Math. J. Toyama Univ. Vol. 14(1991), 167-175

NON-INVARIANT TWO DIMENSIONAL AFFINE DOMAINS

Teruo ASANUMA

Introduction

A commutative ring A with identity is said to be <u>invariant</u> if whenever B is a ring such that two polynomial rings $A[X_1, ..., X_n]$ and $B[Y_1, ..., Y_n]$ in n variables are isomorphic, then A and B are isomorphic. In their work [1], Abhyankar, Eakin and Heinzer proved that an integral domain of transcendence degree one over a field is invariant, and asked whether two dimensional affine domains over a field are invariant. The purpose of the present paper is to study the invariance on some two dimensional affine domains over a field.

In section 1 we study the invariance on R[Z], where R is a one dimensional affine domain over a field k and Z is an indeterminate. In particular, when k is a perfect field, we give a complete description on a commutative ring B which satisfies $R[Z,X_1,\ldots,X_n] \cong B[Y_1,\ldots,Y_n]$.

In section 2 we construct a non-invariant two dimensional affine domain over a field of characteristic zero.

1. Invariance on R[Z]

We first consider the invariance on two dimensional affine domains of the form R[Z] where Z is an indeterminate.

- 1.1. We recall the defintion of F-rings from [2]. Let $R \subset S$ be a reduced ring extension. We say that R is F-closed in S if any element $t \in S$ such that t^2 , t^3 , $nt \in R$ for some positive integer n (n may depend on t) is always contained in R. If a reduced ring R is F-closed in any reduced ring extension $R \subset S$, then R is called an F-ring. It should be noticed that, in the case where a reduced ring R contains only a finite number of minimal prime ideals, R is an F-ring if and only if R is F-closed in its total quotient ring Q(R). In this case there is the smallest F-ring in Q(R) containing R, which is denoted by F(R).
- <u>1.2</u>. If a reduced ring R contains a field k of characteristic $p \ge 0$, then the following two conditions are equivalent to each other:
- (i) R is an F-ring.
- (ii) R is seminormal or p = 0.

For the proof see [9].

1.3. An integral domain R is said to be <u>strongly</u> invariant if the equality

$$R[X_1, \ldots, X_n] = B[Y_1, \ldots, Y_n]$$

of polynomial rings always implies the equality R = B of coefficient rings R and B.

1.4. Theorem. Let R be a strongly invariant integral domain. Then a polynomial ring R[Z] in one variable is invariant if and only if R is an F-ring.

<u>Proof.</u> Suppose $R[Z,X_1,\ldots,X_n]=B[Y_1,\ldots,Y_n]$. Then B contains R as a subring by [5]. First we claim that B is isomorphic to R[Z] if and only if B is R-isomorphic to R[Z]. It is sufficient to show the "only if" part of the claim. Let assume B is isomorphic to R[Z]. Then B is a polynomial ring S[T] in one variable T over a coefficient ring S which is isomorphic to R. Replacing B by S[T], we get

$$R[Z,X_1,\ldots,X_n] = S[T,Y_1,\ldots,Y_n],$$

and hence we have R = S, which means that B is R-isomorphic to R[Z]. With this claim, we see that our assertion is an immediate consequence of [2].

1.5. Remark. We can not extend Theorem 1.4 to the case of a polynomial ring in two variables as fol-

lows: Let R be a strongly invariant integral domain. Suppose R does not contain a field of characteristic zero. Then a polynomial ring $R[Z_1,Z_2]$ in two variables is not invariant by [4].

- 1.6. Corollary. Let R be a one dimensional affine domain over a field k of characteristic p > 0. Suppose k is algebraically closed in R. If R is not a polynomial ring over k, then the following conditions are equivalent:
- (i) $R[Z,X_1,\ldots,X_n] \cong B[Y_1,\ldots,Y_n]$ for some n>1,
- (ii) $R[Z,X_1] \cong B[Y_1],$
- (iii) $B \cong R[Z^q, Z+a_1 Z^p+a_2 Z^{2p}+\ldots+a_s Z^{sp}],$ where $q=p^e$ and $a_i \in F(R)$ (i = 1,...,s) for some non-negative integers e and s. In particular $B \cong R[Z]$ if and only if $a_i \in R$.
- <u>Proof.</u> According to [1] R is strongly invariant. Thus the corollary is an immediate consequence of Theorem 1.4 and [3].
- 1.7. Remark. If k is a perfect field, then a polynomial ring k[X,Y] in two variables is invariant [6,8]. Therefore, in this case, a two dimensional kaffine domain of the form R[Z] is invariant if and only if R is an F-ring.

