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Abstract

We consider stable sets of a simple and symmetric strategic public
good provision game. In particular, we consider stable sets where
each one consists of strategy profiles that provide an identical level
of the public good. We completely identify the public good provision
levels to be supported by the stable sets for each number of players.
This identification induces the following two observations. First, the
efficient public good provision level is always supported by a stable
set. Second, the public good provision levels at the stable sets are no
lower than that at the (unique coalition-proof) Nash equilibrium. In
fact, the stable sets support strictly higher public good provision levels
than that at the Nash equilibrium if there are more than two players.
Further, we give a welfare comparison between the stable sets and the
Nash equilibrium by employing the coefficient of resource utilization.
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1 Introduction

Game theory includes two contrasting conclusions for a public good provi-

sion problem. In the cooperative framework, the players can agree upon the

efficient outcomes in the sense that the core is generally nonempty. In fact,

the core is large and the unique stable set. (See Champsaur, 1975.) On the

other hand, in the noncooperative framework, the players generally fail to

agree upon the efficient outcome in the sense that the Nash equilibrium is

inefficient. Indeed, the public good is underprovided at the Nash equilib-

rium. The underprovision and the resulting inefficiency are main concerns in

the noncooperative public good provision game. At least interpretationally,

the cooperative and the noncooperative games are distinguished whether the

binding agreement is allowed or not.1 In the absence of the binding agree-

ment, the players can unilaterally deviate from an outcome, leaving the other

players’ strategies unchanged in the noncooperative framework. This paper

explores the possibility of more efficient outcomes to be agreed upon without

the binding agreement.

To this end, we employ the coalitional contingent threat situation, hence-

forth CCTS, that is defined by Greenberg (1990) in his book. The CCTS is

derived from a strategic form game and describes the following open nego-

tiation among the players. Once a strategy profile is proposed, a coalition

of players may openly declare to deviate from the strategy profile by chang-

ing their own strategies, provided that the other players stick to the current

strategies. Other players come to know this deviation by the open declara-

tion. Then, another coalition can counter to this deviation by declaring to

revise their own strategies from the new strategy profile. The possibility of

such a counter deviation is the feature of the CCTS that varies from the stan-

1See Aumann (1974) for this kind of arguments.
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dard strategic form game analysis with the Nash equilibrium and its variants

such as the strong Nash equilibrium (Aumann, 1959) and the coalition-proof

Nash equilibrium (Bernheim, et al., 1987).2

The solution concept for the CCTS is given by the stability notion a la

von Neumann and Morgernstern (1944), and will be called the stable set in

this paper.3 Namely, the stable set in the CCTS is a set of strategy profiles

satisfying the internal and external stability. It can be roughly described as

follows. Consider that a stable set and a strategy profile in the stable set

are proposed. According to the manner of the CCTS, a coalition of players

may declare to revise the strategy profile to make themselves better off.

The internal stability requires that the revised strategy profile be outside the

stable set. Then, this strategy revision will be countered by another coalition

by the external stability. Namely, the coalition will beneficially declare to

change their strategies so that the new strategy profile is in the stable set.

In this way, the players voluntarily maintain the stable set as an agreement

without a binding agreement once the players have accepted the stable set.

We consider the stable sets in a CCTS derived from a strategic public good

provision game. The two players case was investigated by Miyakawa (2006).

This paper extends his model for an arbitrary finite number of players. Okada

and Muto (1998) investigated the stable sets in the symmetric duopoly model,

which is technically related to our model. They showed the existence of some

complicated stable sets though there were only two players. To avoid such

a difficulty, we restrict our attention to one particular class of the stable

sets: we consider a class of stable sets, each of which is consisting of strategy

2The coalition-proof Nash equilibrium takes a subsequent deviation into account, but
it is limited to the deviation by a subcoalition of the deviating coalition.

3Originally, the solution concepts in the the theory of social situations are defined as the
optimistic stable standard of behavior and the conservative stable standard of behavior,
which coincide with each other in the CCTS.
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profiles that achieve an identical level of the public good provision. In other

words, we consider the range of public good provision levels to be supported

by stable sets.

