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Convergence analysis of the interface for

interfacial transport phenomena∗

Katsushi OHMORI, Shoichi FUJIMA and Yasuhiro FUJITA

Abstract. In this paper we are concerned with the conver-
gence analysis of the interface for interfacial transport phenom-
ena such as incompressible immiscible two-fluid flows. Some
convergence results for the interface are shown by the regular-
ized Heaviside function. In order to validate our convergence
results, numerical examples are presented with an original test
problem having non-trivial but explicit interface.

1. Introduction

Interfacial phenomena often appear in many engineering problems.

In these problems a main concern is the interface evolution. The

numerical methods for dealing the interface are classified into three

categories, namely, Eulerian, Lagrangian and Arbitrary Lagrangian-

Eulerian (ALE) methods. The feature of the Eulerian method is very

easy to construct the algorithm due to the availability of the fixed

mesh, however, we can only capture the interface implicitly. On the

other hand, the Lagrangian method involves a moving mesh and can
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express the interface easily. In this method nodal points of the mesh

move with fluid particles, it needs a costly resoning mesh preqocedure

when the mesh becomes distorted. The ALE method has been pro-

posed to improve the shortcomings of both Eulerian and Lagrangian

methods, however, it is difficult to implement since the selection of

mesh velocity is nontrivial for complex flows.

Our approach is the Eulerian. Then the interface is defined as the

0 level set of the solution of the transport equation, which is called

by pseudo-density function, and the position of the interface is up-

dated by solving the transport equation. Therefore it is important

to analyze the mathematical property such as the convergence of the

interface which is defined implicitly. In this paper we discuss the con-

vergence of the interface by using the regularized Heaviside function

Hε(·) under the assumption that the finite element scheme for the

transport equation has some reasonable accuracy. In order to confirm

the effectiveness of the interface convergence results, we provide some

numerical experiments with a new test problem having non-trivial but

explicit interface.

An overview of this paper is as follows. In Section 2, we are con-

cerned with incompressible immiscible two-fluid flows as a model prob-

lem of interfacial transport phenomena. Section 3 is devoted to the

modeling of the interface in the Eulerian approach. In Section 4 we

give the fractional step projection finite element scheme for the model

problem and show the stability of the scheme. In Section 5 we con-

sider the finite element scheme for the pure advection equation and

show the stability and the convergence of the scheme. In Section 6,

we discuss some convergence results of the interface by the regularized

Heaviside function. Finally we present some numerical experiments in

Section 7.

Let us now establish the notation used throughout this paper. Let Ω

be a bounded domain in R2 with Lipschitz boundary Γ. For a nonneg-

ative integer m, let Hm(Ω) be the standard Sobolev space equipped



Convergence analysis of the interface 111

with the norm ‖ · ‖m,Ω and the semi-norm | · |m,Ω. We shall denote

H0(Ω) by L2(Ω), and the norm and the inner product of L2(Ω) are

denoted by ‖ · ‖0,Ω and (·, ·), respectively. For functions defined on

the cylinder QT = Ω× (0, T ), we shall also introduce some additional

notations. Namely, for any Banach space X and 1 ≤ p < ∞ let

Lp(0, T ; X) be the space of all X-valued functions which are defined

on (0, T ), measurable and

‖u‖Lp(0,T ;X) = (

∫ T

0

‖u(t)‖p
X dt)1/p < +∞,

where ‖ · ‖X is the norm in X. Similarly we define L∞(0, T ; X). In

particular, we denote Lp(0, T ; Lp(Ω)) by Lp(QT ), and L∞(0, T ; L∞(Ω))

by L∞(QT ), respectively.

2. Mathematical model

As a model problem for the interfacial transport phenomena, we

consider incompressible immiscible two-fluid flows. Let Ω be a bounded

domain of R2 with the boundary Γ. The domain Ω consists of two

time-dependent subdomain Ωi(t), i = 1, 2 such that

Ω = Ω1(t) ∪ Ω2(t) and Ω1(t) ∩ Ω2(t) = ∅ for 0 ≤ t < ∞.

Each of subdomains is filled by the fluid#1 and fluid#2, respectively.

