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Some extensions of Grüss’ inequality

Saichi Izumino∗, Josip E. Pečarić∗∗ and Božidar Tepeš†

Abstract. We give some extensions of Grüss’ inequalities of discrete
and integral types, which refine or generalize recent results due to P.
Cerone and S. S. Dragomir and those due to some other authors.

1. Introduction

Let a = (a1, ..., an) and b = (b1, ..., bn) be n-tuples (sequences) of real
numbers, and let p = (p1, ..., pn) be an n-tuple of positive numbers. Then
we define T (a, b; p) by

T (a, b; p) :=
1
Pn

n∑

i=1

piaibi − 1
Pn

n∑

i=1

piai
1
Pn

n∑

i=1

pibi, (1.1)

where Pn =
∑n

i=1 pi. It is (discrete) Grüss’ inequality that estimates this
difference under certain conditions. Čebyšev’s inequality [7, p.240] is well-
known; it asserts that

T (a, b; p) ≥ 0 or
n∑

i=1

pi

n∑

i=1

piaibi ≥
n∑

i=1

piai

n∑

i=1

pibi (1.2)

under the condition that both a and b are nonincreasing (or nondecreasing),
i.e.,

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn (or a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bn).
(1.3)
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As a complement of this inequality, Pečarić [8] proved:

Theorem A ([8, Theorem 8], [7, p. 302]). Let a and b be nondecreasing
(or nonincreasing) n-tuples of real numbers, and let p be an n-tuple of
positive numbers. Then

|T (a, b; p)| ≤ |an − a1||bn − b1| max
1≤k≤n−1

Pk(Pn − Pk)
P 2

n

,

where Pk =
∑k

i=1 pi.

Without any assumption of monotonicity on n-tuples a and b, the fol-
lowing extension of Theorem A was given by Andrica and Badea [1]:

Theorem B ([1, Theorem 2]). Let a and b be n-tuples of real numbers
satisfying

m1 ≤ ai ≤ M1 and m2 ≤ bi ≤ M2 (i = 1, ..., n), (1.4)

and let p be an n-tuple of positive numbers. Then

|T (a, b; p)| ≤ (M1 −m1)(M2 −m2) max
J⊂In

P (J)((Pn − P (J))
P 2

n

, (1.5)

where In = {1, ..., n} and P (J) =
∑

i∈J pi for J ⊂ In. (cf. Pn = P (In).)

Using convexity of functions related to Grüss’ inequality, Izumino and
Pečarić [5] recently gave the following fact, from which Theorems A and B
were induced:

Lemma C ([5, Corollary 2.4 and Lemma 2.2]). Let a be an n-tuple of real
numbers satisfying m ≤ ai ≤ M (i = 1, ..., n), and let p be an n-tuple of
positive numbers with

∑n
i=1 pi = 1. Then

∑

1≤i<j≤n

pipj |ai − aj | ≤ (M1 −m1)max
J⊂In

P (J)(1− P (J)), (1.6)

and in particular, if a is assumed to be nonincreasing,

∑

1≤i<j≤n

pipj(ai − aj) ≤ (M1 −m1) max
1≤k≤n−1

Pk(1− Pk). (1.7)
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Concerning the integral form of Grüss’ inequality, recently Cheng and
Sun [3] (and Matić [6]), as an improvement of the inequality due to Grüss
himself [4] gave the following result:

Theorem D ([3, Theorem 1.1], [6, Theorem 3]). Let h and g be integrable
functions on an interval [a, b] and let φ2 ≤ g(x) ≤ Φ2 (x ∈ [a, b]) for some
constants φ2 < Φ2. Then

∣∣∣∣
1

b− a

∫ b

a
h(x)g(x)dx− 1

(b− a)2

∫ b

a
h(x)dx

∫ b

a
g(x)dx

∣∣∣∣

≤ Φ2 − φ2

2
· 1
b− a

∫ b

a

∣∣∣∣h(x)− 1
b− a

∫ b

a
h(y)dy

∣∣∣∣ dx


≤ Φ2 − φ2

2
· 1
b− a

(∫ b

a

∣∣∣∣h(x)− 1
b− a

∫ b

a
h(y)dy

∣∣∣∣
2

dx

)1/2

 .