The main purpose of this paper is the complete identification of the public

good provision levels to be supported by stable sets. We derive the following

observations from this identification. First, the efficient public good provision

level is supported by a stable set. Second, the underprovision at the stable

sets are no worse than that at the Nash equilibrium, and better than that

at the Nash equilibrium when there are more than two players. Indeed, the

minimum public good provision level supported by a stable set is close to

two thirds of the efficient outcomes, which slightly varies according to the

number of players.

The first observation shows that the players can voluntarily maintain the

agreement on the efficient public good provision without a binding agreement.

The efficiency of the stable set was investigated in some related models in the

literature. Okada and Muto (1998) showed that the set of efficient outcomes

is a stable set in a Cournot duopoly market, which is technically related to

our model. Later, Miyakawa (2006) showed that the efficient provision level

is supported by a two-player public good provision game. Therefore, the

first observation is an extension of his result for an arbitrary finite number

of players. Further, Nakanishi (2001) showed the existence of the stable set

with an efficient outcome in a n-player prisoners’ dilemma with continuous

strategy spaces where only individual declarations of changing strategies are

allowed. Hirai (2013) showed that the stable set exists if and only if the

strong Nash equilibrium exists in a binary choice model of the public good

provision game. Moreover, the stable set coincides with the set of strong

Nash equilibria if it exists, and thus the stable set is efficient whenever it
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exists.

In spite of the first observation, there may exist other inefficient stable sets

since multiple stable sets exist in general. The second observation indicates

that the stable sets are better than the Nash equilibrium in the sense of the

extent of the underprovision. However, each stable set includes a strategy

profile where at least one player prefers the Nash equilibrium to it. Therefore,

we cannot conclude that the stable sets are more efficient than the Nash

equilibrium with respect to the Pareto criterion. Instead, we employ the

concept of the coefficient of resource utilization due to Debreu (1951). Then,

we show that the strategy profiles included in one stable set has the common

coefficient of resource utilization, and our stable sets are at least as efficient

as the Nash equilibrium with respect to the coefficient of resource utilization.

Indeed, the stable sets are strictly more efficient than the Nash equilibrium

when there are more than two players.

At the end of this section, we review some literature that investigated the

stable set and its variants in the public good provision problem. In the stan-

dard coalitional form game of a public good provision problem, Champsaur

(1975) showed that the core is the unique stable set. The analogy for the

continuum of players was shown by Einy and Shitovitz (1995) by employing

a different framework from the CCTS in the theory of social situation. Fur-

ther, Shitovitz and Weber (1997) considered the stable set in the continuum

players public good provision problem with finite types, where any feasible

allocations have the equal-treatment property and a certain crowding effect

presents. They showed that the set of equal-treatment Lindahl equilibrium

allocations is the unique stable set as well as the core. Hirai (2008) showed

the existence and characterized the stable sets in a public good economy with

proportional income tax due to Guesnerie and Oddou (1981). These liter-
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ature at least implicitly assumed the possibility of the binding agreements,

while the present paper does not.

In the next section, we define the strategic form game of the public good

provision problem. In Section 3, we define the stable set and give a charac-

terization of it. We also state our main results that completely identify the

public good provision levels being supported by stable sets. The proofs of

the results in this section are relegated to the Appendix. In Section 4, we

compare the extents of the underprovision and the inefficiency of the stable

set with those of the Nash equilibrium. In the final section, we conclude with

some remarks.

2 The public good provision game

For a finite set A, we denote |A| the cardinality of A. For any pair of real

numbers a and b with a < b, we denote [a, b] = {x ∈ R|a ≤ x ≤ b},
]a, b[= {x ∈ R|a < x < b}, [a, b[= {x ∈ R|a ≤ x < b}, and ]a, b] = {x ∈
R|a < x ≤ b}.

We consider a simple and symmetric public good provision game in the

strategic form. Let N = {1, ..., n} be the finite set of players with n ≥ 2.

