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Abstract

We do research on some estimates and the dead core of solution in
some nonlinear parabolic problems .
1 Introduction

In this note we are concerned with the behaviour of solution u(z,t) of the
problem (1.1)-(1.3):

(1.1) ug — Ag(u™) = 2P in Q=QxRT,
(1.2) u(z,t) =x(x) on I'=8Qx R,
(1.3) u(z,0) = up(x) in Q.

Here Q is a bounded, arcwise connected domain in RN (N > 1) whose boundary
99 is of class C3, Rt = (0, +00), A € (0,+00), A; denotes the N-dimensional
Laplace operator, m > 1 and p > 0 are constants, x(z) is a nonnegative contin-
uous function on I' and uo(z) is a nonnegative continuous function in Q with
ugo(z) = x(z) on 9Q and Maxguo(z) = 1.
We shall give the notation of weak solution of the problem (1.1)-(1.3).

Definition 1.1. A function u € C([0,T] : L}(Q)) N L*®(Qr) is called a weak
solution of the problem (1.1)-(1.3) if it satisfies

(1.4) / u(z, T)o(z, T)dx——// [uct + u™ A, J]dxdt+/ / (x )m—dS'

:/uga(z,O)d:v-i—// —MuPodzxdt
Q QT

for all o € C%(Qp) with o = 0 on 8Q x (0,T). Here we put Qr = 2 X 0,T),
5% stands for the outer normal derivative at 0f2.



By an upper solution of the problem (1.1)-(1.3), we mean any %(x,t) €
C([0,T) : LY(2)) N L®(Qr) which satisfies (1.4) with the inequality > for any
positive ¢ as above. Similarly u(z,t) € C([0,T] : L}(Q)) N L*®°(QT) is called a
lower solution of the problem (1.1)-(1.3) the inequality sign is reversed.

The local existence and uniqueness of solutions of the problem (1.1)-(1.3)
have been studied by several authors (see [1], [5] and (8]).

When x(z) = 0 in (1.2), it is well known that the solution u(z,t) of the
problem (1.1)-(1.3) converges to zero as t — oo (Cf. [6]).
In ([2]) and ([4]) the following steady state problem has been studied:

(1.5) —Agp™ = —A¢?  in 9,

(1.6) ¢(z) = x(x) on O

Here ) is a positive constant. Let ¢(x;\) be a solution of the problem (1.5)-
(1.6). They have shown that if x(z) > 0 in Q, either  or A\(> 0) is large enough,
and p < m, then the solution ¢(z; ) of the problem (1.5)-(1.6) has a dead core
D(¢(z; \)), that is , the set D(¢(z;A)) = {z € Q: ¢(x;2) =0} £ 0.

Definition 1.2. Suppose that a solution ¢(z;\) of the problem (1.5)-(1.6) has
a dead core. Let 5 € Q and p < m. Define

(1.7) Xo = inf {¢(z0X) = 0}, A" =1infdo.

Definition 1.3. Let u(z,t) be the solution of the problem (1.1)-(1.3). For any
t(> 0) we set D(u(t)) = {z € Q : u(z,t) = 0}. The set D(u(t)) is called by a
time-dependent dead core of solution u(z,t).

For the solution u(z,t) of the problem (1.1)-(1.3), we briefly mention on the
existence of the time T such that D(u(t))(# 0) (t > T).
Let z(t) be a solution of the problem:

(1.8) zz=-X (0<t), 2z(0)=1.
Then the solution of the problem (1.8) is given by

—1
(1.9) Aty ={1+Mp-1} 7 ifp#l
and
(1.10) 2(t)=e* ifp=1

Here {f}, = max(f,0).

In (2] Bandle, Nanbu and Stakgold have proved the following result:
Theorem 1.1. (Cf. [2]. Theorem 4.1.) Let u(z,t) be the solution of the prob-
lem (1.1)-(1.3) in the case 0 < p < m. For fixed zo € , choose A (> Ag) where



Ao is defined in (1.7). Then
() If0 < p <1, then u(xp,t) =0if t > )\——IAE
(b) If p > 1 and mingue(z) > 0, then u(zo,t) > 0 for all ¢.

