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Real hypersurfaces in complex two-plane

Grassmannians

related to the Ricci curvature

Young Jin Suh and Yoshiyuki Watanabe

Abstract. In this paper we introduce a new notion of the Ricci tensor
derived from the curvature tensor of real hypersurfaces in complex two-plane
Grassmannians G2(Cm+2). Moreover, we give a characterization of real
hypersurfaces of type A in G2(Cm+2), that is, a tube over a totally geodesic
G2(Cm+1) in G2(Cm+2) in terms of integral formulas related to the Ricci
curvature Ric(ξ, ξ) along the direction of the structure vector field ξ for real
hypersurfaces in G2(Cm+2).

0. Introduction

In the geometry of real hypersurfaces in complex space forms or in
quaternionic space forms there have been many characterizations of model
hypersurfaces of type A1, A2, B,C, D and E in complex projective space
CPm , of type A0, A1, A2 and B in complex hyperbolic space CHm or
A1, A2, B in quaternionic projective space QPm, which are completely clas-
sified by Cecil and Ryan [4], Kimura [5], Berndt [1], Martinez and Pérez [6]
respectively.

Among them there were some characterizations of homogeneous real
hypersurfaces of type A1, A2 in complex projective space CPm and of type
A0, A1, A2 in complex hyperbolic space CHm . As an example, we say
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that the shape operator A and the structure tensor φ commute with each
other, that is Aφ − φA = 0, is a model characterization of hypersurfaces,
which are tubes over a totally geodesic CP k in CPm (See Okumura [8]),
a tube over a totally geodesic CHk in CHm or a horosphere in CHm (See
Montiel and Romero [7]).

Now let us denote by G2(Cm+2) the set of all two-dimensional lin-
ear subspaces in Cm+2. This Riemannian symmetric space G2(Cm+2)
has a remarkable geometrical structure. It is the unique compact irre-
ducible Riemannian manifold being equipped with both a Kähler struc-
ture J and a quaternionic Kähler structure J not containing J . In other
words, G2(Cm+2) is the unique compact, irreducible, Kähler, quaternionic
Kähler manifold which is not a hyperkähler manifold. So, in G2(Cm+2) we
have the two natural geometrical conditions for real hypersurfaces M that
[ξ] = Span {ξ} or D⊥ = Span {ξ1, ξ2, ξ3}, which are spanned by almost
contact 3-structure vector fileds {ξ1, ξ2, ξ3} such that TxM = D⊕D⊥, are
invariant under the shape operator A of M (See [2] and [3]).

The almost contact structure vector field ξ mentioned above is defined
by ξ = −JN , where N denotes a local unit normal vector field of M in
G2(Cm+2) and the almost contact 3-structure vector fields {ξ1, ξ2, ξ3} are
defined by ξν = −JνN , ν = 1, 2, 3, where {Jν} denotes a canonical local
basis of a quaternionic Kähler structure J.

The first result in this direction is the classification of real hypersurfaces
in G2(Cm+2) satisfying both conditions. Namely, Berndt and the first
author [2] have proved the following

Theorem A. Let M be a connected real hypersurface in
G2(Cm+2), m ≥ 3. Then both [ξ] and D⊥ are invariant under the shape
operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1)
in G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a
totally geodesic QPn in G2(Cm+2).

In the paper [3] due to Berndt and the first author we have given a
characterization of real hypersurfaces of type (A) in Theorem A when the
shape operator A of M in G2(Cm+2) commutes with the structure tensor
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φ. This is equivalent to the condition that the Reeb flow on M is isometric,
that is Lξg = 0, where L(resp. g) denotes the Lie derivative(resp. the
induced Riemannian metric) of M in the direction of the Reeb vector field
ξ as follows:

Theorem B. Let M be a connected orientable real hypersurface in
G2(Cm+2), m ≥ 3. Then the Reeb flow on M is isometric if and only if
M is an open part of a tube around some totally geodesic G2(Cm+1) in
G2(Cm+2).

