Toyama Math. J. Vol. 28 (2005), 11-25

Real hypersurfaces in complex two-plane Grassmannians related to the Ricci curvature

Young Jin SUH and Yoshiyuki WATANABE

Abstract. In this paper we introduce a new notion of the Ricci tensor derived from the curvature tensor of real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$. Moreover, we give a characterization of real hypersurfaces of type A in $G_2(\mathbb{C}^{m+2})$, that is, a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ in terms of integral formulas related to the Ricci curvature $\operatorname{Ric}(\xi, \xi)$ along the direction of the structure vector field ξ for real hypersurfaces in $G_2(\mathbb{C}^{m+2})$.

0. Introduction

In the geometry of real hypersurfaces in complex space forms or in quaternionic space forms there have been many characterizations of model hypersurfaces of type A_1, A_2, B, C, D and E in complex projective space $\mathbb{C}P^m$, of type A_0, A_1, A_2 and B in complex hyperbolic space $\mathbb{C}H^m$ or A_1, A_2, B in quaternionic projective space $\mathbb{Q}P^m$, which are completely classified by Cecil and Ryan [4], Kimura [5], Berndt [1], Martinez and Pérez [6] respectively.

Among them there were some characterizations of homogeneous real hypersurfaces of type A_1 , A_2 in complex projective space $\mathbb{C}P^m$ and of type A_0 , A_1 , A_2 in complex hyperbolic space $\mathbb{C}H^m$. As an example, we say

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

The first author was supported by grant Proj. No. R14-2002-003-01001-0 from Korea Research Foundation, Korea 2005.

that the shape operator A and the structure tensor ϕ commute with each other, that is $A\phi - \phi A = 0$, is a model characterization of hypersurfaces, which are tubes over a totally geodesic $\mathbb{C}P^k$ in $\mathbb{C}P^m$ (See Okumura [8]), a tube over a totally geodesic $\mathbb{C}H^k$ in $\mathbb{C}H^m$ or a horosphere in $\mathbb{C}H^m$ (See Montiel and Romero [7]).

Now let us denote by $G_2(\mathbb{C}^{m+2})$ the set of all two-dimensional linear subspaces in \mathbb{C}^{m+2} . This Riemannian symmetric space $G_2(\mathbb{C}^{m+2})$ has a remarkable geometrical structure. It is the unique compact irreducible Riemannian manifold being equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} not containing J. In other words, $G_2(\mathbb{C}^{m+2})$ is the unique compact, irreducible, Kähler, quaternionic Kähler manifold which is not a hyperkähler manifold. So, in $G_2(\mathbb{C}^{m+2})$ we have the two natural geometrical conditions for real hypersurfaces M that $[\xi] = \text{Span } \{\xi\}$ or $\mathfrak{D}^{\perp} = \text{Span } \{\xi_1, \xi_2, \xi_3\}$, which are spanned by *almost contact* 3-structure vector fileds $\{\xi_1, \xi_2, \xi_3\}$ such that $T_x M = \mathfrak{D} \oplus \mathfrak{D}^{\perp}$, are invariant under the shape operator A of M (See [2] and [3]).

The almost contact structure vector field ξ mentioned above is defined by $\xi = -JN$, where N denotes a local unit normal vector field of M in $G_2(\mathbb{C}^{m+2})$ and the almost contact 3-structure vector fields $\{\xi_1, \xi_2, \xi_3\}$ are defined by $\xi_{\nu} = -J_{\nu}N$, $\nu = 1, 2, 3$, where $\{J_{\nu}\}$ denotes a canonical local basis of a quaternionic Kähler structure \mathfrak{J} .

The first result in this direction is the classification of real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ satisfying both conditions. Namely, Berndt and the first author [2] have proved the following

Theorem A. Let M be a connected real hypersurface in $G_2(\mathbb{C}^{m+2}), m \geq 3$. Then both $[\xi]$ and \mathfrak{D}^{\perp} are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, or

(B) *m* is even, say m = 2n, and *M* is an open part of a tube around a totally geodesic $\mathbb{Q}P^n$ in $G_2(\mathbb{C}^{m+2})$.