Let us note that the first inequality of the above theorem was shown by
Sokolov [10] in 1963. Corresponding to Theorem D, the following discrete
analogue has been shown by Cerone and Dragomir [2]:

Theorem E ([2, p. 376]). Let a and b be two n-tuples of real numbers with
m2 ≤ bi ≤ M2 (i = 1, . . . , n) for some constants m2 < M2, and let p be an
n-tuple of positive numbers such that

∑n
i=1 pi = 1. Then

|T (a, b; p)| ≤ M2 −m2

2

n∑

i=1

pi|ai −
n∑

j=1

pjaj |

≤ M2 −m2

2




n∑

i=1

pi|ai −
n∑

j=1

pjaj |q



1/q

(q > 1)

≤ M2 −m2

2
max
1≤i≤n

∣∣∣∣∣∣
ai −

n∑

j=1

pjaj

∣∣∣∣∣∣
.

(1.8)

Now let Ω be a measurable space with respect to a positive measure µ

on the set. For a measurable function w(x) ≥ 0 on Ω such that

∞ >

∫

Ω
w(x)dµ(x) > 0,
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we write Lw(Ω, µ) the Lebesgue space of (real-valued) µ-measurable func-
tions f on Ω such that

∫

Ω
|f(x)|w(x)dµ(x) < ∞.

Put

T (f, g; w) =
(∫

Ω
w(x)dµ(x)

)−1 ∫

Ω
w(x)f(x)g(x)dµ(x)

−
(∫

Ω
w(x)dµ(x)

)−2 ∫

Ω
w(x)f(x)dµ(x)

∫

Ω
w(x)g(x)dµ(x).

Then the following result was shown by Cerone and Dragomir [2], as an
extension of Theorem D and also integral analogue of Theorem E at the
same time:

Theorem F ([2, Theorem 2.1]). Let f, g ∈ Lw(Ω, µ) and let φ2 ≤ g(x) ≤
Φ2 (x ∈ Ω). Then

|T (f, g; w)| ≤ Φ2 − φ2

2

(∫

Ω
w(x)dµ(x)

)−1

×
∫

Ω
w(x)

∣∣∣∣∣f(x)−
(∫

Ω
w(x)dµ(x)

)−1 ∫

Ω
w(y)f(y)dµ(y)

∣∣∣∣∣ dµ(x).
(1.9)

In this paper, applying Lemma C and making use of the idea of Cerone
and Dragomir [2], we give some refinements and generalizations of all the-
orems mentioned before.

2. Discrete Grüss’ inequality

Hereafter we assume that an n-tuple p = (p1, · · · , pn) of positive numbers
satisfies

n∑

i=1

pi = 1 (2.1)

for convenience sake. Then T (a, b; p) is rewritten as follows:

T (a, b; p) =
n∑

i=1

piaibi −
n∑

i=1

piai

n∑

i=1

pibi (2.2)
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for n-tuples a = (a1, . . . , an) and b = (b1, . . . , bn). We often make use of the
following expression of T (a, b; p).

T (a, b; p) =
∑

1≤i<j≤n

pipj(ai − aj)(bi − bj), (2.3)

which is obtained from Binet-Cauchy identity [7, p. 85]:

n∑

i=1

aici

n∑

i=1

bidi −
n∑

i=1

aidi

n∑

i=1

bici =
∑

1≤i<j≤n

(aibj − ajbi)(cidj − cjdi)

or by a direct computation. The following fact is also useful for our discus-
sion.