Now the purpose of this paper is to show non-existence properties related
to the Ricci curvature along the direction of the structure vector ξ of a
compact real hypersurface in G2(Cm+2). In order to do this we recall
some integral formulas due to Watanabe [14] (See also Yano [15]) on a
compact Riemannian manifold and give some relations between the Ricci
curvature and the covariant derivative for the structure vector field ξ of a
real hypersurface in G2(Cm+2) as follows:

∫

M

{Ric(ξ, ξ) + ‖∇ξ‖2} ∗ 1 = 0

and ∫

M

{
Ric(ξ, ξ) +

1
2
‖Lξg‖2 − ‖∇ξ‖2 − (div ξ)2

} ∗ 1 = 0.

By virtue of these formulas we are able to assert the following theorems
respectively:

Theorem 1. There does not exist any compact real hypersurface in
G2(Cm+2), m≥3, satisfying Ric (ξ, ξ)≥0 and

TrA2≤4
∑3

ν=1
ην(ξ)2 + 2‖Aξ‖2 − TrA g(Aξ, ξ)− 4(m + 1).

Theorem 2. There does not exist any compact real hypersurface in
G2(Cm+2), m≥3, satisfying Ric(ξ, ξ)≤0 and

TrA2≤4(m + 1)− 4
∑3

ν=1
ην(ξ)2 + TrA g(Aξ, ξ).

In this paper we also give a characterization of real hypersurfces of type
A in G2(Cm+2) by the second integral formula mentioned above. Then if we
use the expression of the shape operator A of a compact real hypersurface
M in G2(Cm+2), we assert the following:
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Theorem 3. Let M be a compact real hypersurface in
G2(Cm+2), m≥3. If it satisfies

∫

M

{
4(m + 1)− 4

∑3

ν=1
ην(ξ)2 + TrAg(Aξ, ξ)− TrA2

} ∗ 1≥0.

Then M is congruent to a tube of radius r over a totally geodesic G2(Cm+1)
in G2(Cm+2).

1. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details
we refer to [2] and [3]. By G2(Cm+2) we denote the set of all complex
two-dimensional linear subspaces in Cm+2. The special unitary group G =
SU(m + 2) acts transitively on
G2(Cm+2) with stabilizer isomorphic to K = S(U(2)× U(m)) ⊂ G. Then
G2(Cm+2) can be identified with the homogeneous space G/K, which we
equip with the unique analytic structure for which the natural action of
G on G2(Cm+2) becomes analytic. Denote by g and k the Lie algebra
of G and K, respectively, and by m the orthogonal complement of k in
g with respect to the Cartan-Killing form B of g. Then g = k ⊕ m is
an Ad(K)-invariant reductive decomposition of g. We put o = eK and
identify ToG2(Cm+2) with m in the usual manner. Since B is negative
definite on g, its negative restricted to m × m yields a positive definite
inner product on m. By Ad(K)-invariance of B this inner product can be
extended to a G-invariant Riemannian metric g on G2(Cm+2). In this way
G2(Cm+2) becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasons we normalize g such that
the maximal sectional curvature of (G2(Cm+2), g) is eight. Since G2(C3)
is isometric to the three-dimensional complex projective space CP 3 with
constant holomorphic sectional curvature eight we will assume m ≥ 2 from
now on. Note that the isomorphism Spin(6) ' SU(4) yields an isometry
between G2(C4) and the real Grassmann manifold G+

2 (R6) of oriented two-
dimensional linear subspaces of R6.

The Lie algebra k has the direct sum decomposition k = su(m)⊕ su(2)⊕
R, where R is the center of k. Viewing k as the holonomy algebra of
G2(Cm+2), the center R induces a Kähler structure J and the su(2)-part a
quaternionic Kähler structure J on G2(Cm+2). If J1 is any almost Hermit-
ian structure in J, then JJ1 = J1J , and JJ1 is a symmetric endomorphism
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with (JJ1)2 = I and tr(JJ1) = 0. This fact will be used frequently through-
out this paper.