In the paper [3] due to Berndt and the first author we have given a characterization of real hypersurfaces of type (A) in Theorem A when the shape operator A of M in $G_2(\mathbb{C}^{m+2})$ commutes with the structure tensor

 ϕ . This is equivalent to the condition that the Reeb flow on M is isometric, that is $\mathcal{L}_{\xi}g = 0$, where $\mathcal{L}(\text{resp. }g)$ denotes the Lie derivative(resp. the induced Riemannian metric) of M in the direction of the Reeb vector field ξ as follows:

Theorem B. Let M be a connected orientable real hypersurface in $G_2(\mathbb{C}^{m+2}), m \geq 3$. Then the Reeb flow on M is isometric if and only if M is an open part of a tube around some totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Now the purpose of this paper is to show non-existence properties related to the Ricci curvature along the direction of the structure vector ξ of a compact real hypersurface in $G_2(\mathbb{C}^{m+2})$. In order to do this we recall some integral formulas due to Watanabe [14] (See also Yano [15]) on a compact Riemannian manifold and give some relations between the Ricci curvature and the covariant derivative for the structure vector field ξ of a real hypersurface in $G_2(\mathbb{C}^{m+2})$ as follows:

$$\int_{M} \{ \operatorname{Ric}(\xi, \xi) + \|\nabla \xi\|^2 \} * 1 = 0$$

and

$$\int_{M} \left\{ \operatorname{Ric}(\xi,\xi) + \frac{1}{2} \|\mathcal{L}_{\xi}g\|^{2} - \|\nabla\xi\|^{2} - (\operatorname{div}\,\xi)^{2} \right\} * 1 = 0.$$

By virtue of these formulas we are able to assert the following theorems respectively:

Theorem 1. There does not exist any compact real hypersurface in $G_2(\mathbb{C}^{m+2}), m \ge 3$, satisfying Ric $(\xi, \xi) \ge 0$ and

$$TrA^2 \leq 4\sum_{\nu=1}^{3} \eta_{\nu}(\xi)^2 + 2\|A\xi\|^2 - TrA \ g(A\xi,\xi) - 4(m+1).$$

Theorem 2. There does not exist any compact real hypersurface in $G_2(\mathbb{C}^{m+2}), m \ge 3$, satisfying $Ric(\xi, \xi) \le 0$ and

$$TrA^2 \leq 4(m+1) - 4\sum_{\nu=1}^3 \eta_{\nu}(\xi)^2 + TrA \ g(A\xi,\xi).$$

In this paper we also give a characterization of real hypersurfces of type A in $G_2(\mathbb{C}^{m+2})$ by the second integral formula mentioned above. Then if we use the expression of the shape operator A of a compact real hypersurface M in $G_2(\mathbb{C}^{m+2})$, we assert the following:

Theorem 3. Let M be a compact real hypersurface in $G_2(\mathbb{C}^{m+2}), m \geq 3$. If it satisfies

$$\int_{M} \left\{ 4(m+1) - 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} + TrAg(A\xi,\xi) - TrA^{2} \right\} * 1 \ge 0.$$

Then M is congruent to a tube of radius r over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

1. Riemannian geometry of $G_2(\mathbb{C}^{m+2})$

In this section we summarize basic material about $G_2(\mathbb{C}^{m+2})$, for details we refer to [2] and [3]. By $G_2(\mathbb{C}^{m+2})$ we denote the set of all complex two-dimensional linear subspaces in \mathbb{C}^{m+2} . The special unitary group G =SU(m+2) acts transitively on

 $G_2(\mathbb{C}^{m+2})$ with stabilizer isomorphic to $K = S(U(2) \times U(m)) \subset G$. Then $G_2(\mathbb{C}^{m+2})$ can be identified with the homogeneous space G/K, which we equip with the unique analytic structure for which the natural action of G on $G_2(\mathbb{C}^{m+2})$ becomes analytic. Denote by \mathfrak{g} and \mathfrak{k} the Lie algebra of G and K, respectively, and by \mathfrak{m} the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to the Cartan-Killing form B of \mathfrak{g} . Then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ is an Ad(K)-invariant reductive decomposition of \mathfrak{g} . We put o = eK and identify $T_oG_2(\mathbb{C}^{m+2})$ with \mathfrak{m} in the usual manner. Since B is negative definite on \mathfrak{g} , its negative restricted to $\mathfrak{m} \times \mathfrak{m}$ yields a positive definite inner product on \mathfrak{m} . By Ad(K)-invariance of B this inner product can be extended to a G-invariant Riemannian metric g on $G_2(\mathbb{C}^{m+2})$. In this way $G_2(\mathbb{C}^{m+2})$ becomes a Riemannian homogeneous space, even a Riemannian symmetric space. For computational reasons we normalize g such that the maximal sectional curvature of $(G_2(\mathbb{C}^{m+2}), g)$ is eight. Since $G_2(\mathbb{C}^3)$ is isometric to the three-dimensional complex projective space $\mathbb{C}P^3$ with constant holomorphic sectional curvature eight we will assume $m \geq 2$ from now on. Note that the isomorphism $Spin(6) \simeq SU(4)$ yields an isometry between $G_2(\mathbb{C}^4)$ and the real Grassmann manifold $G_2^+(\mathbb{R}^6)$ of oriented twodimensional linear subspaces of \mathbb{R}^6 .

