Math. J. Toyama Univ.

Vol. 27(2004), 91-99

Picone identities for ordinary differential equations of fourth order

Tomoyuki Tanigawa*and Norio Yoshida ${ }^{\dagger}$

Abstract

It is known that there are two kinds of Picone identities for fourth order ordinary differential equations. A new type of Picone identity is established, and Sturmian comparison theorems are derived.

1. Introduction

Picone identity is a fundamental tool in establishing Sturmian comparison theorems. We refer the reader to Cimmino [1], Kreith [6, 7] and Kuks [8] for fourth order ordinary differential equations, and to Cimmino [2], Eastham [4], Halanay and Šandor [5], Kusano and Yoshida [9] for even order ordinary differential equations. Two kind of Picone identities are known for ordinary differential equations of fourth order, see, for example, Eastham [4, p.197], Kreith [6, p.665].

[^0]The objective of this paper is to establish a new type of Picone identity for ordinary differential equations of fourth order. We can derive Sturmian comparison theorems as applications.

2. Picone-type identities

We consider the ordinary differential operators l and L defined by

$$
\begin{aligned}
l[u] & \equiv\left(a(t) u^{\prime \prime}\right)^{\prime \prime}-\left(b(t) u^{\prime}\right)^{\prime}+c(t) u, & & t \in(\alpha, \beta), \\
L[v] & \equiv\left(A(t) v^{\prime \prime}\right)^{\prime \prime}-\left(B(t) v^{\prime}\right)^{\prime}+C(t) v, & & t \in(\alpha, \beta),
\end{aligned}
$$

where (α, β) is a finite interval, $a(t) \in C^{2}[\alpha, \beta], A(t) \in C^{2}[\alpha, \beta], b(t) \in$ $C^{1}[\alpha, \beta], B(t) \in C^{1}[\alpha, \beta], c(t) \in C[\alpha, \beta]$ and $C(t) \in C[\alpha, \beta]$.

The domains $\mathcal{D}_{l}((\alpha, \beta))$ of l is defined to be the set of all real-valued functions of class $C^{4}(\alpha, \beta) \cap C^{2}[\alpha, \beta]$. The domain $\mathcal{D}_{L}((\alpha, \beta))$ is defined to be the same as that of l, that is, $\mathcal{D}_{l}((\alpha, \beta))=\mathcal{D}_{L}((\alpha, \beta))$.

The following Picone identity is known, see, for example, Kreith [7, p.270].

Theorem 1. Let v_{1} and v_{2} be linearly independent solutions of $L[v]=0$ on $[\alpha, \beta]$ such that

$$
v_{1}(\alpha)=v_{1}^{\prime}(\alpha)=v_{2}(\alpha)=v_{2}^{\prime}(\alpha)=0
$$

and define the functions σ and τ by

$$
\begin{aligned}
& \sigma=v_{1} v_{2}^{\prime}-v_{2} v_{1}^{\prime}, \\
& \tau=v_{1}^{\prime} v_{2}^{\prime \prime}-v_{2}^{\prime} v_{1}^{\prime \prime} .
\end{aligned}
$$

If σ does not vanish in $(\alpha, \beta]$, then the following Picone identity holds:

$$
\begin{aligned}
& \frac{d}{d t}\left[-\left(a(t) u^{\prime \prime}\right)^{\prime} u+a(t) u^{\prime \prime} u^{\prime}+b(t) u^{\prime} u-A(t) \frac{\sigma^{\prime}}{\sigma}\left(u^{\prime}\right)^{2}\right. \\
& \left.\quad+2 A(t) \frac{\tau}{\sigma} u u^{\prime}-\frac{(A(t) \tau)^{\prime}}{\sigma} u^{2}\right] \\
& =(a(t)-A(t))\left(u^{\prime \prime}\right)^{2}+(b(t)-B(t))\left(u^{\prime}\right)^{2}+(c(t)-C(t)) u^{2} \\
& \quad+A(t)\left(u^{\prime \prime}-\frac{\sigma^{\prime}}{\sigma} u^{\prime}+\frac{\tau}{\sigma} u\right)^{2}
\end{aligned}
$$

in $(\alpha, \beta]$.