We assume that two fluids are both viscous, incompressible and immis-

cible. The governing equations for unsteady, viscous, incompressible,

immiscible two-fluid flow system and the incompressibility condition

are given by the following :




ρ(
∂u

∂t
+ u · ∇u) = −∇p + 2µ divD(u) + f in Ω× (0, T ),

div u = 0 in Ω× (0, T ),

(2.1)

where f = t[0 − ρg]. Here u is the velocity, p the pressure, µ the

viscosity, ρ the density, g the gravitational acceleration, and D(u) =
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(1/2)(∇u + (∇u)T ) is the deformation tensor. Furtheremore, we set

as follows :

(ρ, µ) =





(ρ1, µ1) in Ω1(t),

(ρ2, µ2) in Ω2(t).
(2.2)

We set as follows :




ρmin = min{ρ1, ρ2}, ρmax = max{ρ1, ρ2},

µmin = min{µ1, µ2}, µmax = max{µ1, µ2}.
(2.3)

As for the boundary condition we assume the no-slip condition :

u = 0 on Γ, (2.4)

and we enforce the initial condition such as

u = u0 in Ω, (2.5)

where u0 is a prescribed divergence-free velocity.

3. Advection of the interface

By the assumption for the immiscibility, the motion of the interface

is governed by

u(α) · n = v · n, (3.1)

where u(α) is the velocity of fluid#α on the interface for α = 1, 2, v

the speed of the interface displacement and n the unit normal vector

to the interface. This means that the interface moves with the fluid

particles. Therefore, if we consider that the interface I(t) is defined

as follows :

I(t) = {x = (x1, x2) | ϕ(x, t) = 0 for 0 ≤ t < T}, (3.2)
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then it is easily seen that ϕ = ϕ(x, t) satisfy the following transport

equation :

∂ϕ

∂t
+ u · ∇ϕ = 0 in Ω× (0, T ), (3.3)

where u is the velocity field. As for the initial condition for (3.3), we

choose an sufficiently smooth initial function so that

ϕ0 =

{
< 0 in Ω1(0),

> 0 in Ω2(0).
(3.4)

In our approach the density ρ and the viscosity µ in the Navier-Stokes

equations (2.1) depend on the sign of the solution of the transport

equation (3.3) as follows :

(ρ, µ) =





(ρ1, µ1) if ϕ < 0,

(ρ2, µ2) if ϕ > 0.
(3.5)

Thus incompressible immiscible two-fluid flow problems are reduced

to the nonlinear interaction between the Navier-Stokes equations (2.1)

and the transport equation (3.3).

4. Fractional step projection scheme

In this section we consider the finite element approximation for the

Navier-Stokes equations (2.1). Since main concern in this paper is

to discuss the convergence of the interface, we shall limit ourselves

to discuss only the stability of the scheme. Here we consider the

fractional step projection finite element scheme for the Navier-Stokes

equations (2.1).

We define the following finite element spaces using P1 iso P2/P1

element [5] :




V h = {vh ∈ C0(Ω)2 | vh|K̃ ∈ P1(K̃)2 ∀K̃ ∈ Th/2},

Qh = {qh ∈ C0(Ω) | qh|K ∈ P1(K) ∀K ∈ Th} ∩ L2
0(Ω),

(4.1)
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where {Th}h>0 be a regular family of triangulations of Ω and Th/2 be

a new triangulation obtained by dividing each element K ∈ Th into

four equal subtriangles. Furthermore we define two subspaces of V h

V 0h = {vh ∈ Vh| vh = 0 on Γ}, (4.2)

and

V 1
h = {vh ∈ Vh| vh · n = 0 on Γ}. (4.3)

In order to define a full discretization of (2.1) we consider the uni-

form mesh for the time variable t and define tn = nτ for n =

0, 1, 2, · · · , [T/τ ], where τ > 0 is a time step. Then we consider

the following fractional step projection finite element scheme which

is slightly different from [6] and [7], where un
h, and pn

h, denotes the

approximation of the solution u(x, tn), and p(x, tn), respectively.





ρ(
u

n+1/2
h − un

h

τ
,vh) = −ρ(un

h · ∇u
n+1/2
h +

1

2
(div un

h)u
n+1/2
h , vh)

− 2µ(D(u
n+1/2
h ), D(vh)) + (f ,vh) for ∀vh ∈ V 0h,

u
n+1/2
h = 0 on Γ.