Non-invariant affine domains

This section is devoted to give an example of non-invariant two dimensional affine domains over a field k of characteristic zero.

2.1. Theorem. Let k be a field of characteristic zero. We set

$$A = k[X,Y+Y^3,(X-1)(X-2)Y,(X-1)(X-2)Y^2],$$

$$B = k[X, XY+X^{3}Y^{3}, (X-1)(X-2)Y, (X-1)(X-2)Y^{2}],$$

where X, Y are indeterminates. Then we have

- (i) $A[Z] \cong B[Z]$,
- (ii) $A \ncong B$.

<u>Proof.</u> We begin with some remarks on A and B. Put F = (X-1)(X-2). Since F and X are coprime to each other in k[X], we can choose $f,g \in k[X]$ such that $X^3 f+F^3 g=1$. Thus

$$XYf+Y^3 = XYf+(X^3f+F^3g)Y^3$$

= $(XY+X^3Y^3)f+(FY)^3g \in B$,

which shows that Y is integral over B. Also, Y is integral over A because $Y+Y^3 \in A$. Therefore if we denote by A' and B' the integral closures of A and B respectively in the quotient field Q(A) = Q(B) = k(x,y), then we have A' = B' = k[X,Y]. Notice that the principal ideal (F) = Fk[X,Y] of k[X,Y] is also an ideal of both A and B. Put

k[x,y,z] = k[X,Y,Z]/Fk[X,Y,Z],

where x,y and z are the residue classes modulo Fk[X,Y,Z] of X,Y and Z respectively. Then k[x,y,z] is a polynomial ring in two variables y and z over a reduced Artin ring k[x] defined by (x-1)(x-2) = 0. By the canonical map we regard A/(F) and A'/(F) as subrings of k[x,y,z]. So if we write c(R'/R) for the conductor of an integral ring extension $R \subset R'$, then

$$C((A'/(F))/(A/(F))) = 0,$$

and hence we have c(A'/A)=(F). A similar argument can be applied to B to get c(B'/B)=(F). Furthermore it is easy to see that A and B have the forms

$$A = k[X, Y+Y^3]+(F)$$
 and $B = k[X, XY+X^3Y^3]+(F)$.

Now we shall prove (i). Put G = (-X+3)/2, then

$$GX \equiv 1 \pmod{(F)}$$
.

Let us denote by H* the image of any element $H \in k[X,Y,Z]$ under the natural homomorphism $k[X,Y,Z] \rightarrow k[x,y,z]$. Thus $G^* = x^{-1}$. If we define a 2 \times 2 matrix $(G_{i,j})$ by

$$\left(\begin{array}{c}G_{1}, G_{12}\\G_{2}, G_{22}\end{array}\right) = \left(\begin{array}{c}1 & X\\0 & 1\end{array}\right) \left(\begin{array}{c}1 & 0\\-G & 1\end{array}\right) \left(\begin{array}{c}1 & X\\0 & 1\end{array}\right) \left(\begin{array}{c}0 & -1\\1 & 0\end{array}\right),$$

then $(G_{i,j})$ is invertible in k[X] and

$$\begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}.$$

So the k[X]-automorphism

$$\Phi : \begin{pmatrix} \mathbf{Y} \\ \mathbf{Z} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{G_{1 \ 1}} & \mathbf{G_{1 \ 2}} \\ \mathbf{G_{2 \ 1}} & \mathbf{G_{2 \ 2}} \end{pmatrix} \begin{pmatrix} \mathbf{Y} \\ \mathbf{Z} \end{pmatrix}$$

of k[X,Y,Z] is well defined. Notice that $\Phi(Y)^* = xy$ and $\Phi(Z)^* = x^{-1}z$. The image of A[Z] by Φ is

