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Oscillations of vector differential equations of

hyperbolic type with functional arguments

Emil Minchev and Norio Yoshida

Abstract. Vector hyperbolic differential equations with functional
arguments are studied, and oscillations of solutions of certain bound-
ary value problems are investigated. The approach used is to reduce
the multi-dimensional oscillation problems to the nonexistence of posi-
tive solutions of scalar functional differential inequalities by employing
the concept of H-oscillation introduced by Domšlak, where H denotes
some unit vector.

1. Introduction

In 1970, Domšlak [2] has introduced the concept of H-oscillation to study
the oscillatory character of vector differential equations, where H is a unit
vector in RN . Several authors have investigated H-oscillation of vector
differential equations. We refer the reader to [2–4] for vector ordinary
differential equations, and to [5–7] for vector partial differential equations.
It seems that no work has been done on H-oscillation of vector hyperbolic
differential equations with functional arguments.

The objective of this paper is to derive sufficient conditions for every so-
lution of certain boundary value problems for vector hyperbolic differential
equations with functional arguments to be H-oscillatory in a cylindrical
domain.
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We are concerned with the oscillations of the vector hyperbolic differen-
tial equation with functional arguments

∂2

∂t2

(
U(x, t) +

∑̀

i=1

hi(t)U(x, ρi(t))

)
− a(t)∆U(x, t)

−
k∑

i=1

bi(t)∆U(x, τi(t)) +
m∑

i=1

ci(x, t, U(x, σi(t)))U(x, σi(t))

= F (x, t), (x, t) ∈ Ω ≡ G× (0,∞), (1)

where G is a bounded domain in Rn with piecewise smooth boundary ∂G.
We assume that :

(H1) hi(t) ∈ C2([0,∞);R) (i = 1, 2, ..., `),
bi(t) ∈ C([0,∞); [0,∞)) (i = 1, 2, ..., k),
a(t) ∈ C([0,∞); [0,∞)) and F (x, t) ∈ C(Ω;RN ) ;

(H2) ρi(t) ∈ C2([0,∞);R), lim
t→∞ ρi(t) = ∞ (i = 1, 2, ..., `),

τi(t) ∈ C([0,∞);R) and lim
t→∞ τi(t) = ∞ (i = 1, 2, ..., k),

σi(t) ∈ C([0,∞);R) and lim
t→∞σi(t) = ∞ (i = 1, 2, ..., m) ;

(H3) ci(x, t, Ξ) ∈ C(Ω× RN ;R) (i = 1, 2, ..., m),
ci(x, t, Ξ) ≥ pi(t)ψi(|Ξ|) for (x, t) ∈ Ω, Ξ ∈ RN ,
pi(t) ∈ C([0,∞); [0,∞)), ψi(ξ) ∈ C([0,∞); [0,∞)) and ψi(ξ) are non-
decreasing for ξ ≥ 0.

The following two kinds of boundary conditions are considered:

(B1) U = Ψ on ∂G× (0,∞),

(B2)
∂U

∂ν
+ µU = Ψ̃ on ∂G× (0,∞),

where Ψ, Ψ̃ ∈ C(∂G × (0,∞);RN ), µ ∈ C(∂G × (0,∞); [0,∞)) and ν

denotes the unit exterior normal vector to ∂G.

Definition 1. By a solution of equation (1) we mean a function
U(x, t) ∈ C2(G × [t−1,∞);RN ) ∩ C(G × [t̂−1,∞);RN ) which satisfies (1),
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where

t−1 = min
{

0, min
1≤i≤`

{
inf
t≥0

ρi(t)
}

, min
1≤i≤k

{
inf
t≥0

τi(t)
}}

,

t̂−1 = min
{

0, min
1≤i≤m

{
inf
t≥0

σi(t)
}}

.

Definition 2. Let H be a unit vector in RN . A solution U(x, t) of
(1) is said to be H-oscillatory in Ω if the inner product < U(x, t), H > has
a zero in G× (t,∞) for any t > 0.