A nonempty subset of N is called a coalition. Let N denote the set of

coalitions. Each player is endowed with an identical amount ω ∈ R++ of the

private good.

Each i ∈ N chooses xi ∈ [0, ω] that he contributes for the public good

provision. The set of strategies for each i ∈ N is denoted by Xi = [0, ω]. For

each S ∈ N , we denote XS = ×i∈SXi and x (T ) =
∑

i∈T xi for any coalition

T ⊂ S and xS ∈ XS. The private good contributed from the players is

transformed to the public good by a linear production technology with unit

cost 1. Thus, the set of the feasible (public good) provision level is [0, nω].
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For each y ∈ [0, nω], we denote X (y) = {x ∈ XN |x (N) = y}. Each i ∈ N

has the identical simple preferences relation on XN that is represented by

the payoff function vi (x) = (ω − xi)
∑

i∈N xi for any x ∈ XN .

In a public good provision game, x ∈ XN is said to be efficient if there

exists no x′ ∈ XN such that vi (x
′) ≥ vi (x) for all i ∈ N and a strict inequality

holds for at least one player. It is easy to see that if x (N) = nω
2
, then x is

efficient. Therefore, we call nω
2

the efficient provision level.4

3 The stable set

We introduce the stable set in a strategic form game due to Greenberg (1990).

Originally, the stable set is defined as the optimistic (conservative) stable

standard of behavior, henceforth OSSB (CSSB) for a CCTS, which coincides

with each other in the CCTS. We omit to derive the CCTS and directly

define the stable set in a strategic form game. Of course, the stable set in

a strategic form game and the OSSB (CSSB) for a CCTS are essentially

equivalent.

The stable set in the strategic form game inherits the spirit of von Neu-

mann and Morgernstern (1944): The stable set is a set of strategy profiles

such that its elements do not dominate each other (the internal stability)

and any strategy profile outside the set is dominated by some strategy pro-

file in the set (the external stability). To define the dominance relation in

the strategic form game, we begin with the definition of the inducibility.

Definition 1 For any x, x′ ∈ XN and S ∈ N , we say x is inducible from x′

via S, denoted by x′ →S x, iff xN\S = x′
N\S.

4To be precise, there generally exists an efficient x̄ ∈ XN with x̄ (N) > nω
2 . For

example, x̄ = (0, ω, ..., ω) is efficient whereas x̄ (N) > nω
2 when n ≥ 3. The term “efficient

provision level” is used just for simplifying the arguments.
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Then, the dominance relation is defined as follows.

Definition 2 For any x, x′ ∈ XN and S ∈ N , we say x dominates x′ via S,

denoted by x ≻S x′, iff x′ →S x and vi (x) > vi (x
′) for all i ∈ S. For any

x, x′ ∈ XN , we say x dominates x′, denoted by x ≻ x′ iff x dominates x′ via

some S ∈ N .

A strategy profile x is dominated via a coalition when the members of the

coalition can make themselves better off by changing their own strategies

only. Now, we define the stable set.

Definition 3 We say K ⊂ XN is a stable set iff K satisfies the following

two properties.

Internal stability: For any x, x′ ∈ K, x ≻ x′ does not hold.

External stability: For any x ∈ XN \ K, there exists some x′ ∈ K such

that x′ ≻ x.

In general, there are multiple stable sets, and some of those may be very

complicated. To simplify the argument, we restrict our attention whether a

feasible provision level is supported by a stable set. Formally, we investigate

whether X (y) is a stable set for each y ∈ [0, nω]. We call y ∈ [0, nω] is a

stable provision level iff X (y) is a stable set. The simplicity of our model

allows the following characterization of the stable provision level.

Proposition 1 Let y ∈ [0, nω]. Then, y is a stable provision level if and

only if if y ≤ nω
2
, and for any y′ ∈]y, nω] and x′ ∈ X(y′), there exists some

S ∈ N that satisfies

x′ (S) > |S|ω − y, (1)

x′ (S) ≥ y′ − y, (2)

ωy > (ω − x′
i) y

′ for all i ∈ S. (3)
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Moreover, if |S| = 1, then (1) and (2) imply (3).