A canonical local basis J1, J2, J3 of J consists of three local almost Her-
mitian structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the
index is taken modulo three. Since J is parallel with respect to the Rie-
mannian connection ∇̄ of (G2(Cm+2), g), there exist for any canonical local
basis J1, J2, J3 of J three local one-forms q1, q2, q3 such that

(1.1) ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(Cm+2). This fact will be used in Section 2.

On the other hand, we introduce the Riemannian curvature tensor of
G2(Cm+2) defined in such a way that

R̄(X,Y )Z =g(Y, Z)X − g(X, Z)Y

+ g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{
g(JνY,Z)JνX − g(JνX, Z)JνY

− 2g(JνX,Y )JνZ
}

+
3∑

ν=1

{
g(JνJY, Z)JνJX − g(JνJX,Z)JνJY

}
,

(1.2)

where J1, J2, J3 denotes a canonical local basis of J (See [2]).

2. Some fundamental formulas for real hypersurfaces in G2(Cm+2)

In this section we derive some basic formulas from the Codazzi equation
for a real hypersurface in G2(Cm+2).

Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of
G2(Cm+2) with real codimension one. The induced Riemannian metric on
M will also be denoted by g, and ∇ denotes the Riemannian connection of
(M, g). Let N be a local unit normal field of M and A the shape operator of
M with respect to N . The Kähler structure J of G2(Cm+2) induces on M

an almost contact metric structure (φ, ξ, η, g). Furthermore, let J1, J2, J3

be a canonical local basis of J. Then each Jν induces an almost contact
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metric structure (φν , ξν , ην , g) on M . Using the above expression (1.2) for
R̄, the Gauss and the Codazzi equations are respectively given by

R(X, Y )Z =g(Y, Z)X − g(X, Z)Y

+ g(φY,Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+
∑3

ν=1

{
g(φνY, Z)φνX − g(φνX, Z)φνY

− 2g(φνX, Y )φνZ
}

+
∑3

ν=1

{
g(φνφY, Z)φνφX − g(φνφX, Z)φνφY

}

−
∑3

ν=1

{
η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY

}

−
∑3

ν=1

{
η(X)g(φνφY, Z)− η(Y )g(φνφX, Z)

}
ξν

+ g(AY,Z)AX − g(AX, Z)AY

and

(∇XA)Y − (∇Y A)X =η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX

− 2g(φνX,Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν ,

where R denotes the curvature tensor of a real hypersurface M in G2(Cm+2).

The following identities can be proved in a straightforward
method and will be used frequently in subsequent calculations:

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1.

(2.1)

Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N
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for any tangent vector X of a real hypersurface M in G2(Cm+2), where
N denotes a normal vector of M in G2(Cm+2). Then from this and the
formulas (1.1) and (2.1) we have that

(2.2) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX,

(2.3) ∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,

(∇Xφν)Y =− qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX

− g(AX, Y )ξν .

(2.4)

Summing up these formulas, we find the following

∇X(φνξ) =∇X(φξν)

=(∇Xφ)ξν + φ(∇Xξν)

=qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX

− g(AX, ξ)ξν + η(ξν)AX.

(2.5)

Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

(2.6) φφνX = φνφX + ην(X)ξ − η(X)ξν .