We know some results on the dead core of the solutions of the problem (1.5)-
(1.6).
Theorem 1.2.(Cf.[2], [4].)
(i) Let ¢1(x; \) be the solution of (1.5) satisfing ¢; = x1(z) on 0 and ¢2(z; )
the solution of (1.5) satisfing ¢2 = x2(x) on 9Q . If x;1(z) < x2(x) on 69, then
$1(z; A) < d2(z; A) in Q and D(¢a(z; A)) C D(¢1(z;A))-
(i) Let ¢1(z; A1) be the solution of (1.5) for A = A; satisfing ¢1 = x(z) on 9Q
and ¢o(z; A2) the solution of (1.5) for A = A, satisfing ¢ = x(z) on 9Q . If
A1 < Ag, then ¢2($; Ag) < ¢1(.’E;)\1) in © and D(¢1(.’L‘,)\1)) C D(¢2(:E; /\2))

There are some results on the convergence of solution u(zx,t) of the problem
(1.1)-(1.3) .

At first we are interested in Ricci’s result for u; — Azu = —u9. Ricci([11])
has proved the following result:
Theorem 1.3. ( Cf[11].) :
Let 0 < g < 1 and u(z,t) be a solution of the problem

(1.11) u —Agu=—-u? in Q=0xRT,
(1.12) u(x,t)=1 on I =0Qx R,
(1.13) u(z,0) =1 in Q.

Let ¢(z;A) (A > 0) be a solution of the problem
(1.14) —Ayzp = —Ap? in Q,¢6(00)=1.

Then there exist positive constants K, K; and K5 such that for any positive A
and u

(i) 1623 %) — 823 )l goga, < KIA— ul,
and
(%) lu(z,t) — ¢(x;1)|| Lo () < Kre 520

This estimate (ii) holds whether D(¢(x; \)) # @ or not. Moreover if D(¢(x; X)) #
@, there exists a constant K3 such that

(i) d(OD(u(t)), OD($(z; N))) < K™ Kali=a/D1,

Let u(z,t) be a solution of the problem (1.1)-(1.3) and ¢(x) a solution of
the problem (1.5)-(1.6) for A = 1. Then ¢(x) is a lower solution of the problem



(1.1)-(1.3) and @(x, t) = 1 is an upper solution of the problem (1.1)-(1.3). Hence
we have :

Theorem 1.4.(Cf. [1], [10].) Let u(z,t) be a solution of the problem (1.1)-(1.3)
and ¢(x) a solution of the problem (1.5)-(1.6) for A = 1. Then the following
convergences hold:

(1.15)  if ¢(z) <wuo(z) <1, then u(z,t) — ¢(z) in a.e. Q as t— oo,
and |
(1.16) if uo(z) < ¢(z), then u(z,t) — ¢(x) in a.e. Q as t— oo

There is no result on the decay estimate of solution u(z,t) of the problem
(1.1)-(1.3). In this note we shall study the decay estimate on

IV (u™(z,t) — ™ (23 M) llL2() in t

for the solution u(z,t) of the problem (1.1)-(1.3).

2 Some results on the dead core

We assume that 0 < A< 1,0<p<mand 1 <m.
Let u(z,t) be a solution of the following special problem :

(2.1) u — Ay(u™)=—u? in Q=QxRt,
(2.2) u(z,t)=1 on I'=0Qx Rt
(2.3) u(z,0) =1 in Q.

For the dead core of a solution u(z,t) of the problem (2.1)-(2.3) we set
D(u(t)) = {z € Q: u(z,t) =0} (0<t<o0).
Let ¢(x; \) be a solution of the following problem (2.4):
(2.4) —AL(P™) = =P in Q ¢@=1 on OQ.
Here A(€ (0,1]) is a constant. We denote a dead core of ¢(z : A) by D(¢(z; A)).

Lemma 2.1 If D(¢(z;1)) is not empty, then there exists a positive numbers
M*(< 1) such that if 0 < A < A*, then D(¢(z; \)) is empty, and if A > A" then
there is a dead core D(¢(x; \)) such that if \* <X < pu <1, then

D(¢(z; A)) C intD($(x; u)).
Remark. If Q is large enough, then D(¢(z;1)) is not empty (See [12] ).



Let 2(¢; A) be a solution of the following problem :
(2.5) ze=—-AzP (0<t), =2(0)=1.
Then the solution of the problem (2.5) is given by
if p#1, then z(t;A)={1+Alp- l)t};l/(p_l),

and
if p=1, then z(t;)\) =e .

Here {f}+ = Max(f,0).

