the functional differen-
tial inequality

d

dt

[
p(t)

d

dt

(
y(t)−

∫ β

α
h(t, ξ)y(ρ(t, ξ))dη(ξ)

)]

+
∫ δ

γ
Q(t, ζ)ϕ

(
y(σ(t, ζ))

)
dω(ζ) ≤ H(t) (14)

to have no eventually positive unbounded solution, where H(t) is a contin-
uous function.

It is assumed that :
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(A5) there exists a positive constant h0 satisfying

∫ β

α
h(t, ξ)dη(ξ) ≤ h0 < 1 ;

(A6) ρ(t, ξ) ≤ t for (t, ξ) ∈ (0,∞)× [α, β] ;

(A7) σ̃(t) ≡ min
ζ∈[γ,δ]

σ(t, ζ) is a nondecreasing continuous function.

Theorem 3. Assume that the hypotheses (A1)–(A7) hold, and that the fol-
lowing hypothesis is satisfied :

(A8) there is a C2-function θ(t) such that θ(t) is bounded and

(
p(t)θ′(t)

)′ = H(t).

If the following conditions is satisfied :

∫ ∞

c

[∫ δ

γ
Q(t, ζ)dω(ζ)

]
dt = +∞ (15)

for some c > 0, then (14) has no eventually positive unbounded solution.

Proof. Suppose that (14) has an eventually positive unbounded solution
y(t). Letting

z(t) = y(t)−
∫ β

α
h(t, ξ)y(ρ(t, ξ))dη(ξ)− θ(t)

and taking into account (A8), we find that

(
p(t)z′(t)

)′ ≤ −
∫ δ

γ
Q(t, ζ)ϕ

(
y(σ(t, ζ))

)
dω(ζ) (16)

≤ 0.

Therefore, p(t)z′(t) ≥ 0 or p(t)z′(t) < 0 eventually. Since p(t) > 0, we see
that z′(t) ≥ 0 or z′(t) < 0. Hence, z(t) is a monotone function, and z(t) > 0
or z(t) ≤ 0 eventually. We claim that lim

t→∞ z(t) = ∞. Hence, z(t) > 0
eventually. Since y(t) is unbounded from above, there exists a sequence
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{tn}∞n=1 satisfying lim
n→∞ tn = ∞, lim

n→∞ y(tn) = ∞ and max
t0≤t≤tn

y(t) = y(tn).

The hypotheses (A5) and (A6) imply that

z(tn) = y(tn)−
∫ β

α
h(tn, ξ)y(ρ(tn, ξ))dη(ξ)− θ(tn)

≥ y(tn)− y(tn)
∫ β

α
h(tn, ξ)dη(ξ)− θ(tn)

=
(

1−
∫ β

α
h(tn, ξ)dη(ξ)

)
y(tn)− θ(tn)

≥ (1− h0)y(tn)− θ(tn)

for sufficiently large n. Since θ(t) is bounded and lim
n→∞(1−h0)y(tn) = ∞, we

find that lim
t→∞ z(tn) = ∞. This combined with the monotonicity property of

z(t) implies that lim
t→∞ z(t) = ∞. In this case it is easily seen that z′(t) ≥ 0.

Since θ(t) is bounded and lim
t→∞ z(t) = ∞, for any ε > 0 there is a sufficiently

large number T such that θ(t) ≥ −εz(t) (t ≥ T ). Hence we see that

y(t) ≥ z(t) + θ(t) ≥ (1− ε)z(t)

and therefore

y(σ(t, ζ)) ≥ (1− ε)z(σ(t, ζ)).

The inequality (16) implies that

(
p(t)z′(t)

)′ ≤ −
∫ δ

γ
Q(t, ζ)ϕ

(
(1− ε)z(σ(t, ζ))

)
dω(ζ)

≤ −ϕ
(
(1− ε)z(σ̃(t))

) ∫ δ

γ
Q(t, ζ)dω(ζ)

≤ −ϕ
(
(1− ε)z(σ̃(T ))

) ∫ δ

γ
Q(t, ζ)dω(ζ)

≡ −C0

∫ δ

γ
Q(t, ζ)dω(ζ), t ≥ T, (17)

where T > 0 sufficiently large and C0 > 0 by (A4). Integrating (17) over
[T, t], we obtain

p(t)z′(t)− p(T )z′(T ) ≤ −C0

∫ t

T

[∫ δ

γ
Q(s, ζ)dω(ζ)

]
ds
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which yields

p(T )z′(T ) ≥ C0

∫ t

T

[∫ δ

γ
Q(s, ζ)dω(ζ)

]
ds.