We give two examples of ci(x, t,Ξ) which satisfy the hypothesis (H3) (cf.
[6]). Let Mi(x, t) ∈ C1(Ω) be symmetric, positive definite matrix functions,
and λi(x, t) be the smallest eigenvalue of Mi(x, t). Then it can be shown
that

ci(x, t, Ξ) = (|Ξ|γΞ)T Mi(x, t) (|Ξ|γΞ)

≥ pi(t)|Ξ|2γ+2 for (x, t) ∈ Ω, Ξ ∈ RN ,

where T denotes the transpose, γ ≥ −1 and pi(t) = minx∈G λi(x, t). An-
other example is the following

ci(x, t,Ξ) =
(
ΞT Mi(x, t)Ξ

)δ
(δ ≥ 0).

It is easily seen that

ci(x, t,Ξ) ≥ (
pi(t)|Ξ|2

)δ = (pi(t))
δ |Ξ|2δ.

In Section 2 we reduce the multi-dimensional oscillation problems to
the nonexistence of positive solutions of scalar functional differential in-
equalities. In Section 3 we treat the case where hi(t) ≥ 0 (i = 1, 2, ..., `),∑`

i=1 hi(t) ≤ 1 and derive sufficient conditions for every solution of the
boundary value problems (1), (Bi) (i = 1, 2) to be H-oscillatory in Ω.

2. Reduction to scalar functional differential inequalities

In this section we reduce the multi-dimensional oscillation problems to
certain one-dimensional oscillation problems for scalar functional differen-
tial inequalities.
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We use the following notation:

uH(x, t) = < U(x, t),H >,

fH(x, t) = < F (x, t),H >,

where H is a unit vector in RN and < U, V > denotes the inner product of
U, V ∈ RN .

Theorem 1. Assume that (H1)–(H3) hold. Let U(x, t) be a solution
of (1). If uH(x, t) is eventually positive, then uH(x, t) satisfies the scalar
hyperbolic differential inequality

∂2

∂t2

(
uH(x, t) +

∑̀

i=1

hi(t)uH(x, ρi(t))

)
− a(t)∆uH(x, t)

−
k∑

i=1

bi(t)∆uH(x, τi(t)) +
m∑

i=1

pi(t)ϕi(uH(x, σi(t))) ≤ fH(x, t), (2)

where ϕi(ξ) = ξψi(|ξ|). If uH(x, t) is eventually negative, then vH(x, t) ≡
−uH(x, t) satisfies the scalar hyperbolic differential inequality

∂2

∂t2

(
vH(x, t) +

∑̀

i=1

hi(t)vH(x, ρi(t))

)
− a(t)∆vH(x, t)

−
k∑

i=1

bi(t)∆vH(x, τi(t)) +
m∑

i=1

pi(t)ϕi(vH(x, σi(t))) ≤ −fH(x, t). (3)

Proof. Let uH(x, t) be eventually positive. The inner product of (1)
and H yields

∂2

∂t2

(
< U(x, t),H > +

∑̀

i=1

hi(t) < U(x, ρi(t)),H >

)

−a(t) < ∆U(x, t),H > −
k∑

i=1

bi(t) < ∆U(x, τi(t)),H >

+
m∑

i=1

ci(x, t, U(x, σi(t))) < U(x, σi(t)),H >=< F (x, t),H > . (4)

Proceeding as in the proof of [5, Theorem 1], we observe that

ci(x, t, U(x, σi(t))) < U(x, σi(t)),H > ≥ pi(t)ϕi (uH(x, σi(t))) . (5)
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Combining (4) with (5), we conclude that uH(x, t) satisfies the inequality
(2). If uH(x, t) is eventually negative, we see that

ci(x, t, U(x, σi(t))) < U(x, σi(t)),H > ≤ −pi(t)ϕi (−uH(x, σi(t))) (6)

(see [5, proof of Theorem 1]). We combine (4) and (6) to conclude that
vH(x, t) satisfies the inequality (3).