The Lie algebra \mathfrak{k} has the direct sum decomposition $\mathfrak{k} = \mathfrak{s}u(m) \oplus \mathfrak{s}u(2) \oplus \mathfrak{R}$, where \mathfrak{R} is the center of \mathfrak{k} . Viewing \mathfrak{k} as the holonomy algebra of $G_2(\mathbb{C}^{m+2})$, the center \mathfrak{R} induces a Kähler structure J and the $\mathfrak{s}u(2)$ -part a quaternionic Kähler structure \mathfrak{J} on $G_2(\mathbb{C}^{m+2})$. If J_1 is any almost Hermitian structure in \mathfrak{J} , then $JJ_1 = J_1J$, and JJ_1 is a symmetric endomorphism

14

with $(JJ_1)^2 = I$ and $tr(JJ_1) = 0$. This fact will be used frequently throughout this paper.

A canonical local basis J_1, J_2, J_3 of \mathfrak{J} consists of three local almost Hermitian structures J_{ν} in \mathfrak{J} such that $J_{\nu}J_{\nu+1} = J_{\nu+2} = -J_{\nu+1}J_{\nu}$, where the index is taken modulo three. Since \mathfrak{J} is parallel with respect to the Riemannian connection $\overline{\nabla}$ of $(G_2(\mathbb{C}^{m+2}), g)$, there exist for any canonical local basis J_1, J_2, J_3 of \mathfrak{J} three local one-forms q_1, q_2, q_3 such that

(1.1)
$$\bar{\nabla}_X J_{\nu} = q_{\nu+2}(X) J_{\nu+1} - q_{\nu+1}(X) J_{\nu+2}$$

for all vector fields X on $G_2(\mathbb{C}^{m+2})$. This fact will be used in Section 2.

On the other hand, we introduce the Riemannian curvature tensor of $G_2(\mathbb{C}^{m+2})$ defined in such a way that

(1.2)

$$\bar{R}(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY - 2g(JX,Y)JZ + \sum_{\nu=1}^{3} \{g(J_{\nu}Y,Z)J_{\nu}X - g(J_{\nu}X,Z)J_{\nu}Y - 2g(J_{\nu}X,Y)J_{\nu}Z\} + \sum_{\nu=1}^{3} \{g(J_{\nu}JY,Z)J_{\nu}JX - g(J_{\nu}JX,Z)J_{\nu}JY\},\$$

where J_1, J_2, J_3 denotes a canonical local basis of \mathfrak{J} (See [2]).

2. Some fundamental formulas for real hypersurfaces in $G_2(\mathbb{C}^{m+2})$

In this section we derive some basic formulas from the Codazzi equation for a real hypersurface in $G_2(\mathbb{C}^{m+2})$.

Let M be a real hypersurface of $G_2(\mathbb{C}^{m+2})$, that is, a hypersurface of $G_2(\mathbb{C}^{m+2})$ with real codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal field of M and A the shape operator of M with respect to N. The Kähler structure J of $G_2(\mathbb{C}^{m+2})$ induces on M an almost contact metric structure (ϕ, ξ, η, g) . Furthermore, let J_1, J_2, J_3 be a canonical local basis of \mathfrak{J} . Then each J_{ν} induces an almost contact

metric structure $(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g)$ on M. Using the above expression (1.2) for \bar{R} , the Gauss and the Codazzi equations are respectively given by