The proof of Proposition 1 will be given in Appendix A.1.

Then, we state the main results of this paper. Employing the charac-

terization of Proposition 1, we identify the feasible provision levels to be

supported by the stable sets.

Theorem 1 Assume that n = 2. Then, X (y) is a stable set if and only if

y ∈
[
2ω
3
, ω

]
.

Theorem 2 Assume that n ≥ 3.

(a) When n = 3k for some k ∈ N, X (y) is a stable set if and only if

y ∈
[nω
3
,
nω

2

]
.

(b) When n = 3k + 1 for some k ∈ N, X (y) is a stable set if and only if

y ∈

[(√
9n2 − 6n− 3− n+ 1

)
ω

6
,
nω

2

]
.

(c) When n = 3k + 2 for some k ∈ N, X (y) is a stable set if and only if

y ∈

[(√
9n2 + 6n− 3− n− 1

)
ω

6
,
nω

2

]
.

The proofs of Theorem 1 and 2 will be also given in Appendix A.2 and A.3,

respectively.

We obtain two corollaries from Theorem 1 and 2. The first one extends

one of the results of Miyakawa (2006) for the number of players.

Corollary 1 The efficient provision level is stable.
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Figure 1: The UPRs of the stable provision levels.
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The second corollary assures the existence of the stable set since any

interval in Theorem 1 and 2 has a positive length. Note that the stable set

may fail to exist in general. See Hirai (2013) for an example with no stable

set, which is a binary choice version of the present model.

Corollary 2 There exist infinitely many stable sets.

Figure 1 summarizes the results of Therem 1 and 2 in terms of the under-

provision rate, henceforth UPR. The UPR at a feasible provision level y ≤ nω
2

is defined as 2y
nω

that is the ratio of y to the efficient provision level.5 Each

thick vertical line represents the range of the stable provision levels in terms

of the UPR at each number of players. Note that the UPRs at the minimum

stable provision levels vary according to the number of players, but they are

close to 2
3
.

5In our symmetric model, the UPR essentially turns out to be the index of easy rid-
ing due to Cornes and Sandler (1984). They remarked that the index of easy riding is
inappropriate to measure the extent of inefficiency. See also Cornes and Sander (1996,
pp.159-161).
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Remark 1 In Theorem 2, the formulas of the minimum stable provision

levels vary according to the remainder of n divided by 3. Indeed, as is

obvious from Figure 1, the minimum stable provision level is lower than but

close to nω
3

when n is not a multiple of 3. This fluctuation is caused by a

certain integer problem.

Given a feasible provision level y ≤ nω
2
, we will later construct a strategy

profile that is most difficult to be dominated by some strategy profile in

X(y) to check whether X(y) is a stable set. To this end, imagine tentatively

the model where the set of players is the continuum with measure n, while

the initial endowments and the payoff functions are left unchanged. In the

proof of Theorem 2, we will construct the strategy profile for each feasible

provision level y as follows: n
3
players contribute all of their endowments,

and the remaining players contribute sufficiently small amount so that they

do not satisfy (3) in Proposition 1, which is in fact determined endogenously.

Such a strategy profile is ideal “ideal” in the sense that we are constructing

this in the model with continuum of players. Then, X(y) includes a strategy

profile that dominates this ideal one whenever y is no less than nω
3
, which

implies that nω
3

is the minimum stable provision level.