Lemma 2.1 (cf. [7, p. 296]).

|T (a, b; p)| ≤ T (a, a; p)1/2T (b, b; p)1/2 (Cauchy′s inequality). (2.4)

Now we give a refinement of Theorems B, E (for q = 2) (and also a result
due to Pečarić and Tepeš [9, Theorem 2.4]):

Theorem 2.2. Let a and b be n-tuples of real numbers satisfying (1.4), and
let p be an n-tuple of positive numbers satisfying (2.1). Write ā =

∑n
i=1 piai

and b̄ =
∑n

i=1 pibi. Then

|T (a, b; p)|

≤ M2 −m2

2

n∑

i=1

pi|ai − ā|

≤ (M2 −m2)
∑

1≤i<j≤n

pipj |ai − aj |

≤ (M1 −m1)(M2 −m2) max
J⊂In

P (J)(1− P (J))
(
≤ 1

4
(M1 −m1)(M2 −m2)

)
.

(2.5)
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and

|T (a, b; p)|

≤ 1
2
(M1 −m1)1/2(M2 −m2)1/2

(
n∑

i=1

pi|ai − ā|
)1/2 (

n∑

i=1

pi|bi − b̄|
)1/2

≤ (M1 −m1)1/2(M2 −m2)1/2


 ∑

1≤i<j≤n

pipj |ai − aj |



1/2

×

 ∑

1≤i<j≤n

pipj |ai − aj |



1/2

≤ (M1 −m1)(M2 −m2) max
J⊂In

P (J)(1− P (J)).

(2.6)

Proof. For (2.5), the first inequality is nothing but the one in Theorem E.
For the second inequality, note that by the triangular inequality we have

n∑

i=1

pi|ai − ā| =
n∑

i=1

pi|
n∑

j=1

pj(ai − aj)|

≤ 2
∑

1≤i<j≤n

pipj |ai − aj |.
(2.7)

Hence we have the desired inequality. For the third inequality, we obtain
it from (1.6) in Lemma C. (The last inequality is obtained easily.)

Next for (2.6), we have, by Lemma 2.1 and the first inequality of (2.5)
(or Theorem E),

|T (a, b; p)| ≤ T (a, a; p)1/2T (b, b; p)1/2

≤
{

1
2
(M1 −m1)

(
n∑

i=1

pi|ai − ā|
)}1/2 {

1
2
(M2 −m2)

(
n∑

i=1

pi|bi − b̄|
)}1/2

.

(2.8)

This shows the first inequality. For the second inequality, we obtain, in
(2.7), that (for a)

n∑

i=1

pi|ai − ā| ≤ 2
∑

1≤i<j≤n

pipj |ai − aj |.
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Similarly we have, for b,

n∑

i=1

pi|bi − b̄| ≤ 2
∑

1≤i<j≤n

pipj |bi − bj |.

Hence we have the desired inequality. For the third inequality, we obtain,
from (1.6) in Lemma C,

∑

1≤i<j≤n

pipj |ai − aj | ≤ (M1 −m1) max
J⊂In

P (J)(1− P (J)),

and similarly for b

∑

1≤i<j≤n

pipj |bi − bj | ≤ (M2 −m2) max
J⊂In

P (J)(1− P (J)).

Hence we can obtain the desired inequality.

Applying Cauchy’s inequality, we have a variant of (2.5) in the above
theorem:

Theorem 2.3. With the same assumptions as in Theorem 2.2,

|T (a, b; p)|

≤ M2 −m2

2

n∑

i=1

pi|ai − ā|

≤ M2 −m2

2

(
n∑

i=1

pi(ai − ā)2
)1/2

≤ 1√
2
(M2 −m2)


 ∑

1≤i<j≤n

pipj(ai − aj)2




1/2

≤ 1√
2
(M1 −m1)(M2 −m2)

(
max
J⊂In

P (J)(1− P (J))
)1/2

(
≤ 1

2
√

2
(M1 −m1)(M2 −m2)

)
.