$$\begin{split} R(X,Y)Z =& g(Y,Z)X - g(X,Z)Y \\ &+ g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z \\ &+ \sum_{\nu=1}^{3} \left\{ g(\phi_{\nu}Y,Z)\phi_{\nu}X - g(\phi_{\nu}X,Z)\phi_{\nu}Y \\ &- 2g(\phi_{\nu}X,Y)\phi_{\nu}Z \right\} \\ &+ \sum_{\nu=1}^{3} \left\{ g(\phi_{\nu}\phi Y,Z)\phi_{\nu}\phi X - g(\phi_{\nu}\phi X,Z)\phi_{\nu}\phi Y \right\} \\ &- \sum_{\nu=1}^{3} \left\{ \eta(Y)\eta_{\nu}(Z)\phi_{\nu}\phi X - \eta(X)\eta_{\nu}(Z)\phi_{\nu}\phi Y \right\} \\ &- \sum_{\nu=1}^{3} \left\{ \eta(X)g(\phi_{\nu}\phi Y,Z) - \eta(Y)g(\phi_{\nu}\phi X,Z) \right\} \xi_{\nu} \\ &+ g(AY,Z)AX - g(AX,Z)AY \end{split}$$

and

$$\begin{split} (\nabla_X A)Y - (\nabla_Y A)X = &\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \\ &+ \sum_{\nu=1}^3 \left\{ \eta_\nu(X)\phi_\nu Y - \eta_\nu(Y)\phi_\nu X \\ &- 2g(\phi_\nu X, Y)\xi_\nu \right\} \\ &+ \sum_{\nu=1}^3 \left\{ \eta_\nu(\phi X)\phi_\nu\phi Y - \eta_\nu(\phi Y)\phi_\nu\phi X \right\} \\ &+ \sum_{\nu=1}^3 \left\{ \eta(X)\eta_\nu(\phi Y) - \eta(Y)\eta_\nu(\phi X) \right\}\xi_\nu \;, \end{split}$$

where R denotes the curvature tensor of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$.

The following identities can be proved in a straightforward method and will be used frequently in subsequent calculations:

(2.1)
$$\phi_{\nu+1}\xi_{\nu} = -\xi_{\nu+2}, \quad \phi_{\nu}\xi_{\nu+1} = \xi_{\nu+2}, \\ \phi_{\xi_{\nu}} = \phi_{\nu}\xi, \quad \eta_{\nu}(\phi X) = \eta(\phi_{\nu}X), \\ \phi_{\nu}\phi_{\nu+1}X = \phi_{\nu+2}X + \eta_{\nu+1}(X)\xi_{\nu}, \\ \phi_{\nu+1}\phi_{\nu}X = -\phi_{\nu+2}X + \eta_{\nu}(X)\xi_{\nu+1}.$$

Now let us put

$$JX = \phi X + \eta(X)N, \quad J_{\nu}X = \phi_{\nu}X + \eta_{\nu}(X)N$$

for any tangent vector X of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$, where N denotes a normal vector of M in $G_2(\mathbb{C}^{m+2})$. Then from this and the formulas (1.1) and (2.1) we have that

(2.2)
$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi, \quad \nabla_X \xi = \phi AX,$$

(2.3)
$$\nabla_X \xi_{\nu} = q_{\nu+2}(X)\xi_{\nu+1} - q_{\nu+1}(X)\xi_{\nu+2} + \phi_{\nu}AX,$$

(2.4)

$$(\nabla_X \phi_{\nu})Y = -q_{\nu+1}(X)\phi_{\nu+2}Y + q_{\nu+2}(X)\phi_{\nu+1}Y + \eta_{\nu}(Y)AX - g(AX,Y)\xi_{\nu}.$$

Summing up these formulas, we find the following

(2.5)
$$\nabla_X(\phi_{\nu}\xi) = \nabla_X(\phi\xi_{\nu})$$
$$= (\nabla_X\phi)\xi_{\nu} + \phi(\nabla_X\xi_{\nu})$$
$$= q_{\nu+2}(X)\phi_{\nu+1}\xi - q_{\nu+1}(X)\phi_{\nu+2}\xi + \phi_{\nu}\phi AX$$
$$- g(AX,\xi)\xi_{\nu} + \eta(\xi_{\nu})AX.$$

Moreover, from $JJ_{\nu} = J_{\nu}J$, $\nu = 1, 2, 3$, it follows that

(2.6)
$$\phi \phi_{\nu} X = \phi_{\nu} \phi X + \eta_{\nu} (X) \xi - \eta (X) \xi_{\nu}.$$

3. Proof of the main theorem

Now let us contract Y and Z in the equation of Gauss in Section 2. Then the Ricci tensor S of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$ is given by

