Math. J. Toyama Univ.
Vol. 14(1991), 167-175

NON-INVARIANT TWO DIMENSIONAL AFFINE DOMAINS

Teruo ASANUMA

Introduction

A commutative ring A with identity is said to
be invariant if whenever B 1is a ring such that two
polynomial rings A[X,,....,X,] and B[(Y,,...,Y.]
in n variables are isomorphic, themn A and B are
isomorphic. 1In their work [1], Abhyankar, Eakin and
Heinzer proved that an integral domain of transcend-
ence degree one over a field is invariant, and asked
whether two dimensional affine domains over a field
are invariant. The purpose of the present paper is
to study the invariance on some two dimensional
affine domains over a field.

In section 1 we study the invariance on R[Z],
where R is a one dimensional affine domain over a
field k and Z is an indeterminate. In particular,
when k is a perfect field, we give a complete de-
scription on a commutative ring B which satisfies

R[Z,X,,...,Xa]1 = B[Y\,...,Y.].
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In section 2 we construct a non-invariant two
dimensional affine domain over a field of character-

istic zero.

1. Invariance on R[Z]

We first consider the invariance on two dimen-
sional affine domains of the form R[Z] where Z is

an indeterminate.

1l.1. We recall the defintion of F-rings from [2].
Let R C S be a reduced ring extension. We say that
R is F-closed in S if any element t € S such that
tz,t3,nt € R for some positive integer n (n may
depend on t) is always contained in R. If a reduced
ring R is F-closed in any reduced ring extension
R'C S, themn R 1is called an F-ring. It should be
noticed that, in the case where a reduced ring R
contains only a finite number of minimal prime
ideals, R 1is an F-ring if and only if R is F-closed
in its total quotient ring Q(R). In this case there
is the smallest F-ring in Q(R) containing R, which

is denoted by F(R).

1.2. If a reduced ring R contains a field k of char-
acteristic p = 0, then the following two conditions

are equivalent to each other:
(i) R is an F-ring.

(ii) R 1is seminormal or p = 0.
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For the proof see [9].
1.3. An integral domain R is said to be strongly
invariant if the equality
R[X,,...,X,] = B[Y,,...,Y.]
of polynomial rings always implies the equality R =

B of coefficient rings R and B.

1.4. Theorem. Let R be a strongly invariant integral

domain. Then a polynomial ring R[Z] in one variable

is invariant if and only if R 1is an F-ring.

Proof. Suppose R[Z,X,,...,X%X.] = B[Y,,...,Y.]. Then
B contains R as a subring by [5]. First we claim
that B is isomorphic to R[Z] if and only if B is
R-isomorphic to R[Z]. It is sufficient to show the
"only if" part of the claim. Let assume B is
isomorphic to R[Z]. Then B is a polynomial ring
S[T] in one variable T over a coefficient ring

S which is isomorphic to R. Replacing B by S[T],

we get

R[Z,X,,...,X,] = S[T,Y,,...,Y.],
and hence we have R = S, which means that B is R-
isomorphic to R[Z]. With this claim, we see that

our assertion is an immediate consequence of [2].

1.5. Remark. We can not extend Theorem 1.4 to the

case of a polynomial ring in two variables as fol-
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lows: Let R be a strongly invariant integral domain.
Suppose R does not contain a field of characteristic
zero. Then a polynomial ring R[Z,,Z,] in two var-

iables is not invariant by [4].

1.6. Corollary. Let R be a one dimensional affine

domain over a field k of characteristic p > 0. Sup-

pose k 1is algebraically closed in R. If R is not

a polynomial ring over k, then the following con-

ditions are equivalent:

(i) R[Z,X,,...,X,] = B[Y,,...,Y.]1] for some n>1,
(ii) R[Z,X,] = BLY,],

(iii) B = R[Z°,Z+a,Z°+a,Z%?"+...+a,2°"7],
where q = p* and a;€ F(R) (i =1,...,s) for some

non-negative integers e and s. In particular B =

R[Z] if and only if a, € R.

Proof. According to [1] R is strongly invariant.
Thus the corollary is an immediate consequence of
Theorem 1.4 and [3].

1.7. Remark. If k is a perfect field, then a polyno-

mial ring k[X,Y] in two variables is invariant
[6,8]. Therefore, in this case, a two dimensional k-
affine domain of the form R[Z] is invariant if and

only if R is an F-ring.

2. Non-invariant affine domains
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This section is devoted to give an example of
non-invariant two dimensional affine domains over a

field k of characteristic zero.

2.1. Theorem. Let k be a field of characteristic

zero. We set

A

k[X,Y+Y®, (X-1)(X-2)Y, (X-1)(X-2)Y2],

B

k[X,XY+X?Y?, (X-1)(X-2)Y, (X-1)(X-2)Y? ],

where X, Y are indeterminates. Then we have

(1) A[zZ] = B[z],

(ii) A 2 B.