(4.4)





ρ(
un+1

h − u
n+1/2
h

τ
,vh) = (pn+1

h , div vh) for ∀vh ∈ V 1
h,

(div un+1
h , qh) = 0 for ∀qh ∈ Qh,

un+1
h · n = 0 on Γ.

(4.5)

As well known, projection method consists of the viscous step (4.4) and

the projection step (4.5). Equation (4.4) shows that the intermediate

velocity u
n+1/2
h is computed as solution of a discretized momentum

equation without the pressure term. On the other hand, equation
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(4.5) shows that the intermediate velocity u
n+1/2
h is decomposed into

the sum of a solenoidal velocity un+1
h and the gradient of a scalar

function proportional to the pressure pn+1
h .

For the stability of the fractional step projection scheme (4.4)-(4.5)

we have the following :

Proposition 4.1 Assume that f = 0. Then the fractional step

projection scheme (4.4) − (4.5) is unconditionally stable. That is, it

holds that for n = 1, 2, · · · , [T/τ ]

‖un
h‖2

0,Ω +
4µminτC

ρmin

n−1∑

k=0

‖uk+1/2
h ‖2

1,Ω ≤ ‖u0
h‖2

0,Ω , (4.6)

where C > 0 is a constant in Korn’s inequality.

Proof In (4.4) we take vh = u
n+1/2
h . Considering that

(un
h · ∇u

n+1/2
h +

1

2
(div un

h)u
n+1/2
h , u

n+1/2
h ) = 0 for u

n+1/2
h ∈ V0h,

and the Korn’s inequalty :

2∑
i,j=1

‖Dij(u
n+1/2
h )‖2

0,Ω ≥ C‖un+1/2
h ‖2

1,Ω for u
n+1/2
h ∈ V 0h, (4.7)

we have

1

2τ
(‖un+1/2

h ‖2
0,Ω − ‖un

h‖2
0,Ω + ‖un+1/2

h − un
h‖2

0,Ω) ≤ −2µminC

ρmin

‖un+1/2
h ‖2

1,Ω.

Then we have

‖un+1/2
h ‖2

0,Ω − ‖un
h‖2

0,Ω + ‖un+1/2
h − un

h‖2
0,Ω +

4µminτC

ρmin

‖un+1/2
h ‖2

1,Ω ≤ 0.

(4.8)

On the other hand we take vh = un+1
h in (4.5). Since (div un+1

h , qh) = 0

for any qh ∈ Qh, we have

‖un+1
h ‖2

0,Ω − ‖un+1/2
h ‖2

0,Ω + ‖un+1
h − u

n+1/2
h ‖2

0,Ω = 0. (4.9)
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Adding (4.8) and (4.9), we obtain

‖un+1
h ‖2

0,Ω − ‖un
h‖2

0,Ω + ‖un+1
h − u

n+1/2
h ‖2

0,Ω + ‖un+1/2
h − un

h‖2
0,Ω

+
4µminτC

ρmin

‖un+1/2
h ‖2

1,Ω ≤ 0.

Therefore we have

‖un+1
h ‖2

0,Ω − ‖un
h‖2

0,Ω +
4µminτC

ρmin

‖un+1/2
h ‖2

1,Ω ≤ 0. (4.10)

Summing up (4.10) from n = 0 to n = m− 1, we find that

‖um
h ‖2

0,Ω +
4µminτC

ρmin

m−1∑

k=0

‖uk+1/2
h ‖2

1,Ω ≤ ‖u0
h‖2

0,Ω.

Therefore the fractional step projection scheme (4.4)-(4.5) is uncondi-

tionally stable.

5. Finite element scheme for transport equations

In our Eulerian approach, as shown in Section 3, the constants ρ

and µ should be determined by only the sign of the pseudo-density

function. Therefore, we may not regard the accurate value of the

pseudo-density function all that. Furthermore, since our concern in

this paper is to discuss the convergence of the interface in the inter-

facial transport phenomena, we consider the following pure advection

problem [3] for n = 0, 1, · · · , [T/τ ]− 1 instead of (3.3) in order to de-

couple the nonlinear interaction of the Navier-Stokes equations (2.1)

and the transport equation (3.3).