(3.1)
$$SX = \sum_{i=1}^{4m-1} R(X, e_i) e_i$$
$$= (4m+10)X - 3\eta(X)\xi - 3\sum_{\nu=1}^{3} \eta_{\nu}(X)\xi_{\nu}$$
$$+ \sum_{\nu=1}^{3} \{(\operatorname{Tr}\phi_{\nu}\phi)\phi_{\nu}\phi X - (\phi_{\nu}\phi)^2 X\}$$
$$- \sum_{\nu=1}^{3} \{\eta_{\nu}(\xi)\phi_{\nu}\phi X - \eta(X)\phi_{\nu}\phi\xi_{\nu}\}$$
$$- \sum_{\nu=1}^{3} \{(\operatorname{Tr}\phi_{\nu}\phi)\eta(X) - \eta(\phi_{\nu}\phi X)\}\xi_{\nu}$$
$$+ hAX - A^2X,$$

where h denotes the trace of the shape operator A of M in $G_2(\mathbb{C}^{m+2})$. From the formula $JJ_{\nu} = J_{\nu}J$, Tr $JJ_{\nu} = 0$, $\nu = 1, 2, 3$, we calculate the following for any basis $\{e_1, \dots, e_{4m-1}, N\}$ of the tangent space of $G_2(\mathbb{C}^{m+2})$

(3.2)
$$0 = \text{Tr } JJ_{\nu} = \sum_{k=1}^{4m} g(JJ_{\nu}e_k, e_k)$$
$$= \sum_{k=1}^{4m} g(JJ_{\nu}e_k, e_k) + g(JJ_{\nu}N, N)$$
$$= \text{Tr } \phi\phi_{\nu} - \eta_{\nu}(\xi) - g(J_{\nu}N, JN)$$
$$= \text{Tr } \phi\phi_{\nu} - 2\eta_{\nu}(\xi)$$

and

(3.3)

$$(\phi_{\nu}\phi)^{2}X = \phi_{\nu}\phi(\phi\phi_{\nu}X - \eta_{\nu}(X)\xi + \eta(X)\xi_{\nu})$$

$$= \phi_{\nu}(-\phi_{\nu}X + \eta(\phi_{\nu}X)\xi) + \eta(X)\phi_{\nu}^{2}\xi$$

$$= X - \eta_{\nu}(X)\xi_{\nu} + \eta(\phi_{\nu}X)\phi_{\nu}\xi + \eta(X)\{-\xi + \eta_{\nu}(\xi)\xi\}.$$

Substituting (3.2) and (3.3) into (3.1), we have

(3.4)

$$SX = (4m+10)X - 3\eta(X)\xi - 3\sum_{\nu=1}^{3} \eta_{\nu}(X)\xi_{\nu} + \sum_{\nu=1}^{3} \{\eta_{\nu}(\xi)\phi_{\nu}\phi X - X - \eta(\phi_{\nu}X)\phi_{\nu}\xi - \eta(X)\eta_{\nu}(\xi)\xi\} + hAX - A^{2}X = (4m+7)X - 3\eta(X)\xi - 3\sum_{\nu=1}^{3} \eta_{\nu}(X)\xi_{\nu} + \sum_{\nu=1}^{3} \{\eta_{\nu}(\xi)\phi_{\nu}\phi X - \eta(\phi_{\nu}X)\phi_{\nu}\xi - \eta(X)\eta_{\nu}(\xi)\xi\} + hAX - A^{2}X.$$

From this, substituting $X = \xi$, we have

$$S\xi = 4(m+1)\xi - 3\sum_{\nu=1}^{3}\eta_{\nu}(\xi)\xi_{\nu} - \sum_{\nu=1}^{3}\eta_{\nu}(\xi)\xi_{\nu} + hA\xi - A^{2}\xi.$$

Then the Ricci curvature $\operatorname{Ric}(\xi,\xi)$ along the direction ξ is given by

(3.5)
$$\operatorname{Ric}(\xi,\xi) = g(S\xi,\xi) = 4(m+1) - 4\sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} + hg(A\xi,\xi) - g(A^{2}\xi,\xi).$$

Now we want to introduce an integral formula due to Watanabe [14] as follows:

Theorem A. Let M be a compact Riemannian manifold. Then for any vector field X defined on M we have

$$\int_{M} (Ric(X, X) + \|\nabla X\|^2) * 1 \ge 0,$$

where Ric(X, X) denotes the Ricci curvature along the direction of the vector X. Then the equality holds if and only if X is a harmonic vector field.