3. Proof of the main theorem

Now let us contract Y and Z in the equation of Gauss in Section 2. Then
the Ricci tensor S of a real hypersurface M in G2(Cm+2) is given by

SX =
∑4m−1

i=1
R(X, ei)ei

=(4m + 10)X − 3η(X)ξ − 3
∑3

ν=1
ην(X)ξν

+
∑3

ν=1
{(Trφνφ)φνφX − (φνφ)2X}

−
∑3

ν=1
{ην(ξ)φνφX − η(X)φνφξν}

−
∑3

ν=1
{(Tr φνφ)η(X)− η(φνφX)}ξν

+ hAX −A2X,

(3.1)
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where h denotes the trace of the shape operator A of M in
G2(Cm+2). From the formula JJν = JνJ , Tr JJν = 0, ν = 1, 2, 3, we
calculate the following for any basis {e1, · · ·, e4m−1, N} of the tangent space
of G2(Cm+2)

0 =Tr JJν =
∑4m

k=1
g(JJνek, ek)

=
∑4m

k=1
g(JJνek, ek) + g(JJνN, N)

=Tr φφν − ην(ξ)− g(JνN, JN)

=Tr φφν − 2ην(ξ)

(3.2)

and

(φνφ)2X =φνφ(φφνX − ην(X)ξ + η(X)ξν)

=φν(−φνX + η(φνX)ξ) + η(X)φν
2ξ

=X − ην(X)ξν + η(φνX)φνξ + η(X){−ξ + ην(ξ)ξ}.

(3.3)

Substituting (3.2) and (3.3) into (3.1), we have

SX =(4m + 10)X − 3η(X)ξ − 3
∑3

ν=1
ην(X)ξν

+
∑3

ν=1
{ην(ξ)φνφX −X − η(φνX)φνξ − η(X)ην(ξ)ξ}

+ hAX −A2X

=(4m + 7)X − 3η(X)ξ − 3
∑3

ν=1
ην(X)ξν

+
∑3

ν=1
{ην(ξ)φνφX − η(φνX)φνξ − η(X)ην(ξ)ξ}

+ hAX −A2X.

(3.4)

From this, substituting X = ξ, we have

Sξ = 4(m + 1)ξ − 3
∑3

ν=1
ην(ξ)ξν −

∑3

ν=1
ην(ξ)ξν + hAξ −A2ξ.

Then the Ricci curvature Ric(ξ, ξ) along the direction ξ is given by

Ric(ξ, ξ) =g(Sξ, ξ) = 4(m + 1)− 4
∑3

ν=1
ην(ξ)2

+ hg(Aξ, ξ)− g(A2ξ, ξ).

(3.5)

Now we want to introduce an integral formula due to Watanabe [14] as
follows:
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Theorem A. Let M be a compact Riemannian manifold.
Then for any vector field X defined on M we have

∫

M

(Ric(X,X) + ‖∇X‖2) ∗ 1≥0,

where Ric(X, X) denotes the Ricci curvature along the direction of the vec-
tor X. Then the equality holds if and only if X is a harmonic vector field.

By applying Theorem A to the structure vector ξ of a compact real
hypersurface M in G2(Cm+2) we know that

∫

M

(Ric (ξ, ξ) + ‖∇ξ‖2) ∗ 1

=
∫

M

{4(m + 1)− 4
∑3

ν=1
ην(ξ)2 + TrA g(Aξ, ξ)− g(A2ξ, ξ)

+ Tr A2 − g(Aξ,Aξ)} ∗ 1 ≥ 0.

From this we know that if the trace of the shape operator A2 satisfies

(3.6) TrA2 ≤4
∑3

ν=1
ην(ξ)2 + 2‖Aξ‖2 − TrA g(Aξ, ξ)− 4(m + 1),

then the equality holds and the structure vector ξ is a harmonic vector
field.

Now by Theorem A on a compact real hypersurface in
G2(Cm+2) we have the following:

Proposition 3.1. Let M be a compact real hypersurface in G2(Cm+2),
m≥3, with the formula (3.6). If the Ricci curvature satisfies Ric(ξ, ξ)≥0,
then ξ is a harmonic vector field and has vanishing covariant derivative.
Moreover, if the Ricci curvature is positive definite, then a harmonic vector
field other than zero does not exist in M .