The next Picone identity is a special case of a result of Kusano and Yoshida [9, Theorem 1A].

Theorem 2. If $u \in \mathcal{D}_{l}((\alpha, \beta)), v \in \mathcal{D}_{L}((\alpha, \beta))$ and if none of v and v^{\prime} vanish in (α, β), then we have the Picone identity:

$$
\begin{gather*}
\frac{d}{d t}\left[\frac{u}{v}\left\{u\left(A(t) v^{\prime \prime}\right)^{\prime}-v\left(a(t) u^{\prime \prime}\right)^{\prime}\right\}+\frac{u^{\prime}}{v^{\prime}}\left\{v^{\prime}\left(a(t) u^{\prime \prime}\right)-u^{\prime}\left(A(t) v^{\prime \prime}\right)\right\}\right. \\
\left.\quad+\frac{u}{v}\left\{v\left(b(t) u^{\prime}\right)-u\left(B(t) v^{\prime}\right)\right\}\right] \\
=(a(t)-A(t))\left(u^{\prime \prime}\right)^{2}+(b(t)-B(t))\left(u^{\prime}\right)^{2}+(c(t)-C(t)) u^{2} \\
+A(t)\left(u^{\prime \prime}-\frac{u^{\prime}}{v^{\prime}} v^{\prime \prime}\right)^{2}+\left(-v^{\prime}\left(A(t) v^{\prime \prime}\right)^{\prime}+B(t)\left(v^{\prime}\right)^{2}\right)\left(\frac{u^{\prime}}{v^{\prime}}-\frac{u}{v}\right)^{2} \\
+\frac{u}{v}(u L[v]-v l[u]) . \tag{1}
\end{gather*}
$$

Now we present new Picone identities in the following Theorems 3 and 4.
Theorem 3. If $v \in \mathcal{D}_{L}((\alpha, \beta))$ and v does not vanish in (α, β), then we obtain the Picone identity:

$$
\begin{align*}
&-\frac{d}{d t} {\left[\frac{u}{v}\left\{u\left(A(t) v^{\prime \prime}\right)^{\prime}\right\}-\frac{u^{\prime}}{v}\left\{u\left(A(t) v^{\prime \prime}\right)\right\}-\frac{u}{v}\left\{u\left(B(t) v^{\prime}\right)\right\}-u\left(A(t) v^{\prime \prime}\right)\left(\frac{u}{v}\right)^{\prime}\right] } \\
&=A(t)\left(u^{\prime \prime}\right)^{2}+B(t)\left(u^{\prime}\right)^{2}+C(t) u^{2}-A(t)\left(u^{\prime \prime}-\frac{u}{v} v^{\prime \prime}\right)^{2} \\
&-v\left(B(t) v-2 A(t) v^{\prime \prime}\right)\left\{\left(\frac{u}{v}\right)^{\prime}\right\}^{2}-\frac{u^{2}}{v} L[v] \tag{2}
\end{align*}
$$

Proof. The following identity holds:

$$
\begin{align*}
& \frac{d}{d t}\left[-\frac{u^{2}}{v}\left(A(t) v^{\prime \prime}\right)^{\prime}+u\left(A(t) v^{\prime \prime}\right)\left(\frac{u}{v}\right)^{\prime}+\frac{u^{\prime}}{v} u\left(A(t) v^{\prime \prime}\right)\right] \\
& =A(t)\left(u^{\prime \prime}\right)^{2}+C(t) u^{2}-A(t)\left(u^{\prime \prime}-\frac{u}{v} v^{\prime \prime}\right)^{2} \\
& \tag{3}\\
& +2 A(t) \frac{v^{\prime \prime}}{v}\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2}-\frac{u^{2}}{v} L[v]
\end{align*}
$$

which is a special case of Dunninger [3, Theorem 2.2]. We easily obtain

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{u}{v}\left(u B(t) v^{\prime}\right)\right]=B(t)\left(u^{\prime}\right)^{2}-B(t)\left(v\left(\frac{u}{v}\right)^{\prime}\right)^{2}+\frac{u^{2}}{v}\left(B(t) v^{\prime}\right)^{\prime} \tag{4}
\end{equation*}
$$