By applying Theorem A to the structure vector ξ of a compact real hypersurface M in $G_2(\mathbb{C}^{m+2})$ we know that

$$\int_{M} (\operatorname{Ric} (\xi, \xi) + \|\nabla \xi\|^{2}) * 1$$

=
$$\int_{M} \{4(m+1) - 4\sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} + \operatorname{Tr} A \ g(A\xi, \xi) - g(A^{2}\xi, \xi) + \operatorname{Tr} A^{2} - g(A\xi, A\xi)\} * 1 \ge 0.$$

From this we know that if the trace of the shape operator A^2 satisfies

(3.6)
$$\operatorname{Tr} A^2 \leq 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi)^2 + 2 \|A\xi\|^2 - \operatorname{Tr} A g(A\xi,\xi) - 4(m+1),$$

then the equality holds and the structure vector ξ is a harmonic vector field.

Now by Theorem A on a compact real hypersurface in $G_2(\mathbb{C}^{m+2})$ we have the following:

Proposition 3.1. Let M be a compact real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \ge 3$, with the formula (3.6). If the Ricci curvature satisfies $\operatorname{Ric}(\xi, \xi) \ge 0$, then ξ is a harmonic vector field and has vanishing covariant derivative. Moreover, if the Ricci curvature is positive definite, then a harmonic vector field other than zero does not exist in M.

By the assumption of Proposition 3.1 we know that $\operatorname{Ric}(\xi,\xi) = 0$ and $\nabla \xi = 0$ when the Ricci curvature satisfy $\operatorname{Ric}(\xi,\xi) \ge 0$. The latter part implies

$$AX = \eta(AX)\xi$$

for any tangent vector field X on M, that is, M is a totally η -umbilical real hypersurface in $G_2(\mathbb{C}^{m+2})$. From this we know that the structure vector

 ξ is principal, that is, $A\xi = \alpha\xi$, where $\alpha = \eta(A\xi)$ and the trace h of the shape operator is given by

$$h = \text{Tr } A = \sum_{i=1}^{4m-1} g(Ae_i, e_i)$$
$$= \sum_{i=1}^{4m-1} g(\eta(Ae_i)\xi, e_i) = \eta(A\xi) = \alpha.$$

From this, together with (3.5), we have

$$\operatorname{Ric}(\xi,\xi) = 4(m+1) - 4\sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2}.$$

Then on such a compact real hypersurface M in $G_2(\mathbb{C}^{m+2})$ the Ricci curvature $\operatorname{Ric}(\xi,\xi) = 0$ implies

(3.7)
$$\sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} = m + 1.$$

Now let us denote by \mathfrak{D} the orthogonal complement of $\mathfrak{D}^{\perp} = \text{Span} \{\xi_1, \xi_2, \xi_3\}$ in the tangent space $T_x M$, $x \in M$ of M in

 $G_2(\mathbb{C}^{m+2})$, which can be decomposed in such a way that

$$T_x M = \mathfrak{D} \oplus \mathfrak{D}^\perp.$$

Then we are able to consider the following cases:

Case 1: $\xi \in \mathfrak{D}$ or $\xi \in \mathfrak{D}^{\perp}$.

Then (3.7) gives a contradiction such that m + 1 = 0 for $\xi \in \mathfrak{D}$. For the case $\xi \in \mathfrak{D}^{\perp}$ we may put $\xi = \xi_1$. Then (3.7) implies m = 0, which makes a contradiction. So this case also can not be appeared.

Case 2: $\xi \in T_x M = \mathfrak{D} \oplus \mathfrak{D}^{\perp}$.

Then in this case we know that

$$\eta_{\nu}(\xi) = \|\xi\| \|\xi_{\nu}\| \cos \theta_{\nu} = \cos \theta_{\nu} \le 1.$$

This implies

$$m+1 = \sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} = \sum_{\nu=1}^{3} \cos^{2} \theta_{\nu} \le 3,$$

which also contradicts our assumption $m \ge 3$.

Summing up all the situations mentioned above, we have the following

Theorem 3.1. There do not exist any compact real hypersurfaces in $G_2(\mathbb{C}^{m+2}), m \geq 3$, satisfying Ric $(\xi, \xi) \geq 0$ and (3.6).