Returning to the original model with finite players, such an ideal strategy

profile can be directly applied when n is a multiple of 3. Therefore, nω
3

is

the minimum stable provision level in this case. On the other hand, the

ideal strategy profile is not feasible when n
3
is not an integer. Then, given a

feasible provision level y, we need to find an “approximately ideal” strategy

profile that is most difficult to be dominated by some strategy profile in

X(y) among the feasible strategy profiles. This approximately ideal strategy

profile is certainly departed from the ideal one constructed in the imaginary

model with continuum of players. This departure makes the approximately
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ideal strategy profile slightly easier to be dominated by some strategy profile

in X(y) for a given y. Then, X(y) where y is slightly lower than nω
3
includes a

strategy profile that dominates the approximately ideal strategy profile when

n is not a multiple of 3, and thus slightly lower provision levels than nω
3

can

be supported by a stable set. See the proofs in Appendix A.3 for more detail,

in particular Lemma 9.

Additionally, note that the UPR of the minimum stable provision level

converges to 2
3
, which is the UPR at y = nω

3
, as n goes to infinity. This

comes from the fact that the approximately ideal strategy profile converges

to the ideal one constructed in the imaginary model as the number of players

increases. ■

Remark 2 When n = 2, the approximately ideal strategy profile considered

in Remark 1 is so far from the ideal strategy profile that it is no longer the

most difficult to be dominated among the feasible strategy profiles. There-

fore, we need to consider another strategy profile not to be dominated for

identifying the minimum stable provision level when n = 2. This makes the

case with n = 2 distinct from the others, and thus an independent proof is

necessary. ■

4 Comparison with the Nash equilibrium

The Nash equilibrium is the most popular solution in the strategic public

good provision game. In our simple model, it is easy to see that

x∗ =

(
ω

n+ 1
, ...,

ω

n+ 1

)
∈ XN

is the unique Nash equilibrium. We call nω
n+1

the Nash provision level. In

fact, it seems consistent to our model that we regard x∗ the coalition-proof
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Nash equilibrium that is robust to not only the individual deviations, but

also the credible coalitional deviations since we are allowing the players to

form a coalition when we consider the stable set. It is also easy to check that

x∗ is a coalition-proof Nash equilibrium. See for example Yi (1999).

We compare the stable provision levels with the Nash provision level,

and observe that any stable provision level is strictly higher than the Nash

provision level when n ≥ 3.

Proposition 2 Any stable provision level is at least as high as the Nash

provision level. Moreover, if n ≥ 3, then any stable provision level is strictly

higher than the Nash provision level.

Proof. The case with n = 2 is obvious by Theorem 1. We show the case

with n ≥ 3 by employing Theorem 2.

First, assume that n = 3k for some k ∈ N. Then, by n ≥ 3,

nω

3
− nω

n+ 1
=

n (n− 2)

3 (n+ 1)
> 0,

the desired inequality.

Second, assume that n = 3k + 1 for some k ∈ N. Then, by n ≥ 4,(√
9n2 − 6n− 3− n+ 1

)
ω

6
− nω

n+ 1

=

(
(n+ 1)

(√
9n2 − 6n− 3− n+ 1

)
− 6n

)
ω

6 (n+ 1)

>

(
(n+ 1)

(√
9n2 − 12n+ 4− n+ 1

)
− 6n

)
ω

6 (n+ 1)

=
((n+ 1) (2n− 1)− 6n)ω

6 (n+ 1)

=
(2n2 − 5n− 1)ω

6 (n+ 1)

> 0,
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the desired inequality.

Finally, assume that n = 3k + 2 for some k ∈ N. Then, by n ≥ 5,(√
9n2 + 6n− 3− n− 1

)
ω

6
− nω

n+ 1

=

(
(n+ 1)

(√
9n2 + 6n− 3− n− 1

)
− 6n

)
ω

6 (n+ 1)

>

(
(n+ 1)

(√
4n2 + 4n+ 1− n− 1

)
− 6n

)
ω

6 (n+ 1)

=
(n (n+ 1)− 6n)ω

6 (n+ 1)

=
(n2 − 5n)ω

6 (n+ 1)

≥ 0,

the desired inequality. ■

Though the stable provision level is almost always higher than the Nash

provision level, each stable set includes a strategy profile that is not com-

parable with the Nash equilibrium with respect to the Pareto criterion. For

example, consider the case where n = 2m for some m ∈ N and a strategy

profile x where xi = ω for all i = 1, ...,m and xi = 0 for all i = m+1, ..., 2m.