∂ϕ

∂t
+ ũ · ∇ϕ = 0 in Ω× (tn, tn+1],

ϕ(x, tn) is given in Ω,

(5.1)
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where ũ is taken constant vector in the time interval (tn, tn+1]. In

practice, for example, we may consider that ũ is chosen as un+1
h . In

the sequel, we assume that





ũ ∈ L∞(Ω),

div ũ = 0 in Ω,

ũ · n = 0 on Γ.

(5.2)

Then we consider an implicit Euler scheme for the pure advection

equation (5.1), which is the discretization in time and the finite ele-

ment approximation is adopted in space variable.

Let V be a Sobolev space H1(Ω) and Vh be the finite dimensional

space of V such that

Vh = {vh ∈ C0(Ω) | vh|K ∈ Pk(K) for ∀K ∈ Th}, (5.3)

where k ≥ 1. Then our finite element scheme for (5.1) is as follows :

Find ϕn+1
h ∈ Vh such that





(
ϕn+1

h − ϕn
h

τ
, vh) + (ũ · ∇ϕn+1

h , vh) = 0 for ∀vh ∈ Vh,

ϕ0
h = ϕ0h = Πhϕ0,

(5.4)

where Πh be the interpolation operator from H l+1(Ω) to Vh for 1 ≤
l ≤ k.

From (3.5) the determining rules for the density ρ and the viscosity

µ in (4.4)-(4.5) is expressed by the following :





ρ = ρ1(1−H(ϕn
h)) + ρ2H(ϕn

h),

µ = µ1(1−H(ϕn
h)) + µ2H(ϕn

h),
(5.5)

where H(·) is the Heaviside function. In this paper, considering the

stable computation for two-fluid flows with high density and viscosity
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ratios such as the air-water system, we use the following determining

rules for ρ and µ :




ρ = ρ1(1−Hε(ϕ
n
h)) + ρ2Hε(ϕ

n
h),

µ = µ1(1−Hε(ϕ
n
h)) + µ2Hε(ϕ

n
h),

(5.6)

where

Hε(φ) =





1 (if φ > ε),

1

2
{1 +

φ

ε
+

1

π
sin(

πφ

ε
)} (if |φ| ≤ ε),

0 (if φ < −ε).

(5.7)

Therefore the computational algorithm for incompressible immiscible

two-fluid flows can be written by the following :

1. n ← 0 and t ← 0.

2. Determine the parameter (ρ, µ) in (tn, tn+1] by (5.6).

3. Compute un+1
h , pn+1

h by (4.4)-(4.5).

4. Compute ϕn+1
h by (5.4).

5. n ← n + 1, t ← t + τ .

6. If t < T then go to 2 else stop.

The stability of the scheme (5.4) is easily shown.

Proposition 5.1 For each n = 0, 1, 2, · · · , [T/τ ] it holds

‖ϕn
h‖0,Ω ≤ ‖ϕ0h‖0,Ω. (5.8)

Noticing that for any v ∈ H l+1(Ω)

‖v − Πhv‖0,Ω + h|v − Πhv|1,Ω ≤ Chl+1|v|l+1,Ω , (5.9)
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we have the convergence of the finite element scheme (5.4).

Theorem 5.2([4], [5]) Assume that ϕ0 ∈ Hk(Ω) and the solution ϕ

to (3.3) satisfies

ϕ ∈ L2(0, T ; Hk+1(Ω)),
∂ϕ

∂t
∈ L2(0, T ; Hk(Ω)) and

∂2ϕ

∂t2
∈ L∞(QT ).

(5.10)

Then ϕn
h defined by (5.4) satisfies for each n = 0, 1, 2, · · · , [T/τ ]

‖ϕn
h − ϕ(·, tn)‖0,Ω ≤ C(hk + τ), (5.11)

where C > 0 is a constant.

6. Convergence of the interface

Since the interface is defined as the 0 level set of the pseudo-density

function in Eulerian approach, it is difficult to discuss the convergence

of the interface directly. As for this, we have shown [4] the L2(Ω)-error

estimate of ϕn
h − ϕ(·, tn) with respect to the Heaviside function H(·),

which means the convergence for the interface in some sense.