Letting t →∞ in the above inequality, we obtain
∫ ∞

T

[∫ δ

γ
Q(s, ζ)dω(ζ)

]
ds ≤ 1

C0
p(T )z′(T ) < ∞,

which contradicts the hypothesis (15). The proof is complete.

4. Oscillation results

In this section we present oscillation results for the boundary value prob-
lems for (2), (Bi) (i = 1, 2) by combining the results in Sections 2 and 3.

Theorem 4. Assume that the hypotheses (A1)–(A7) hold, and that there
exists a C2-function θ(t) such that θ(t) is bounded and

(
p(t)θ′(t)

)′ = G(t).

If the condition (15) is satisfied, then every solution u of the boundary value
problem (2), (B1) with unbounded U(t) is oscillatory in Ω.

Proof. The conclusion follows by combining Theorem 1 with Theorem 3.

Theorem 5. Assume that the hypotheses (A1)–(A7) hold, and that there
exists a C2-function θ(t) such that θ(t) is bounded and

(
p(t)θ′(t)

)′ = G̃(t).

If the condition (15) is satisfied, then every solution u of the boundary value
problem (2), (B2) with unbounded Ũ(t) is oscillatory in Ω.

Proof. A combination of Theorem 2 and Theorem 3 yields the conclusion.

Example. We consider the problem
∂

∂t

[
p0

∂

∂t

(
u(x, t)−

∫ π

0

1
4
· u(x, t− 2π + ξ)dξ

)]

−e−t ∂
2u

∂x2
(x, t) + q0u(x, t) +

∫ π/2

0
u(x, t− π + ζ)dζ

= (sinx) sin t, (x, t) ∈ (0, π)× (0,∞), (18)

u(0, t) = u(π, t) = 0, t > 0, (19)
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where

p0 = e−π(eπ/2 + 1)
[
4 +

1
2
e−2π(eπ + 1)

]−1

> 0,

q0 =
e−π(eπ/2 − 1)

2
− p0

e−2π(eπ + 1)
2

=
e−π

[
(eπ/2 − 1)4e2π − 1

2(eπ/2 + 3)(eπ + 1)
]

8e2π + eπ + 1

>
e−π

(
4e2π − 2eπ/2eπ

)

8e2π + eπ + 1

=
2eπ/2(2eπ/2 − 1)
8e2π + eπ + 1

> 0.

Here n = 1, G = (0, π), Ω = (0, π) × (0,∞), p(t) = p0, [α, β] = [0, π],
h(t, ξ) = 1/4, ρ(t, ξ) = t− 2π + ξ, η(ξ) = ξ, bi(t) ≡ 0, a(t) = e−t, q0(x, t) =
q0, qi(x, t) ≡ 0, [γ, δ] = [0, π/2], q(x, t, ζ) = Q(t, ζ) = 1, ϕ(s) = s, σ(t, ζ) =
t− π + ζ, ω(ζ) = ζ and f(x, t) = (sinx) sin t. It is easily seen that λ1 = 1
and Φ(x) = sinx. Since

∫ π

0
h(t, ξ)dη(ξ) =

∫ π

0

1
4

dξ =
π

4
< 1,

we can choose h0 = π/4, and hence (A5) is satisfied. It is easy to check
that

ρ(t, ξ) = t− 2π + ξ ≤ t− 2π + π = t− π ≤ t,

and hence (A6) is satisfied. Since

σ̃(t) = min
ζ∈[0,π]

(
t− π + ζ

)
= t− π,

we find that (A7) holds. An easy computation shows that

G(t) = F (t) =
π

4
sin t.

Choosing θ(t) = −(π/4) sin t, we observe that θ′′(t) = G(t) and θ(t) is
bounded. It is obvious that

∫ ∞

c

[ ∫ δ

γ
Q(t, ζ)dω(ζ)

]
dt =

∫ ∞

c

π

2
dt = +∞
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and hence the condition (15) holds. It follows from Theorem 4 that every
solution of (18), (19) with unbounded U(t) is oscillatory in (0, π)× (0,∞).
In fact,

u = (sinx)et sin t

is such a solution.

Remark. The following restrictions have been made in [2], [6], [11] :

(R1) σ̃(t) ≡ min
ζ∈[γ,δ]

σ(t, ζ) is a nondecreasing C1-function such that

σ̃(t) ≥ t,

σ̃′(t) ≥ 1
σ0

for some σ0 > 0 ;

(R2) ∫ ∞

c

1
ϕ(v)

dv < ∞ for some c > 0;

or there is a constant K0 such that
ϕ(v)

v
≥ K0 > 0 for v 6= 0.

However, in present paper we remove the above two restrictions.
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