It is easy to see that x is in the stable setX (mω), which supports the efficient

provision level. However, players 1, ...,m prefer the Nash equilibrium to x,

while players m+1, ..., 2m prefer x to the Nash equilibrium. We can consider

a similar example for the case with lower stable provision level and/or odd n.

Therefore, the Pareto criterion is not appropriate to compare the efficiency

at the stable sets with that at the Nash equilibrium. Instead, we apply the

coefficient of resource utilization due to Debreu (1951) for the measurement

of the efficiency.
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Definition 4 Let x ∈ XN . The coefficient of resource utilization, henceforth

CRU, at x is defined as σ (x) = W (x)
nω

, where

W (x) = min

{∑
i∈N

ri + q

∣∣∣∣ riq ≥ ui (x) for all i ∈ N ;
ri ≤ ω for all i ∈ N

}

The CRU at x is the ratio of the minimum amount of the (private good re-

quired for attaining the payoffs (u1 (x) , ..., un (x)) to the the original amount

of the initial endowments nω. Note that the condition ri ≤ ω for all i ∈ N is

added for the consistency with our model in which each player is not allowed

to consume the private good more than ω.

The following proposition confirms that the stable set is more efficient

than the Nash equilibrium with respect to CRU.

Proposition 3 For any y ∈
[
0, nω

2

]
and x ∈ X(y), σ (x) =

2
√

(nω−y)y

nω
.

Therefore, for any stable provision level y and any x ∈ X (y), σ (x) ≥ σ (x∗),

where x∗ ∈ X is the Nash equilibrium, and the strict inequality holds if n ≥ 3.

Proof. We prove the first statement. Then, the remaining proof follows

from Proposition 2 since
2
√

(nω−y)y

nω
is increasing in y with 0 ≤ y ≤ nω

2
.

It is easy to see that if xi = 0 for all i ∈ N , then x ∈ X(0) and σ(x) = 0.

Fix an arbitrary y ∈
]
0, nω

2

]
and an arbitrary x ∈ X (y). Define

ri =
(ω − xi) y√
(nω − y) y

for all i ∈ N and q =
√
(nω − y) y.

For all i ∈ N ,

ω − ri =
ω
√
(nω − y) y − (ω − xi) y√

(nω − y) y
≥

ω
(√

(nω − y) y − y
)

√
(nω − y) y

by xi ≥ 0. Suppose that
√
(nω − y) y < y. Then, nω − y < y by y > 0,

contradicting that y ≤ nω
2
. Thus, ω ≥ ri for all i ∈ N . It is easy to see
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that riq = (ω − xi) y = vi (x) for all i ∈ N . Hence, W (x) ≤
∑

i∈N ri + q =

2
√
(nω − y) y.

Fix arbitrary r′1, ..., r
′
n ≤ ω and q′ with r′iq

′ ≥ (ω − xi) y for all i ∈ N .

Define W ′ =
∑

i∈N r′i + q′. Note that
∑

i∈N r′iq
′ ≥ (nω − y) y. On the other

hand, (W ′ − p) p is maximized at p = W ′

2
. Thus,

W ′2

4
≥ (W ′ − q′) q′ =

∑
i∈N

r′iq
′ ≥ (nω − y) y

that is equivalent to W ′ ≥ 2
√
(nω − y) y. Hence W (x) = 2

√
(nω − y) y and

σ(x) = W (x)
nω

. ■

5 Concluding remarks

This paper investigated a certain class of the stable sets in a strategic public

good provision game. We completely identified the range of the feasible

provision levels to be supported by stable sets. Then, we observed that the

efficient provision level is supported by a stable set. We also observed that

the stable sets are better than the Nash equilibrium in terms of the extent of

the underprovision and the coefficient of resource utilization. We conclude

with a remark.