$$\Phi(A[Z]) = \Phi(k[X,Y+Y^3,Z]) + \Phi(Fk[X,Y,Z])$$

$$= k[X, \Phi(Y) + \Phi(Y)^3, \Phi(Z)] + Fk[X,Y,Z].$$

Therefore

$$\Phi(A[Z])^* = k[x,xy+x^3y^3,x^{-1}z] = k[x,xy+x^3y^3,z].$$

On the other hand we have

$$B[Z]^* = k[x,xy+x^3y^3,z].$$

Thus we have $\Phi(A[Z])^* = B[Z]^*$, and so $A[Z] \cong B[Z]$. This completes the proof of (i). Next we shall prove (ii). Assume that there exists an isomorphism $\Psi: A \cong B$. As is easily seen, Ψ can be extended to an isomorphism $A'\cong B'$ of integral closures of A and B, i.e., Ψ may be considered as a k-automorphism of k[X,Y] satisfying the condition $\Psi(A)=B$. Now (F) is a conductor of both integral extensions A'/A and B'/B. Since (F) is stable under the automorphism Ψ , it follows that $\Psi(F)=aF$ for some $a\in k-(0)$. This shows that $\Psi(X)\in k[X]$, and hence

$$k[X,Y] = k[\Psi(X), \Psi(Y)] = k[X,\Psi(Y)].$$

So $\Psi(Y)$ is written in the form $\Psi(Y) = bY + H$ where $b \in k-(0)$ and $H \in k[X]$. Recall that $\Psi(A)^* = B^*$ is well defined as a subring of k[x,y] ($\subset K[x,y,z]$). Thus we have

174

 $k[\Psi(X)^*, \Psi(Y)^* + \Psi(Y)^{*3}] = k[x, xy + x^3y^3].$

The element $xy+x^3y^3$ is algebraically independent over a reduced ring $k[x] = k[\Psi(X)^*]$, so that $\Psi(Y)^* + \Psi(Y)^{*3}$ is of the form

 $\Psi(Y)^* + \Psi(Y)^{*3} = (by+H^*) + (by+H^*)^3 = P(xy+x^3y^3) + Q,$

where P is a unit of k[x] and Q is an element of k[x]. It follows from easy calculation that

 $by+b^3y^3 = Pxy+Px^3y^3$,

and so b = Px, $b^3 = Px^3$, which imply that $X \equiv b^2$ (mod (F)) in k[X], a contradiction.

2.2. Remark. In [7], Hochster noticed that the polynomial ring in two variables over the coordinate ring of a real two sphere is not invariant. The ring of his example is a four dimensional regular affine domain over the real field. On the other hand, by Remark 1.5 if k is a field of positive characteristic, then $k[X,X^{-1},Y,Z]$ is not invariant. This example is a regular three dimensional affine domain. We do not know whether there exist non-invariant regular affine k-domains of dimension two.

References

[1] S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra, 23(1972), 310-342.

- [2] T. Asanuma, D-algebras which are stably equivalent to D[Z], Proceedings of the International Symposium on Algebraic Geometry, Kyoto (1977), KINOKUNIYA BOOK-STORE, Tokyo, 1980, 447-476.
- [3] T. Asanuma, On stably polynomial algebras, J. Pure Appl. Algebra, 26(1982), 235-247.
- [4] T. Asanuma, Polynomial fibre rings of algebras over noetherian rings, Invent. Math., 87(1987), 101-127.
- [5] S. Bhatwadekar, A note on strongly invariant rings J. Algebra, 50(1978), 297-298.
- [6] T. Fujita, On Zariski problem, Proc. Japan Acad., 55(1979), 106-110.
- [7] M. Hochster, Non-uniqueness of coefficient rings in polynomial rings, Proc. Amer. Math. Soc., 34 (1972), 81-82.
- [8] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ., 20(1980), 11-42.
- [9] R. Swan, On seminormality, J. Algebra, 67 (1980), 210-229.

Faculty of Education (Received June 8, 1991)
Toyama University
3190 Gofuku, Toyama 930
JAPAN