Combining (3) with (4) yields the desired identity (2).
Theorem 4. If $v \in \mathcal{D}_{L}((\alpha, \beta))$ and v does not vanish in (α, β), then we obtain the Picone identity:

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{u}{v}\left\{u\left(A(t) v^{\prime \prime}\right)^{\prime}-v\left(a(t) u^{\prime \prime}\right)^{\prime}\right\}+\frac{u^{\prime}}{v}\left\{v\left(a(t) u^{\prime \prime}\right)-u\left(A(t) v^{\prime \prime}\right)\right\}\right. \\
& \left.\quad+\frac{u}{v}\left\{v\left(b(t) u^{\prime}\right)-u\left(B(t) v^{\prime}\right)\right\}-u\left(A(t) v^{\prime \prime}\right)\left(\frac{u}{v}\right)^{\prime}\right] \\
& =(a(t)-A(t))\left(u^{\prime \prime}\right)^{2}+(b(t)-B(t))\left(u^{\prime}\right)^{2}+(c(t)-C(t)) u^{2} \\
& +A(t)\left(u^{\prime \prime}-\frac{u}{v} v^{\prime \prime}\right)^{2}+v\left(-2 A(t) v^{\prime \prime}+B(t) v\right)\left\{\left(\frac{u}{v}\right)^{\prime}\right\}^{2}+\frac{u}{v}(u L[v]-v l[u]) . \tag{5}
\end{align*}
$$

Proof. It is easy to see that

$$
\begin{align*}
u l[u]=\frac{d}{d t}\left[u\left(a(t) u^{\prime \prime}\right)^{\prime}\right]-\frac{d}{d t} & {\left[u^{\prime}\left(a(t) u^{\prime \prime}\right)\right]-\frac{d}{d t}\left[u\left(b(t) u^{\prime}\right)\right] } \\
& +a(t)\left(u^{\prime \prime}\right)^{2}+b(t)\left(u^{\prime}\right)^{2}+c(t) u^{2} . \tag{6}
\end{align*}
$$

Combining (2) with (6), we arrive at (5).
Remark 1. In the case where none of v and v^{\prime} does not vanish in (α, β), the Picone identity (2) reduces to (1) with $a(t)=b(t)=c(t)=0$. It is easy to check that

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{u^{\prime}}{v}\left\{u\left(A(t) v^{\prime \prime}\right)\right\}+u\left(A(t) v^{\prime \prime}\right)\left(\frac{u}{v}\right)^{\prime}\right]=\frac{d}{d t}\left[\left(\frac{u^{2}}{v}\right)^{\prime} A(t) v^{\prime \prime}\right] . \tag{7}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{d}{d t}\left[\left(\frac{u^{2}}{v}\right)^{\prime} A(t) v^{\prime \prime}+\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2} \frac{A(t) v^{\prime \prime}}{v^{\prime}}\right]=\frac{d}{d t}\left[\frac{\left(u^{\prime}\right)^{2}}{v^{\prime}} A(t) v^{\prime \prime}\right] \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
&-\frac{d}{d t} {\left[\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2} \frac{A(t) v^{\prime \prime}}{v^{\prime}}\right] } \\
&=-A(t)\left(u^{\prime \prime}-\frac{u}{v} v^{\prime \prime}\right)^{2}+2 \frac{A(t) v^{\prime \prime}}{v}\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2} \\
& \quad-v^{\prime}\left(A(t) v^{\prime \prime}\right)^{\prime}\left(\frac{u^{\prime}}{v^{\prime}}-\frac{u}{v}\right)^{2}+A(t)\left(u^{\prime \prime}-\frac{u^{\prime}}{v^{\prime}} v^{\prime \prime}\right)^{2}, \tag{9}
\end{align*}
$$