Associated with the boundary conditions (Bi) (i = 1, 2), we consider the
following scalar boundary conditions

(B̃1) u = ψH on ∂G× (0,∞),

(B̃2)
∂u

∂ν
+ µu = ψ̃H on ∂G× (0,∞),

where

ψH = < Ψ, H >,

ψ̃H = < Ψ̃, H > .

Theorem 2. Assume that (H1)–(H3) hold. If the scalar hyperbolic
differential inequalities

∂2

∂t2

(
u(x, t) +

∑̀

i=1

hi(t)u(x, ρi(t))

)
− a(t)∆u(x, t)

−
k∑

i=1

bi(t)∆u(x, τi(t)) +
m∑

i=1

pi(t)ϕi(u(x, σi(t))) ≤ ±fH(x, t) (7)

have no eventually positive solutions satisfying the boundary conditions (B̃i)
(i = 1, 2), then every solution U(x, t) of the boundary value problems (1),
(Bi) (i = 1, 2) is H-oscillatory in Ω, respectively.

Proof. Suppose to the contrary that there is a solution U(x, t) of the
problem (1), (Bi) which is not H-oscillatory in Ω. If uH(x, t) is eventually
positive, then uH(x, t) satisfies (7) with +fH(x, t) by Theorem 1. It is easy
to see that uH(x, t) satisfies the boundary conditions (B̃i). This contradicts
the hypothesis. If uH(x, t) is eventually negative, then vH(x, t) = −uH(x, t)
is an eventually positive solution of (7) with −fH(x, t) satisfying the bound-
ary conditions (B̃i). This also contradicts the hypothesis. This completes
the proof.
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It is known that the first eigenvalue λ1 of the eigenvalue problem

−∆w = λw in G,

w = 0 on ∂G

is positive and the corresponding eigenfunction Φ(x) may be chosen so that
Φ(x) > 0 in G (see Courant and Hilbert [1]).

The following notation will be used:

FH(t) =
(∫

G
Φ(x)dx

)−1 ∫

G
fH(x, t)Φ(x)dx,

ΨH(t) =
(∫

G
Φ(x)dx

)−1 ∫

∂G
ψH

∂Φ
∂ν

(x)dS,

F̃H(t) =
1
|G|

∫

G
fH(x, t)dx,

Ψ̃H(t) =
1
|G|

∫

∂G
ψ̃H dS,

where |G| = ∫
G dx.

Theorem 3. Assume that (H1)–(H3) hold, and the following hypoth-
esis (H4) holds :

(H4) ϕi(ξ) = ξψi(|ξ|) (i = 1, 2, ..., m) are convex in (0,∞).

If the functional differential inequalities

d2

dt2

(
y(t) +

∑̀

i=1

hi(t)y(ρi(t))

)
+ λ1a(t)y(t)

+λ1

k∑

i=1

bi(t)y(τi(t)) +
m∑

i=1

pi(t)ϕi(y(σi(t))) ≤ ±GH(t) (8)

have no eventually positive solutions, then every solution U(x, t) of the
boundary value problem (1), (B1) is H-oscillatory in Ω, where

GH(t) = FH(t)− a(t)ΨH(t)−
k∑

i=1

bi(t)ΨH(τi(t)).
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Proof. Suppose to the contrary that there is a solution U(x, t) of the
problem (1), (B1) which is not H-oscillatory in Ω. First we consider the
case where uH(x, t) > 0 in G × [t0,∞) for some t0 > 0. We observe that
ϕi(ξ) ∈ C(R;R) (i = 1, 2, ..., m), ϕi(−ξ) = −ϕi(ξ), ϕi(ξ) > 0 for ξ > 0, and
ϕi(ξ) are nondecreasing in (0,∞). We easily see that

UH(t) ≡
(∫

G
Φ(x)dx

)−1 ∫

G
uH(x, t)Φ(x)dx

is an eventually positive solution of the inequality (8) with +GH(t) (cf. [8,
Theorem 3.1], [9, Theorem 1]). Hence, we are led to a contradiction. The
case where uH(x, t) < 0 in G× [t0,∞) can be treated similarly, and we are
also led to a contradiction. This completes the proof.