(2.9)

Proof. The second inequality is obtained from Cauchy’s inequality. For the
third and the fourth inequalities, using Cauchy’s inequality again and the
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fact |ai − aj | ≤ M1 −m1, we have

n∑

i=1

pi(ai − ā)2 ≤ 2
∑

1≤i<j≤n

pipj(ai − aj)2

≤ 2(M1 −m1)
∑

1≤i<j≤n

pipj |ai − aj |.
(2.10)

Hence, we obtain the desired inequalities (by applying (1.6) in Lemma C
to the last term of (2.10)).

Now we have a refinement of Theorem A from the above theorems and
(1.7).

Corollary 2.4. If we, in Theorems 2.2 and 2.3, add the assumption that a

is nonincreasing, then we can replace max
J⊂In

P (J)(1−P (J) by max
1≤k≤n−1

Pk(1−
Pk) in the theorems.

Applying Čebyšev’s inequality, we have:

Corollary 2.5. If we assume, in Corollary 2.4, that b is also nonincreas-
ing, then we can further replace |T (a, b; p)| by T (a, b; p)(≥ 0) in the theo-
rems.

3. Integral-type Grüss’ inequalities

To show an integral analogue of Grüss’ inequality considered in the pre-
ceding section, we define the Lebesgue space Lµ(Ω) for a finite positive
measure µ on Ω by

Lµ(Ω) =
{

f ; f is µ−measurable and
∫

Ω
|f(x)|dµ(x) < ∞

}

(in a little more general setting than Lw(Ω, µ) defined before). For con-
venience sake, we always assume that

∫

Ω
dµ(x) = µ(Ω) = 1.
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Now we define T (f, g; µ) for f, g, fg ∈ Lµ(Ω), by

T (f, g; µ) =
∫

Ω
f(x)g(x)dµ(x)−

∫

Ω
f(x)dµ(x)

∫

Ω
g(x)dµ(x). (3.1)

Corresponding to (2.3), we can obtain the representation of T (f, g;µ) as
follows:

T (f, g; µ) =
1
2

∫

Ω

∫

Ω
(f(x)− f(y))(g(x)− g(y))dµ(x)dµ(y). (3.2)

Integral-type Čebyšev’s inequality [7, p. 273]:

T (f, g; µ) ≥ 0 or
∫

Ω
f(x)g(x)dµ(x) ≥

∫

Ω
f(x)dµ(x)

∫

Ω
g(x)dµ(x) (3.3)

is then induced from the condition that

(f(x)− f(y))(g(x)− g(y)) ≥ 0 for x, y ∈ Ω. (3.4)

(This is the case, say, if Ω is an interval of the real line R and both f, g

are nonincreasing (or nondecreasing.)
From (3.2), we can obtain the following inequality corresponding to

Lemma 2.1.

Lemma 3.1 ([7, p. 296]). For f, g ∈ L2
µ(Ω)

(
= {f ; f2 ∈ Lµ(Ω)}) ,

|T (f, g; µ)| ≤ T (f, f ; µ)1/2T (g, g; µ)1/2. (3.5)

The following result is an integral version of Theorem 2.2 and it extends
Theorem F and also [6, Theorem 3.1]:

Theorem 3.2. Let f, g ∈ Lµ(Ω) (or L2
µ(Ω)), and let

m1 ≤ f(x) ≤ M1 and m2 ≤ g(x) ≤ M2 (x ∈ Ω) (3.6)

for some constants mi < Mi (i = 1, 2). Then

|T (f, g;µ)| ≤ M2 −m2

2

∫

Ω
|f(x)− f̄ |dµ(x)

(
f̄ =

∫

Ω
f(x)dµ(x)

)

≤ M2 −m2

2

∫

Ω

∫

Ω
|f(x)− f(y)|dµ(x)dµ(y)

≤ M2 −m2

2

{∫

Ω

∫

Ω
|f(x)− f(y)|2dµ(x)dµ(y)

}1/2

(
=

M2 −m2

2

{∫

Ω
|f(x)− f̄ |2dµ(x)

}1/2
)

(3.7)
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and

|T (f, g;µ)|

≤ 1
2
(M1 −m1)1/2(M2 −m2)1/2

×
(∫

Ω
|f(x)− f̄ |dµ(x)