Proof. We begin with some remarks on A and B. Put
F = (X-1)(X-2). Since F and X are coprime to each
other in k[X], we can choose f,g € k[X] such that
X*f+F*g = 1. Thus

XYE+Y3 XYE+ (X2 £+F2g)Y?

(XY+X*Y2* )£+ (FY)®*g € B,

which shows that Y is integral over B. Also, Y is
integral over A because Y+Y3é A. Therefore if we
denote by A' and B' the integral closures of A and B
respectively in the quotient field Q(A) = Q(B) =
k(x,y), then we have A' = B' = k[X,Y]. Notice that
Fk[X,Y] of k[X,Y] is also
an ideal of both A and B. Put

the principal ideal (F)

k[x,y,z] = k[X,Y,Z]/Fk[X,Y,Z],
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where x,y and z are the residue classes modulo
Fk[X,Y,Z2] of X,Y and Z respectively. Then k[x,y.,z]
is a polynomial ring in two variables y and z over
a reduced Artin ring k[x] defined by (x-1)(x-2) = 0.
By‘the\canonical map we regard A/(F) and A'/(F) as
subrings of k[x,y,z]. So if we write c(R'/R) for
the conductor of an integral ring extension RC

R', then
c((A'/(F))/(A/(F))) = O,

and hence we have c(A'/A)=(F). A similar argument
can be applied to B to get c(B'/B) =(F). Furthermore

it is easy to see that A and B have the forms
A = k[X,Y+Y*]+(F) and B = k[X,XY+X*Y® ]+ (F).

Now we shall prove (i). Put G = (-X+3)/2, then
GX = 1 (mod (F)).

Let us denote by H* the image of any element H €
k[X,Y,Z] under the natural homomorphism k[X,Y,Z2]-
k[x,y,z]. Thus G* = x'. If we define a 2 x 2
matrix (G;;) by

G Gz ] [1 X

Gz, Ga: 0 1

1 0 1 X 0 -1

-G 1 0 1 1 0

’

then (G;;) is invertible in k[X] and

X 0

G..* Glz']

GZI' Gzz' 0 x!

So the k[X]-automorphism
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Y Gl 1 G1 2 Y

Z Gz G2 y/

of kI[X,Y,Z] is well defined. Notice that ¢&(Y)* =
xy and ¢ Z)* = x'z. The image of A[Z] by ¢ is

®(A[Z]) = @ k[X,¥+Y*,Z])+ & Fk[X,Y,Z])
= k[X, oY)+ ®Y)?,®(Z)]+ Fk[X,Y,Z].
Therefore
O(A[Z])* = Kk[x,xy+x°y®,x 'z] = K[x,xy+x°y®,z].

On the other hand we have
B[Z]* = k[x,xy+x%y?,z].

Thus we have &( A[Z])* = B[Z]*, and so A[Z] = B[Z].

This completes the proof of (i). Next we shall prove
(il). Assume that there exists an isomorphism
Y': A~ B. As is easily seen, Y can be extended
to an isomorphism A' B' of integral closures of
A and B, i.e., ¥ may be considered as a k-auto-
morphism of k[X,Y] satisfying the condition WY A)= B.
Now (F) is a conductor of both integral extensions
A'/A and B'/B. Since (F) is stable under the auto-
morphism ¥ , it follows that WY(F) = aF for some

a € k - (0). This shows that Y X)e k[X], and hence
k[X,Y] = k[WX), ¥(Y)] = k[X,¥Y)].

So Y(Y) is written in the form Y(Y) = bY+H where
b € k-(0) and H € k[X]. Recall that W(A)' = B*
is well defined as a subring of k[x,y] (C K[x,v.,z]).

Thus we have
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kK{WX)" WY)*+¥(Y)*®] = k[x,xy+x*y®].

The element xy+x®y? 1is algebraically independent
over a reduced ring k[x] = k[W(X)*], so that
YY)*+y¢y(vY)** is of the form

YY) +¥(Y)** = (by+H")+(by+H*)*= P(xy+x*y®)+Q,

vwhere P is a unit of k[x] and Q is an elememt of

k[x]. It follows from easy calculation that
by+b®*y® = Pxy+Px3®y?,
and so b = Px, b* = Px*, which imply that X = b?

(mod (F)) in k[X], a contradiction.

2.2. Remark. In [7], Hochster noticed that the poly-

nomial ring in two variables over the coordinate
ring of a real two sphere is not invariant. The ring
of his example is a four dimensional regular affine

domain over the real field. On the other hand, by
Remark 1.5 if k is a field of positive character-
istic, then k[X,X ',Y,Z] is not invariant. This
examplé "is a regular three dimensional affine
domain. We do not know whether there exist non-

invariant regular affine k-domains of dimension two.
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