By the assumption of Proposition 3.1 we know that Ric(ξ, ξ) = 0 and
∇ξ = 0 when the Ricci curvature satisfy Ric(ξ, ξ)≥0. The latter part
implies

AX = η(AX)ξ

for any tangent vector field X on M , that is, M is a totally η-umbilical real
hypersurface in G2(Cm+2). From this we know that the structure vector
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ξ is principal, that is, Aξ = αξ, where α = η(Aξ) and the trace h of the
shape operator is given by

h =Tr A =
∑4m−1

i=1
g(Aei, ei)

=
∑4m−1

i=1
g(η(Aei)ξ, ei) = η(Aξ) = α.

From this, together with (3.5),we have

Ric(ξ, ξ) = 4(m + 1)− 4
∑3

ν=1
ην(ξ)2.

Then on such a compact real hypersurface M in G2(Cm+2) the Ricci cur-
vature Ric(ξ, ξ) = 0 implies

(3.7)
∑3

ν=1
ην(ξ)2 = m + 1.

Now let us denote by D the orthogonal complement of D⊥ = Span {ξ1, ξ2, ξ3}
in the tangent space TxM , x∈M of M in
G2(Cm+2), which can be decomposed in such a way that

TxM = D⊕D⊥.

Then we are able to consider the following cases:
Case 1: ξ∈D or ξ∈D⊥.
Then (3.7) gives a contradiction such that m + 1 = 0 for ξ∈D. For the

case ξ∈D⊥ we may put ξ = ξ1. Then (3.7) implies m = 0, which makes a
contradiction. So this case also can not be appeared.

Case 2: ξ∈TxM = D⊕D⊥.
Then in this case we know that

ην(ξ) = ‖ξ‖‖ξν‖ cos θν = cos θν≤1.

This implies

m + 1 =
∑3

ν=1
ην(ξ)2 =

∑3

ν=1
cos2 θν≤3,

which also contradicts our assumption m≥3.

Summing up all the situations mentioned above, we have the following
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Theorem 3.1. There do not exist any compact real hypersurfaces in
G2(Cm+2), m≥3, satisfying Ric (ξ, ξ)≥0 and (3.6).

4. Killing vector fields

Let M be a compact Riemannian manifold with Riemannian metric g.
Then a vector field X of M is said to be Killing if and only if the Riemann-
ian metric g is invariant along the direction of X, that is, LXg = 0. In
component wise, we can express it by LXgji = ∇jXi +∇iXj = 0.

Now on a compact Riemannian manifold M we introduce an integral
formula due to Watanabe [14] as follows:

(4.1)
∫

M

[
Ric(X,X) +

1
2
‖LXg‖2 − ‖∇X‖2 − (divX)2

] ∗ 1 = 0.

From this, we know that if X is Killing, then ∇iX
i = 0. So its divergence

vector divX = −∑
i∇iX

i = 0. Accordingly, the integral formula reduces
to

(4.2)
∫

M

(Ric(X, X)− ‖∇X‖2) ∗ 1 = 0.

Now let us apply (4.1) to a compact real hypersurface M in G2(Cm+2).
Then the formula (2.1) gives the following

div ξ =
∑4m−1

i=1
g(∇eiξ, ei) = TrφA = 0.

From this, if we substitute the vector ξ in (4.1), we have the following
integral formula

∫

M

(Ric(ξ, ξ)− ‖∇ξ‖2) ∗ 1 = −1
2

∫

M

‖Lξg‖2 ∗ 1≤0.

From this, together with the formula (3.5),we assert the following

Proposition 4.1. Let M be a compact real hypersurface in G2(Cm+2),
m≥3, with the Ricci curvature Ric(ξ, ξ)≤0. If M satisfies

(4.3) TrA2≤4(m + 1)− 4
∑3

ν=1
ην(ξ)2 + TrA g(Aξ, ξ),
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then the structure vector ξ is a Killing vector field and has vanishing covari-
ant derivative. Moreover, if the Ricci curvature is negative-definite, then a
Killing vector field other than zero does not exist on M .