Theorem 6.1([4]) Assume the same condition of Theorem 5.2. Fur-

thermore, we assume that for sufficiently small δ > 0 and h > 0 there

exist constants C1 > 0 and C2 > 0, independent of δ and h, such that




sup
h>0

m[|ϕn
h| < δ] ≤ C1δ,

m[|ϕ(·, tn)| < δ] ≤ C2δ.
(6.1)

If there exists a constant C3 > 0 such that

τ

hk
≤ C3, (6.2)

then we have for some constant C = C(p) > 0

‖H(ϕn
h)−H(ϕ(·, tn))‖Lp(Ω) ≤ Ch2k/3p. (6.3)
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Therefore, for example in the cases of P1-element or P1 iso P2-element

we have the following convergence result :

‖H(ϕn
h)−H(ϕ(·, tn))‖0,Ω ≤ Ch1/3, (6.4)

however, we think that it is a little lower from our numerical exper-

iments of view and the assumption (6.1) does not have the physical

meaning.

In this section we propose a new convergence result by using the

regularized Heaviside function Hε(·). We have already used it in the

determining rules (5.6) in order to compute the scheme stably even

if the case of high ratios of densities and viscosities. Therefore it is

very natural to use the regularized Heaviside function to discuss the

convergence of the interface in the finite element approximation for

the immiscible two-fluid flows.

Let Hε(·) be a regularized Heaviside function with some constant

ε > 0 defined by

Hε(φ) =





1 (if φ > ε),

f(
φ

ε
) (if |φ| ≤ ε),

0 (if φ < −ε),

(6.5)

where f(ξ) is a smooth transition function such that f(−1) = 0 and

f(1) = 1. This means that the interface is considered as a transition

region R with some finite thickness :

R = {(x1, x2) ∈ Ω | |ϕ(x1, x2)| ≤ ε}.

In this transition region R we consider that the density and the vis-

cosity vary continuously from ρ1(resp. µ1) to ρ2(resp. µ2). Then we

can show the following property of the regularized Heaviside function

Hε(·).
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Lemma 6.1 Assume that there exists a constant M > 0 such that

|Hε(x)−Hε(y)| ≤ M

ε
|x− y| for x, y ∈ R. (6.6)

Then we have the following estimates for p ≥ q ≥ 1 :

‖Hε(φ1)−Hε(φ2)‖Lq(Ω) ≤ M

ε
|Ω| 1q− 1

p‖φ1 − φ2‖Lp(Ω) for φ1, φ2 ∈ Lp(Ω),

(6.7)

where |Ω| denotes the Lebesgue measure of Ω.

Proof It is easy to see from (6.6) the following estimate :

‖Hε(φ1)−Hε(φ2)‖Lp(Ω) ≤ M

ε
‖φ1 − φ2‖Lp(Ω) for φ1, φ2 ∈ Lp(Ω).

(6.8)

If p > q ≥ 1, by the Hölder’s inequality we can show for a bounded

domain Ω

‖f‖Lq(Ω) ≤ |Ω| 1q− 1
p‖f‖Lp(Ω) for f ∈ Lp(Ω). (6.9)

Combining (6.8) and (6.9), we have (6.7). Since inequality (6.7) is still

valid for p = q, the lemma is proved.

Remark 6.1 In practice, we take f(ξ) as follows

f(ξ) =
1

2
{1 + ξ +

1

π
sin(πξ)} for |ξ| ≤ 1. (6.10)

Then it is easy to see the function Hε(φ) with (6.10) satisfies the

condition (6.6) with M = 1.

From Lemma 6.1 and Theorem 5.2 we have the main result :

Theorem 6.2 Assume that the assumption in Lemma 1 and the same

condition of Theorem 5.2. If there exists a constant C > 0 such that

τ

hk
≤ C, (6.11)
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then we have for some constant C > 0

‖Hε(ϕ
n
h)−Hε(ϕ(·, tn))‖0,Ω ≤ CMhk

ε
. (6.12)

Remark 6.2 From the result of Theorem 6.2 we can take ε as
√

h in

the finite element approximation with the P2 iso P1-element. Since

(5.11) holds with k = 1 in this case, then the convergence rate of the

approximate interface is O(
√

h). In the following section, we shall

validate this theoretical result by some numerical experiments.