combining (7)-(9) yields

$$
\begin{align*}
\frac{d}{d t} & {\left[\frac{u^{\prime}}{v}\left\{u\left(A(t) v^{\prime \prime}\right)\right\}+u\left(A(t) v^{\prime \prime}\right)\left(\frac{u}{v}\right)^{\prime}\right] } \\
= & \frac{d}{d t}\left[\frac{u^{\prime}}{v^{\prime}}\left\{u^{\prime}\left(A(t) v^{\prime \prime}\right)\right\}\right]-A(t)\left(u^{\prime \prime}-\frac{u}{v} v^{\prime \prime}\right)^{2}+2 \frac{A(t) v^{\prime \prime}}{v}\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2} \\
& -v^{\prime}\left(A(t) v^{\prime \prime}\right)^{\prime}\left(\frac{u^{\prime}}{v^{\prime}}-\frac{u}{v}\right)^{2}+A(t)\left(u^{\prime \prime}-\frac{u^{\prime}}{v^{\prime}} v^{\prime \prime}\right)^{2} . \tag{10}
\end{align*}
$$

Substituting (10) into the left hand side of (2), we observe that (2) reduces to (1) with $a(t)=b(t)=c(t)=0$.

3. Sturmian comparison theorems

By using the Picone identity established in Section 2, we derive Sturmian comparison theorems.

Theorem 5. Assume that $A(t) \geq 0$ in (α, β). If there exists a nontrivial solution $u \in \mathcal{D}_{l}((\alpha, \beta))$ of $l[u]=0$ in (α, β) such that

$$
u(\alpha)=u^{\prime}(\alpha)=u(\beta)=u^{\prime}(\beta)=0
$$

and

$$
\begin{aligned}
V[u] & \equiv \int_{\alpha}^{\beta}\left[(a(t)-A(t))\left(u^{\prime \prime}\right)^{2}+(b(t)-B(t))\left(u^{\prime}\right)^{2}+(c(t)-C(t)) u^{2}\right] d t \\
& \geq 0,
\end{aligned}
$$

then every solution $v \in \mathcal{D}_{L}((\alpha, \beta))$ of $L[v]=0$ in (α, β) satisfying

$$
\begin{align*}
& v\left(B(t) v-2 A(t) v^{\prime \prime}\right) \geq 0 \quad \text { in }(\alpha, \beta), \tag{11}\\
& B(t) v-2 A(t) v^{\prime \prime} \neq 0 \quad \text { in }(\alpha, \beta) \tag{12}
\end{align*}
$$

has a zero on $[\alpha, \beta]$.
Proof. Suppose to the contrary that there exists a solution $v \in \mathcal{D}_{L}((\alpha, \beta))$ of $L[v]=0$ in (α, β) which satisfies (11), (12) and the property that $v \neq 0$ on $[\alpha, \beta]$. Integrating (5) over $[\alpha, \beta]$, we find that

$$
\begin{aligned}
0 & \geq V[u]+\int_{\alpha}^{\beta} v\left(B(t) v-2 A(t) v^{\prime \prime}\right)\left\{\left(\frac{u}{v}\right)^{\prime}\right\}^{2} d t \\
& \geq 0
\end{aligned}
$$

and therefore we obtain

$$
\int_{\alpha}^{\beta} v\left(B(t) v-2 A(t) v^{\prime \prime}\right)\left\{\left(\frac{u}{v}\right)^{\prime}\right\}^{2} d t=0
$$

The assumptions (11) and (12) imply that $\left(\frac{u}{v}\right)^{\prime} \equiv 0$ in (α, β), that is, $u=k v$ for some nonzero constant k. Since $u(\alpha)=u(\beta)=0$ and $v \neq 0$ on $[\alpha, \beta]$, we are led to a contradiction. The proof is complete.

Theorem 6. Assume that $A(t) \geq 0$ in (α, β). If there exists a nontrivial function $u \in C^{2}[\alpha, \beta]$ such that

$$
\begin{align*}
& u(\alpha)=u^{\prime}(\alpha)=u(\beta)=u^{\prime}(\beta)=0 \tag{13}\\
& M[u] \equiv \int_{\alpha}^{\beta}\left[A(t)\left(u^{\prime \prime}\right)^{2}+B(t)\left(u^{\prime}\right)^{2}+C(t) u^{2}\right] d t \leq 0 \tag{14}
\end{align*}
$$

then every solution $v \in \mathcal{D}_{L}((\alpha, \beta))$ of $L[v]=0$ in (α, β) satisfying (11) and (12) has a zero in (α, β) unless u is a constant multiple of v.