By the Comparison Principle we have
Lemma 2.2. Let A(€ (0,1)) be a constant. For the solution u(z,?) of the
problem (2.1)-(2.3) we have

(2.6) Max{2™(t; 1), ¢™(z; 1)} < u™ (2, 1)
<™z A) + 2T (51— ) in Qx (0,T)

where T =0 if 1<pand T=1/((1-AN)(1-p)) if0<p<1.
Proof. For any positive A(< 1) we set

(z;A) = d(z; \)™, Z(1; ) = 2(HE )™

and
Ulz,t) = ®(z;A) + Z(t;1 — A).

Then we have
LU) = (UY™); — AU = (& + 2)(-m)/mym=1, _ A®
> —(1 = \)ZzA-m)/m z(m=1)/m zp/m _ \gp/m
= —(1=A)ZP/™ — \QP/™ > _(Z + ®)P/™ = _yP/™,
Thus the function U(z,t) satisfies the following
(UYm™), — AU > -UP'™  in Qx(0,T),
U(oQ,t) > 1 0<t<T),
U(z,0) >1 (z € Q).
Here
T { 00 if1<p
1/(A=-1)(1-p) if0<p<l

Therefore we obtain that

(2.7) Max{®(z;1),Z(t; 1)} < u™(z,t) < P(z;\) + Z(t;1-2) in Qx(0,T)



where T = oo if 1<pand T =1/((1 - A)(1—p))if0<p<1

From (2.7) we can conclude that
Theorem 2.1. Suppose that 0 < A < 1 and D(¢(z;1)) # 0. Let u(z,t) be a
solution of the problem (2.1)-(2.3). We have :
(i) If 1 < p < m, then 0 < u(z,t) in Q x R*.
(ii) If 0 < p < 1 < m, then 0 < u(z,t) in ( — D(¢(z;1))) X R*. ‘
(i) If 1 < p < m, then 0 < u(z,t) < (1+ (1 - N(p — 1))~ Y@®=D in
D(¢(x;\)) x RT.
(iv) If 1 = p, then u(z,t) < e~(1=Mt/m in D(p(z; X)) x R,
(v)If0 < p<1<m,then u(z,t) =0 in D(¢(z; ) x [1/(1 = A)(1 = p),0).

From Theorem 2.1 (v) it follows that
Corollary 2.1. Suppose that 0 < p < 1 and A < 1 and D(¢(z; 1)) is not empty.
There exists a time ¢* such that if 0 < t < t*, then D(u(t)) = @ and t > t* then
D(u(t)) # 0. The sequence of the set D(u(t)) = {x € u(z,t) = 0} is strictly
increasing in t and converges to the set D(u(oc)) = D(¢(z; 1))-

3 Decay Estimates

In this section we shall give some decay estimates on the solution u(z,t) of the
problem (1.1)-(1.3).

Theorem 3.1.(Cf. [2].) If we impose a natural condition on the initial value
ug(z) such that '

(3.1) Aluo(z))™ — Muo(z))P <a<0 (z€Q),

then the solution u(z,t) of the problem (1.1)-(1.3) is nonincreasing in ¢ , that
is, u(z,t + 7) < u(z,t) for any 7(> 0) at every z € .

Let ¢(z; ) be a solution of the problem (1.5)-(1.6). If ug(z) > ¢(x; A), then
#(z; A) is a lower solution of (1.1)-(1.3) ,that is, u(z,t) 2 #(z; N) in £ x [0, 00).
From the result of [9] we know that
Theorem 3.2.(Cf. [9].) Let u(z,t) be a solution of the problem (1.1)-(1.3)
under the condition ug(z) > ¢(z; A). Then it follows that

lu™(x,t) — ™ (z; M|z — 0 as t — oo.

We set 6(x,t) = u(z,t) — ¢(x; A).
Theroem 3.3.(Cf. [2].) Let u(z,t) be a solution of the problem (1.1)-(1.3) .
Suppose that ug(z) > ¢(z; A). Then we have
(a) If p>m(> 1), then
0 < §(z,t) < 2(2),



where z(t) is the solution of
zg = —A2P (¢t > 0);2(0) = 1.

(b) If p < m, then
0 <é(x,t) < 6(t),

where 6(t) is the solution of
P
= —y(6)™,0(0) = ==
6: (0™, 0(0) =1,y=2A

By Theorem 3.3 we define the function A(t) by

(1+/\(p—A1)t)‘ﬁ, (pzm>1) or (p>1,m=1)
e— Mt p=m=1
2) A(t)= Vo) =
(3.2) A(t) (14 0(m—1)t)" 71, m>1,0<p<m
e=0t O<p<l=m
where
9=@2;%—1
— .