In the paper [3] due to Berndt and Suh we have proved that the structure
vector ξ is a Killing vector field, that is Lξg = 0 if and only if the structure
tensor φ and the shape operator A commutes with each other. Moreover,
in such a case we have asserted that M is congruent to a tube of radius r

over a totally geodesic G2(Cm+1) in G2(Cm+2). For such kind of tubes we
introduce a Proposition given in [3] as follows:

Proposition 4.2. Let M be a connected real hypersurface of G2(Cm+2).
Suppose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1∈J be the
almost Hermitian structure such that JN = J1N . Then M has three(if
r = π/2) or four(otherwise) distinct constant principal curvatures

α =
√

8cot(
√

8r) , β =
√

2cot(
√

2r) , λ = −
√

2tan(
√

2r), µ = 0

with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1 , m(β) = 2 , m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces we have

Tα = Rξ = Rξ1,

Tβ = Span {ξ2, ξ3},
Tλ = {X|X⊥Hξ, JX = J1X},
Tµ = {X|X⊥Hξ, JX = −J1X}.

From these Propositions 4.1 and 4.2 we know that

Aξ2 = η(Aξ2)ξ.

Then this gives that

0 = g(Aξ2, ξ2) =
√

2 cot(
√

2r).

Then r = π√
8
, which contradicts Proposition 4.2. Then summing up this

situation we assert the following:



Real hypersurfaces with the Ricci curvature 23

Theorem 4.3. There does not exist any compact real hypersurface in
G2(Cm+2) satisfying Ric(ξ, ξ)≤0 and (4.3).

Now let M be a compact real hypersurface in G2(Cm+2). Then by the
formula (2.1) its structure vector ξ satisfies the following formulas:

div ξ =
∑4m−1

i=1
g(∇eiξ, ei) = TrφA = 0,

and
‖∇ξ‖2 = g(∇ξ,∇ξ) = Tr A2 −

∑4m−1

i=1
η(Aei)η(Aei).

From this, together with (3.5) and the integral formula (4.1), we know that

− 1
2

∫

M

‖Lξg‖2 ∗ 1

=
∫

M

{
4(m + 1)− 4

∑3

ν=1
ην(ξ)2 + hg(Aξ, ξ)− Tr A2

} ∗ 1≤0.

From this we assert the following:

Theorem 4.4. Let M be a compact real hypersurface in
G2(Cm+2), m≥3. If it satisfies

∫

M

{
4(m + 1)− 4

∑3

ν=1
ην(ξ)2 + TrAg(Aξ, ξ)− Tr A2

} ∗ 1≥0,

then M is congruent to a tube of radius r over a totally geodesic G2(Cm+1)
in G2(Cm+2).

Let M be a compact real hypersurface in G2(Cm+2), which satisfies

Tr A2 + 4
∑3

ν=1
ην(ξ)2≤4(m + 1) + TrAg(Aξ, ξ).

Then we also assert the following

Corollary 4.5. Let M be a compact real hypersurface in
G2(Cm+2), m≥3. If M satisfies

Tr A2 + 4
∑3

ν=1
ην(ξ)2≤4(m + 1) + Tr Ag(Aξ, ξ),

then M is congruent to a tube of radius r over a totally geodesic G2(Cm+1)
in G2(Cm+2).

By this Corollary and Proposition 4.2 we are able to assert the following
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Corollary 4.6. Let M be a compact real hypersurface of a complex two-
plane Grassmannians G2(Cm+2), m≥3. If M is a minimal hypersurface
satisfying

Tr A2 + 4
∑3

ν=1
ην(ξ)2≤4(m + 1),

then M is congruent to a tube of radius r, cot
√

2r =
√

2m−1
3 , over a totally

geodesic G2(Cm+1) in G2(Cm+2).
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