Proof. Let $v \in \mathcal{D}_{L}((\alpha, \beta))$ be any solution of $L[v]=0$ in (α, β) which satisfies $(11),(12)$ and the condition $v \neq 0$ in (α, β). In view of the boundary condition (13) and the fact $u \in C^{2}[\alpha, \beta]$, we see that u belongs to the Sobolev space $\stackrel{\circ}{\mathrm{H}}_{2}((\alpha, \beta))$ which is the closure in the norm

$$
\begin{equation*}
\|u\|=\|u\|_{2}=\left(\int_{\alpha}^{\beta} \sum_{j=0}^{2}\left|u^{(j)}(t)\right|^{2} d t\right)^{1 / 2} \tag{15}
\end{equation*}
$$

of the class $C_{0}^{\infty}((\alpha, \beta))$ of infinitely differentiable functions with compact support in (α, β). Let $\left\{u_{m}(t)\right\}$ be a sequence of functions in $C_{0}^{\infty}((\alpha, \beta))$
converging to u in norm (15). Then, the Picone identity (2) with $u=u_{m}$ holds. Integrating (2) with $u=u_{m}$ over (α, β), we find that

$$
\begin{aligned}
M\left[u_{m}\right] & =\int_{\alpha}^{\beta}\left[A(t)\left(u_{m}^{\prime \prime}-\frac{u_{m}}{v} v^{\prime \prime}\right)^{2}+v\left(B(t) v-2 A(t) v^{\prime \prime}\right)\left\{\left(\frac{u_{m}}{v}\right)^{\prime}\right\}^{2}\right] d t \\
& \geq 0 .
\end{aligned}
$$

Since $A(t), B(t)$ and $C(t)$ are uniformly bounded on $[\alpha, \beta]$, there is a constant $K>0$ such that

$$
\begin{aligned}
& \left|M\left[u_{m}\right]-M[u]\right| \\
& =\left|\int_{\alpha}^{\beta}\left[A(t)\left(\left(u_{m}^{\prime \prime}\right)^{2}-\left(u^{\prime \prime}\right)^{2}\right)+B(t)\left(\left(u_{m}^{\prime}\right)^{2}-\left(u^{\prime}\right)^{2}\right)+C(t)\left(u_{m}^{2}-u^{2}\right)\right] d t\right| \\
& \quad \leq K \int_{\alpha}^{\beta}\left|u_{m}^{\prime \prime}\left(u_{m}-u\right)^{\prime \prime}+u^{\prime \prime}\left(u_{m}-u\right)^{\prime \prime}\right| d t \\
& \quad+K \int_{\alpha}^{\beta}\left|u_{m}^{\prime}\left(u_{m}-u\right)^{\prime}+u^{\prime}\left(u_{m}-u\right)^{\prime}\right| d t \\
& \quad+K \int_{\alpha}^{\beta}\left|u_{m}\left(u_{m}-u\right)+u\left(u_{m}-u\right)\right| d t
\end{aligned}
$$

Application of Schwarz inequality yields

$$
\left|M\left[u_{m}\right]-M[u]\right| \leq 3 K\left(\left\|u_{m}\right\|+\|u\|\right)\left\|u_{m}-u\right\| .
$$

Since $\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|=0$, we observe that $\lim _{m \rightarrow \infty} M\left[u_{m}\right]=M[u] \geq 0$, and hence $\stackrel{m \rightarrow \infty}{M}[u]=0$ in view of (14). Let J denote an arbitrary interval with $\bar{J} \subset(\alpha, \beta)$ and define

$$
H_{J}[u] \equiv \int_{J}\left[A(t)\left(u^{\prime \prime}-\frac{u}{v} v^{\prime \prime}\right)^{2}+v\left(B(t) v-2 A(t) v^{\prime \prime}\right)\left\{\left(\frac{u}{v}\right)^{\prime}\right\}^{2}\right] d t
$$

for $u \in C^{2}[\alpha, \beta]$. We easily see that

$$
0 \leq H_{J}\left[u_{m}\right] \leq M\left[u_{m}\right]
$$

and that the inequality

$$
\left|H_{J}\left[u_{m}\right]-H_{J}[u]\right| \leq K_{1}\left(\left\|w_{m}\right\|_{J}+\|w\|_{J}\right)\left\|w_{m}-w\right\|_{J}
$$