Let ¢(z; A) be a solution of the problem (1.5)-(1.6). If ug(z) < ¢(z; A), then
#(x; A) is an upper solution of (1.1)-(1.3) ,that is, u(z,t) < ¢(z;A). From the
result of [9] we know that
Theorem 3.4.(Cf. [9].) Let u(x,t) be a solution of the problem (1.1)-(1.3)
under the condition ug(z) < ¢(z;A). Then it follows that

[u™(z,t) — ™ (2; M)l L2(2) — 0 as t — oo.

In the below we shall consider the large time behaviour of

41
/ / IV (u™(x,t) — ¢™(z; \))|2deds
t Q

ast — oo.
Theorem 3.5. Let u(z,t) be a solution of the problem (1.1)-(1.3) and ¢(z; A) a

statinary solution of (1.5)-(1.6) . Assume that ug(z) satisfies (3.1) and ug(x) >
é(z; A) in Q. Then for any t > 0 we have

t+1

s u™(z,s;X) — o™ (x: 2 dx

| s |19 @) - om @) P a
< V/m A(t) mes(Q) {\/B+ vm A(t) mes(Q)} .

Here 3 is a constant which is determined in (3.8).
Proof. By Theorem 3.1 u(z,t) is nonincreasing in ¢ at every point z € .



Set n(z,t) = u™(z,t) — ¢™(z; N).
The functions u(z,t) and ¢(z) = ¢(z; A) satisfies :

(3.3) uy — A(u™ — ¢™) = —A(uf —¢P) in Qx RT.
Multiply (3.3) by n(z,t) and integrate in  , then
(3.4) / undx +/ |Vn|2dz + /\/ (uP — ¢P)ndx = 0.
Q Q Q
By Theorem 3.3, we know u(z,t) — ¢(z; A) < A(t) (t > 0) and then we have
(3.5) 0< / n(z,t)dx = / (u™(z,t) — ™ (x; N))dx < m A(t) mes(£2).
Q Q

We now return to the equation (3.3). Multiply (3.2) by 7; and integrate it over
Q, then by using n,(x,t) = (u™)¢(z,t), we have

1d
6o)  [undetgg [1vnf s [ =z =0,

/Q(up — P )mdz > /S;up(um)tda:

and so we have
(3.7) wndr+-— [ |Vn|®de+ [ vP(u™)idz < 0.

Integrating (3.7) in t on [0,t] , then for any t > 0

i m E 2 m ulz. t)Pt™
/{)(/ﬂut(u )tdm)ds+2/Q|Vn(x,t)| alac+(p+m)/Q (z,t)P " ™dx

1 2 +m —
(3.8) < 5—/9 | Vn(z,0) |° dz + /(;uo(x)” dz = 3.

m
(p+m)

Integrating (3.7) in t on [t,t + 1], then we hvae

t+1
/ (/ ut(um)tdm)d5+—1—/ | Vn(z,t+1) | dz+ /u(x,t+1)p+mdz
¢ Q 2 Ja 0

m
(p+m)
—l 2 __TL +m
_2Lan(x,t)| dx+(p+m)/ﬂu(a:,t)p dr <,

and then it follows that for any ¢ > 0

t+1
(3.9) / /Qut(um)tdmds <B.
t



From (3.4) we have

t+1 t+1 t+1
(3.10) / / | V|2 dx = — / f wynde — A / / (uP — ¢P)ndz.
t Q t Q t Q

By Theorem 3.3, for any (> 0) we have

(3.11) J - [ =iz 1< JRERS
<

< m A(t) mes(9).
- Writing
g = 7(5%u%)(utuﬂ%‘-)5%u—% < (6% ud)(uu™T),

and using the Schwarz’s ineaqlity, we obtain

(3.12) | —/:H/Qumdfrl
< [\/ /t tHds /Q nud:n] [\/Z Hlds /Q ugum-ldx] < v/m A(t) mes(R)B.

Hence we have

t+1 41 t+1
/ ds/ | Vn |2 dz < / ds/ nudz / ds/ uZum=tdz
t Q t Q t Q

< /m A(t) mes(Q) {\/B +/m AQt) mes(Q)} .

Therefore we may conclude that

/ ! ds / | Vn |2 dz < v/m A(t) mes(Q) {\/B + /m A(2) mes(Q)} .
t Q
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