Theorem 4. Assume that (H1)–(H4) hold. If the functional differen-
tial inequalities

d2

dt2

(
y(t) +

∑̀

i=1

hi(t)y(ρi(t))

)
+

m∑

i=1

pi(t)ϕi(y(σi(t))) ≤ ±G̃H(t) (9)

have no eventually positive solutions, then every solution U(x, t) of the
boundary value problem (1), (B2) is H-oscillatory in Ω, where

G̃H(t) = F̃H(t) + a(t)Ψ̃H(t) +
k∑

i=1

bi(t)Ψ̃H(τi(t)).

Proof. The proof is quite similar to that of Theorem 3, and hence will
be omitted.

3. Sufficient conditions for H-oscillation

In this section we give sufficient conditions for every solution of the
boundary value problems (1), (Bi) (i = 1, 2) to be H-oscillatory in Ω.

Theorem 5. Assume that (H1)–(H4) hold, and assume, moreover,
that :

(H5) hi(t) ≥ 0 (i = 1, 2, ..., `),
∑`

i=1 hi(t) ≤ 1 ;
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(H6) ρi(t) ≤ t (i = 1, 2, ..., `) ;

(H7) there exists a function θ(t) ∈ C2([t0,∞);R) such that θ(t) is oscilla-
tory and θ′′(t) = GH(t) [resp. θ′′(t) = G̃H(t)], where t0 > 0 is some
number ;

(H8)

∫ ∞

t0

pj(s)ϕj




[(
1−

∑̀

i=1

hi(σj(s))

)
c±Θ(σj(s))

]

+


 ds = ∞,

for some j ∈ {1, 2, ..., m} and every c > 0, where

[ϕ(s)]+ = max{ϕ(s), 0},

Θ(t) = θ(t)−
∑̀

i=1

hi(t)θ(ρi(t)).

Then every solution U(x, t) of the boundary value problem (1), (B1) [resp.
(1), (B2)] is H-oscillatory in Ω.

Proof. The conclusion follows by combining a result of Tanaka [8, The-
orem 2.1] with Theorems 3 and 4.

Example. We consider the boundary value problem

∂2

∂t2

(
U(x, t) +

1
2

U(x, t− π)
)
− ∂2U

∂x2
(x, t)

−∂2U

∂x2
(x, t− π) + 2U(x, t− 2π)

=

(
3
2 cosx · sin t(

1 + 1
2e−π + 2e−2π

)
et

)
, (x, t) ∈ (0, π)× (0,∞), (10)

−∂U

∂x
(0, t) =

∂U

∂x
(π, t) =

(
0
0

)
, t > 0. (11)

Here n = 1, G = (0, π), Ω = (0, π) × (0,∞), ` = k = m = 1, N = 2,
h1(t) = 1/2, ρ1(t) = t − π, a(t) = b1(t) = 1, τ1(t) = t − π, σ1(t) = t − 2π,

c1(x, t, Ξ) = 1, p1(t) = 2, ψ1(ξ) = 1, ϕ1(ξ) = ξ, µ = 0, Ψ̃ =

(
0
0

)
and

F (x, t) =

(
3
2 cosx · sin t(

1 + 1
2e−π + 2e−2π

)
et

)
.
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Letting H = e1 =

(
1
0

)
, we see that F̃e1(t) = Ψ̃e1(t) = 0, and hence

G̃e1(t) = 0. We can choose θ(t) = 0, and observe that Θ(t) = 0 and
∫ ∞

2 · 1
2

c ds = ∞

for every c > 0. Hence, Theorem 5 implies that every solution U(x, t) of
the problem (10), (11) is e1-oscillatory in (0, π)× (0,∞). In fact

U(x, t) =

(
cosx · sin t

et

)

is such a solution. We note that the above solution U(x, t) is not e2-

oscillatory in (0, π)× (0,∞), where e2 =

(
0
1

)
.
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