holds, where K_{1} is a positive constant, $w_{m}=u_{m} / v, w=u / v$ and the subscript J indicates the integrals involved in the norm (15) are taken over J. As $v \neq 0$ on \bar{J}, we see that $\lim _{m \rightarrow \infty}\left\|w_{m}-w\right\|=0$ when $\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|=0$, and therefore $\lim _{m \rightarrow \infty} H_{J}\left[u_{m}\right]=H_{J}[u]$. Since $\lim _{m \rightarrow \infty} M\left[u_{m}\right]=M[u]=0$, we obtain $\lim _{m \rightarrow \infty} H_{J}^{m \rightarrow \infty}\left[u_{m}\right]=H_{J}[u]=0$. Hence, $\left(\frac{m}{v}\right)^{\prime} \equiv 0$ in J, that is, $u=k v$ in J for some nonzero constant k. We conclude that $u=k v$ in (α, β) by continuity, or u is a constant multiple of v. This completes the proof.

Theorem 7. Assume that $A(t) \geq 0$ in (α, β). If there exists a nontrivial solution $u \in \mathcal{D}_{l}((\alpha, \beta))$ of $l[u]=0$ in (α, β) such that

$$
\begin{aligned}
& u(\alpha)=u^{\prime}(\alpha)=u(\beta)=u^{\prime}(\beta)=0, \\
& V[u] \geq 0,
\end{aligned}
$$

then every solution $v \in \mathcal{D}_{L}((\alpha, \beta))$ of $L[v]=0$ in (α, β) satisfying (11) and (12) has a zero in (α, β) unless u is a constant multiple of v.

Proof. Using (6), we find that

$$
V[u]=\int_{\alpha}^{\beta} u l[u] d t-M[u]
$$

for any $u \in \mathcal{D}_{l}((\alpha, \beta))$ satisfying (13). Hence, we conclude that $V[u]=$ $-M[u]$ for the solution u of $l[u]=0$ satisfying (13). The conclusion follows from Theorem 6.

Remark 2. The condition (11) holds true if $B(t) \geq 0$ and $v v^{\prime \prime} \leq 0$ in (α, β).

References

[1] G. Cimmino, Autosoluzioni e autovalori nelle equazioni differenziali lineari ordinarie autoaggiunte di ordine superiore, Math. Z., 32 (1930), $4-58$.
[2] G. Cimmino, Estensione dell'identità di Picone alla più generale equazione differeziale lineare ordinaria autoaggiunta, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 28 (1938), 354-364.
[3] D. R. Dunninger, A Picone integral identity for a class of fourth order elliptic differential inequalities, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 50 (1971), 630-641.
[4] M. S. P. Eastham, The Picone identity for self-adjoint differential equations of even order, Mathematika, 20 (1973), 197-200.
[5] A. Halanay and Š. Šandor, Sturm-type theorems for self-adjoint systems of differential equations of higher order, Dokl. Akad. Nauk SSSR, 114 (1957), 506-507 (Russian).
[6] K. Kreith, A comparison theorem for fourth order differential equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 46 (1969), 664-666.
[7] K. Kreith, A Picone identity for fourth order differential equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 52 (1972), 455-456.
[8] L. M. Kuks, A Sturm-type comparison theorem for systems of ordinary differential equations of the fourth order, Differ. Uravn., 10 (1974), 751-754 (Russian).
[9] T. Kusano and N. Yoshida, Picone's identity for ordinary differential operators of even order, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (1975), 524-530.

Tomoyuki TANIGAWA
Department of Mathematics
Toyama National College of Technology
Toyama, 939-8630, Japan
Norio Yoshida
Department of Mathematics
Faculty of Science
Toyama University
Toyama, 930-8555, Japan

[^0]: 2000 Mathematics Subject Classification. 34C10.
 Key words and phrases. Picone-type identity, ordinary differential equation, Sturmian comparison theorem.
 *This work was funded by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 2004, No. 16740084.
 ${ }^{\dagger}$ This research was partially supported by Grant-in-Aid for Scientific Research (C)(2) (No. 16540144), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