)1/2 (∫

Ω
|g(x)− ḡ|dµ(x)

)1/2

≤ 1
2
(M1 −m1)1/2(M2 −m2)1/2

(∫

Ω

∫

Ω
|f(x)− f(y)|dµ(x)dµ(y)

)1/2

×
(∫

Ω

∫

Ω
|g(x)− g(y)|dµ(x)dµ(y)

)1/2

(
≤ (M1 −m1)(M2 −m2) sup

E⊂Ω
µ(E)(1− µ(E)), if Ω is locally compact

)
.

(3.8)

Proof. It follows from (3.1) that

T (f, g; µ) =
∫

Ω
(f(x)− f̄)g(x)dµ(x). (3.9)

First for (3.7), we see, from (3.9), that

|T (f, g;µ)| ≤
∣∣∣∣
∫

Ω
(f(x)− f̄)

(
g(x)− M2 + m2

2

)
dµ(x)

∣∣∣∣

+
∣∣∣∣
∫

Ω
(f(x)− f̄)

(
M2 + m2

2

)
dµ(x)

∣∣∣∣ .

Since∣∣∣∣g(x)− M2 + m2

2

∣∣∣∣ ≤
M2 −m2

2
and

∫

Ω
(f(x)− f̄)dµ(x) = 0,

we have
|T (f, g; µ)| ≤ M2 −m2

2

∫

Ω
|f(x)− f̄ |dµ(x),

which is the first inequality. To see the second and the third inequalities,
we have only to notice that

∫

Ω
|f(x)− f̄ |dµ(x) =

∫

Ω

∣∣∣∣
∫

Ω
(f(x)− f(y))dµ(y)

∣∣∣∣ dµ(x)

≤
∫

Ω

∫

Ω
|f(x)− f(y)|dµ(y)dµ(x)

≤
{∫

Ω

∫

Ω
(f(x)− f(y))2dµ(y)dµ(x)

}1/2

.

(3.10)
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For the identity after the third inequality, we can obtain it by an elementary
computation.

Next for (3.8), by Lemma 3.1 and the first inequality of (3.7), we have

|T (f, g;µ)| ≤ T (f, f ; µ)1/2T (g, g; µ)1/2

≤ 1
2
(M1 −m1)1/2(M2 −m2)1/2

(∫

Ω
|f(x)− f̄ |dµ(x)

)1/2

×
(∫

Ω
|g(x)− ḡ|dµ(x)

)1/2

,

(3.11)

which is the first inequality. The second inequality is obvious from the first
one of (3.10). Now if Ω is locally compact, then we can assume that f and
g are continuous. Put, for f,

If =
∫

Ω

∫

Ω
|f(x)− f(y)|dµ(y)dµ(x).

Then If is approximated by the sum

n∑

i,j=1

|f(xi)− f(xj)|µ(Ei)µ(Ej) = 2
∑

1≤i<j≤n

|f(xi)− f(xj)|µ(Ei)µ(Ej)

with respect to a decomposition of measurable sets {Ei}, xi ∈ Ei (i =
1, ..., n) in Ω. By (1.6) in Lemma C, we can see that

∑

1≤i<j≤n

|f(xi)− f(xj)|µ(Ei)µ(Ej) ≤ (M1 −m1) sup
E⊂Ω

µ(E)(1− µ(E)),

so that
If ≤ (M1 −m1) sup

E⊂Ω
µ(E)(1− µ(E)).

Similarly we have

Ig :=
∫

Ω

∫

Ω
|f(x)− f(y)|dµ(y)dµ(x) ≤ (M2 −m2) sup

E⊂Ω
µ(E)(1− µ(E)).

Hence we can deduce the third inequality from the second one.

Corollary 3.3. With the same assumptions as in Theorem 3.2 and the
additional condition (3.4), we can replace |T (f, g;µ)| by T (f, g; µ) (≥ 0).
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