Our results heavily depend on the simplicity and the symmetry of the

model. It seems difficult to characterize the stable provision levels in a general

model. Perhaps, there may not exist a stable set consisting of strategy profiles

achieving an identical level of the public good provision. Instead, we may

work with the general model by restricting our attention to whether a set

of the efficient strategy profiles is a stable set. Another direction of the

extension is to consider a model with asymmetric initial endowments while

the preferences remain symmetric. Such a model was employed by Shitovitz
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and Spiegel (1998). We may investigate whether the neutrality theorem like

Bergstom, et al. (1986) holds, or the inequality of the initial endowments

affects the range of the stable provision levels. We remain these problems for

future research.

Appendix

We give the proofs for Proposition 1 and Theorem 1 and 2.

A.1 Proof of Proposition 1

We first prove four lemmas. Then, we turn to the proof of Proposition 1.

Lemma 1 For any y ∈ [0, nω], X (y) is internally stable.

Proof. Fix an arbitrary y ∈ [0, nω]. Fix arbitrary x, x′ ∈ X (y) and S ∈ N
such that x →S x′. By x (N) = x′ (N) = y, there exists some j ∈ S such that

xj ≤ x′
j. Then, x

′ ≻S x is impossible by vj (x
′) =

(
ω − x′

j

)
y ≤ (ω − xj) y =

vj (x). ■

Lemma 2 For any y ∈]nω
2
, nω], X (y) is not externally stable.

Proof. Fix an arbitrary y ∈
]
nω
2
, nω

]
. Fix an arbitrary x∗ ∈ X

(
nω
2

)
.

Note that x∗ is Pareto efficient. Suppose that there exist some S ∈ N
and xS ∈ XS such that (xS, x

∗
N\S) ≻S x∗ and (xS, x

∗
N\S) ∈ X (y). Then,

vi(xS, x
∗
N\S) > vi (x

∗) for all i ∈ S. For all i ∈ N \ S, vi(xS, x
∗
N\S) =

(ωi − x∗
i ) y ≥ (ωi − x∗

i )
nω
2

= vi (x
∗) by y > nω

2
. This contradicts the Pareto

efficiency of x∗. Hence no x ∈ X (y) dominates x∗, andX (y) is not externally

stable. ■
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Lemma 3 Let y ∈
]
0, nω

2

]
and y′ ∈ [0, y[. For any x′ ∈ X (y′), there exists

some x ∈ X (y) such that x ≻ x′.

Proof. Fix an arbitrary y ∈
]
0, nω

2

]
. Fix an arbitrary y′ ∈ [0, y[ and an

arbitrary x′ ∈ X (y′). Note that (nω − y′) y′ < (nω − y) y since (nω − z) z is

a quadratic concave function of z maximized at z = nω
2

and y′ < y ≤ nω
2
. Let

S = {i ∈ N |x′
i < ω} and s = |S|. Note that sω−x′ (S) = nω−x′ (N) = nω−

y′ since x′
i = ω for all i ∈ N \ S. For each i ∈ S, there uniquely exists some

x′′
i ∈]x′

i, ω] such that (ω − x′
i) y

′ = (ω − x′′
i ) y by 0 ≤ (ω − x′

i) y
′ < (ω − x′

i) y.

Since

(nω − (x′′ (S) + (n− s)ω)) y = (sω − x′′ (S)) y

= (sω − x′ (S)) y′

= (nω − y′) y′

< (nω − y) y,

we have

y − (n− s)ω < x′′ (S) . (A.1)

Define xi =
x′′
i

x′′(S)
(y − (n− s)ω) for each i ∈ S. Then, x (S) = y −

(n− s)ω and 0 ≤ xi < x′′
i ≤ ω for all i ∈ S by (A.1). We have (xS, x

′
N\S) ∈

X (y) since x′
i = ω for all i ∈ N \ S. By xi < x′′

i for all i ∈ S, vi (x
′) =

(ω − x′
i) y

′ = (ω − x′′
i ) y < (ω − xi) y = vi(xS, x

′
N\S) for all i ∈ S. Hence

(xS, x
′
N\S) ≻S x′. ■

Lemma 4 Let y, y′ ∈ [0, nω] with y < y′ and x′ ∈ X (y′). Then, there exists

some x ∈ X (y) such that x ≻S x′ if and only if there exists some S ∈ N
that satisfies (1)-(3) in Proposition 1.