7. Numerical experiments

7.1. Test problem having non-trivial interface

Let Ω be (−1, 1) × (−1, 1). We consider a counter-clockwise flow

field in Ω. Its stream function is

Φ = (1− x2)(1− y2), (7.1)

and the corresponding velocity field is

(u, v) = (−2y(1− x2), 2x(1− y2)). (7.2)

Let m = 1− Φ. It is presented in the polar coordinates (r, θ) as

m = r2 − r4 sin2 2θ

4
.

Solving this quadratic equation with respect to r2, we obtain

r2 =
2(1±

√
1−m sin2 2θ)

sin2 2θ
. (7.3)

The r2 corresponding to Ω is ‘−’ one.

We then consider motion of a particle that is transported by the

flow field (7.2) on a stream line m (0 ≤ m ≤ 1). Let position of the
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particle be (r(t), θ(t)) or (x(t), y(t)). The transportation dx/dt = u

gives

θt = θxu + θyv

= −sin θ

r
{−2r sin θ(1− r2 cos2 θ)}+

cos θ

r
{2r cos θ(1− r2 sin2 θ)}

= 2− r2 sin2 2θ. (7.4)

Substituting (7.3) into (7.4), we obtain the equation of motion of the

particle as

θt = 2
√

1−m sin2 2θ. (7.5)

Integrating (7.5) from t = t0 to t1, we have

∫ θ(t1)

θ(t0)

dθ√
1−m sin2 2θ

= 2(t1 − t0), (7.6)

hence

F (2θ(t1)|m)− F (2θ(t0)|m) = 4(t1 − t0), (7.7)

where

F (φ|m) =

∫ φ

0

dθ√
1−m sin2 θ

(7.8)

is the elliptic integral of the first kind. (It means that the motion of

a particle relates to that of a simple pendulum.)

Using an initial condition of the transported function, we can ex-

actly compute distribution at t = t1 of the function by (7.7). We

are able to know deformation of the interface exactly. The velocity

field satisfies assumptions in the theorems. Moreover, the domain is a

square so that it is covered by triangulation without curved triangles.

We therefore remark that this problem is suitable as a test problem

for transported interface problems. Figures 1 and 2 show deformation

of interfaces in the cases that the initial interfaces are the x-axis and

a circle (x2 + (y − 1/3)2 = 1/9), respectively.
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Figure 1: Deformation of a line interface: exact shapes for t =

0, π/8, 2π/8, 3π/8, π/2, 5π/8, 6π/8, 7π/8

Figure 2: Deformation of a liquid drop: exact shapes for t =

0, π/4, π/2, 3π/4, π, 2π, 3π, 4π
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Figure 3: Approximate and exact interface shape

7.2. Numerical convergence of interfaces

We here investigate numerical convergence of interfaces when the

transport equation is solved by the finite element scheme (5.4) with

P1-element. Four edges of Ω are divided into n (n = 10, 20, 40 or 80)

segments. In order to avoid effect of mesh uniformity, non-uniform

triangulations are generated using FreeFEM+ [1]. We select time

steps as ∆t = 5π/4n while T = π.

Deformation of a line interface

The initial condition of transported function is φ = y. Figure 3

shows numerical and exact interfaces at t = π/2 and t = π. Figure 4

shows graphs of h versus errors measured by the regularized Heaviside

function Hε (ε =
√

h). Four curves show the error values when t =

π/4, π/2, 3π/4, π, respectively.We can observe that they decrease as

O(h) in this case.

Deformation of a drop

The initial condition of transported function,

φ =
e−9(x2+(y−1/3)2) − e−1

e−1
,

satisfies ∆φ = 0 on I(t = 0).

Figure 5 shows numerical and exact interfaces at t = π/8, π/4, 3π/8
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Figure 4: mesh size h vs. numerical error

Figure 5: Approximate and exact interface shape
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Figure 6: mesh size h vs. numerical error

and π/2. Figure 6 shows graphs of h versus errors, which is measured

by using the regularized Heaviside function Hε(·) with ε =
√

h.
Two curves show the error values when t = π/4, π/2, respectively.

Convergence ratio O(
√

h) is observed, which agrees well with the result

in Remark 6.2. Throughout the experiments, the effect of the interface

convergence theorem is confirmed.
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