4. Killing vector fields

Let M be a compact Riemannian manifold with Riemannian metric g. Then a vector field X of M is said to be *Killing* if and only if the Riemannian metric g is invariant along the direction of X, that is, $\mathcal{L}_X g = 0$. In component wise, we can express it by $\mathcal{L}_X g_{ji} = \nabla_j X_i + \nabla_i X_j = 0$.

Now on a compact Riemannian manifold M we introduce an integral formula due to Watanabe [14] as follows:

(4.1)
$$\int_{M} \left[\operatorname{Ric}(X, X) + \frac{1}{2} \| \mathcal{L}_{X} g \|^{2} - \| \nabla X \|^{2} - (\operatorname{div} X)^{2} \right] * 1 = 0.$$

From this, we know that if X is Killing, then $\nabla_i X^i = 0$. So its divergence vector $\operatorname{div} X = -\sum_i \nabla_i X^i = 0$. Accordingly, the integral formula reduces to

(4.2)
$$\int_{M} (\operatorname{Ric}(X, X) - \|\nabla X\|^2) * 1 = 0.$$

Now let us apply (4.1) to a compact real hypersurface M in $G_2(\mathbb{C}^{m+2})$. Then the formula (2.1) gives the following

div
$$\xi = \sum_{i=1}^{4m-1} g(\nabla_{e_i}\xi, e_i) = \text{Tr}\phi A = 0.$$

From this, if we substitute the vector ξ in (4.1), we have the following integral formula

$$\int_{M} (\operatorname{Ric}(\xi,\xi) - \|\nabla\xi\|^2) * 1 = -\frac{1}{2} \int_{M} \|\mathcal{L}_{\xi}g\|^2 * 1 \le 0.$$

From this, together with the formula (3.5), we assert the following

Proposition 4.1. Let M be a compact real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \ge 3$, with the Ricci curvature $Ric(\xi, \xi) \le 0$. If M satisfies

(4.3)
$$TrA^{2} \leq 4(m+1) - 4\sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} + TrA \ g(A\xi,\xi),$$

then the structure vector ξ is a Killing vector field and has vanishing covariant derivative. Moreover, if the Ricci curvature is negative-definite, then a Killing vector field other than zero does not exist on M.

In the paper [3] due to Berndt and Suh we have proved that the structure vector ξ is a Killing vector field, that is $\mathcal{L}_{\xi}g = 0$ if and only if the structure tensor ϕ and the shape operator A commutes with each other. Moreover, in such a case we have asserted that M is congruent to a tube of radius rover a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$. For such kind of tubes we introduce a Proposition given in [3] as follows:

Proposition 4.2. Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$. Suppose that $A\mathfrak{D} \subset \mathfrak{D}$, $A\xi = \alpha\xi$, and ξ is tangent to \mathfrak{D}^{\perp} . Let $J_1 \in \mathfrak{J}$ be the almost Hermitian structure such that $JN = J_1N$. Then M has three(if $r = \pi/2$) or four(otherwise) distinct constant principal curvatures

$$\alpha = \sqrt{8} cot(\sqrt{8}r) \ , \ \beta = \sqrt{2} cot(\sqrt{2}r) \ , \ \lambda = -\sqrt{2} tan(\sqrt{2}r), \ \mu = 0$$

with some $r \in (0, \pi/\sqrt{8})$. The corresponding multiplicities are

$$m(\alpha) = 1$$
, $m(\beta) = 2$, $m(\lambda) = 2m - 2 = m(\mu)$,

and the corresponding eigenspaces we have

$$\begin{split} T_{\alpha} &= \mathbb{R}\xi = \mathbb{R}\xi_{1}, \\ T_{\beta} &= Span \; \{\xi_{2}, \xi_{3}\}, \\ T_{\lambda} &= \{X | X \bot \mathbb{H}\xi, JX = J_{1}X\}, \\ T_{\mu} &= \{X | X \bot \mathbb{H}\xi, JX = -J_{1}X\}. \end{split}$$

From these Propositions 4.1 and 4.2 we know that

$$A\xi_2 = \eta(A\xi_2)\xi.$$

Then this gives that

$$0 = g(A\xi_2, \xi_2) = \sqrt{2}\cot(\sqrt{2}r).$$

Then $r = \frac{\pi}{\sqrt{8}}$, which contradicts Proposition 4.2. Then summing up this situation we assert the following:

Theorem 4.3. There does not exist any compact real hypersurface in $G_2(\mathbb{C}^{m+2})$ satisfying $Ric(\xi,\xi) \leq 0$ and (4.3).

Now let M be a compact real hypersurface in $G_2(\mathbb{C}^{m+2})$. Then by the formula (2.1) its structure vector ξ satisfies the following formulas:

div
$$\xi = \sum_{i=1}^{4m-1} g(\nabla_{e_i}\xi, e_i) = \operatorname{Tr} \phi A = 0,$$

and

$$\|\nabla \xi\|^2 = g(\nabla \xi, \nabla \xi) = \text{Tr } A^2 - \sum_{i=1}^{4m-1} \eta(Ae_i)\eta(Ae_i).$$

From this, together with (3.5) and the integral formula (4.1), we know that

$$-\frac{1}{2} \int_{M} \|\mathcal{L}_{\xi}g\|^{2} * 1$$

= $\int_{M} \{4(m+1) - 4\sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} + hg(A\xi,\xi) - \text{Tr } A^{2}\} * 1 \leq 0.$

From this we assert the following:

Theorem 4.4. Let M be a compact real hypersurface in $G_2(\mathbb{C}^{m+2}), m \geq 3$. If it satisfies

$$\int_{M} \left\{ 4(m+1) - 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} + TrAg(A\xi,\xi) - Tr A^{2} \right\} * 1 \ge 0,$$

then M is congruent to a tube of radius r over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Let M be a compact real hypersurface in $G_2(\mathbb{C}^{m+2})$, which satisfies

Tr
$$A^2 + 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi)^2 \leq 4(m+1) + \text{Tr}Ag(A\xi,\xi).$$

Then we also assert the following

Corollary 4.5. Let M be a compact real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \ge 3$. If M satisfies

$$Tr A^{2} + 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi)^{2} \leq 4(m+1) + Tr Ag(A\xi,\xi),$$

then M is congruent to a tube of radius r over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

By this Corollary and Proposition 4.2 we are able to assert the following

Corollary 4.6. Let M be a compact real hypersurface of a complex twoplane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \ge 3$. If M is a minimal hypersurface satisfying

Tr
$$A^2 + 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi)^2 \leq 4(m+1),$$

then M is congruent to a tube of radius r, $\cot\sqrt{2}r = \sqrt{\frac{2m-1}{3}}$, over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

References

- J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math., 419 (1991), 9–26.
- [2] J. Berndt and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math., 127 (1999), 1-14.
- [3] J. Berndt and Y.J. Suh, Isometric flows on real hypersurfaces in complex two-plane Grassmannians, *Monatsh. Math.*, **137** (2002), 87-98.
- [4] T.E. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, *Trans. Amer. Math. Soc.*, 269 (1982), 481-499.
- [5] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, *Trans. Amer. Math. Soc.*, **296** (1986), 137–149.
- [6] A. Martinez and J.D. Pérez, Real hypersurfaces in quaternionic projective space, Ann. Mat. Pura Appl., 145 (1986), 355–384.
- [7] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, *Geom. Dedicata*, **20** (1986), 245–261.
- [8] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212 (1975), 355–364.
- [9] M. Okumura, Compact real hypersurfaces of a complex projective space, J. Differential Geom., 12 (1977), 595–598.
- [10] M. Okumura, Compact real hypersurfaces with constant mean curvature of a complex projective space, J. Differential Geom., 13 (1978), 43–50.
- [11] J.D. Pérez and Y.J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$, Differential Geom. Appl., 7 (1997), 211–217.

- [12] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, Bull. Austral. Math. Soc., 68 (2003), 493–502.
- [13] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator, Bull. Austral. Math. Soc., 69 (2003), 379–393.
- Y. Watanabe, Integral inequalities in compact orientable manifolds, Riemannian or Kählerian manifolds, Kōdai Math. Sem. Rep., 20 (1968), 261–271.
- [15] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, Inc, New York, 1970.

Young Jin SUH Department of Mathematics Kyungpook National University Taegu, 702-701, KOREA e-mail: yjsuh@mail.knu.ac.kr

Yoshiyuki WATANABE Department of Mathematics University of Toyama Toyama, 930-8555, JAPAN e-mail: ywatnabe@sci.toyama-u.ac.jp

(Received January 28, 2005)