Proof. Fix arbitrary y, y′ ∈ [0, nω] with y < y′ and an arbitrary x′ ∈ X (y′).

Let S ∈ N and s = |S|. We first rewrite (1) and (2) in the following way.
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We have

(sω − x′ (S)) y′− (sω − (y − x′ (N \ S))) y

= (sω − x′ (S)) y′ − (sω − (y − y′ + x′ (S))) y

= sω (y′ − y)− (y′ − y)x′ (S)− (y′ − y) y

= (y′ − y) (sω − x′ (S)− y) .

By y′ − y > 0, (1) holds if and only if

(sω − x′ (S)) y′ < (sω − (y − x′ (N \ S))) y. (A.2)

Also, y − x′ (N \ S) = y − y′ + x′ (S). Thus, (2) holds if and only if

y − x′ (N \ S) ≥ 0. (A.3)

Next, we show the necessity. Assume that there exists some x ∈ X (y)

such that x ≻S x′. By x ∈ X (y) and x′ →S x,

x (S) = y − x′ (N \ S) . (A.4)

By vi (x) > vi (x
′) for all i ∈ S, (ω − x′

i) y
′ = vi (x

′) < vi (x) = (ω − xi) y for

all i ∈ S. Aggregating these inequalities over S,

(sω − x′ (S)) y′ < (sω − x (S)) y. (A.5)

Substituting (A.4) to (A.5), we obtain (1) as well as (A.2). By (A.4) and

x (S) ≥ 0, we obtain (2) as well as (A.3). By xi ≥ 0 for all i ∈ S, (ω − x′
i) y

′ <

(ω − xi) y ≤ ωy for all i ∈ S. Thus, we obtain (3).

Finally, we show the sufficiency. Assume that (1)-(3) hold. Note that

(A.2) and (A.3) hold as well. For each i ∈ S, there exists some gi ∈]0, ω]
such that (ω − gi) y = (ω − x′

i) y
′ by (3). Aggregating these equations over

S, (sω − g (S)) y = (sω − x′ (S)) y′. Then, by (A.2) and (A.3),

g (S) > y − x′ (N \ S) ≥ 0. (A.6)
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For each i ∈ S, define xi =
gi

g(S)
(y − x′ (N \ S)). Then, x (S) = y−x′ (N \ S)

and 0 ≤ xi < gi for all i ∈ S by gi > 0 for all i ∈ S and (A.6). Thus,

x′ →S (xS, x
′
N\S), (xS, x

′
N\S) ∈ X (y), and

vi
(
xS, x

′
N\S

)
= (ω − xi) y > (ω − gi) y = (ω − x′

i) y
′ = vi (x

′)

for all i ∈ S. Hence (xS, x
′
N\S) ≻S x′. ■

Proof of Proposition 1. Let y ∈ [0, nω]. First, we show the sufficiency.

Assume that y ≤ nω
2
and y satisfies (1)-(3) for any y′ ∈]y, nω] and x′ ∈ X(y′).

Then, the internal stability follows from Lemma 1, and the external stability

follows from Lemma 3 and 4. Hence X(y) is a stable set.

Next, we show the necessity. Assume that X(y) is a stable set. Then,

Lemma 2 implies y ≤ nω
2
, and Lemma 4 implies that y satisfies (1)-(3) for

any y′ ∈]y, nω] and x′ ∈ X(y′).

Finally, we show that (1) and (2) imply (3) if |S| = 1. Fix an arbitrary

y′ ∈]y, nω] and x′ ∈ X(y′). Denote S = {i}. Assume that S satisfies (1)

and (2). Recall that (1) is equivalent to (A.2), and (2) is equivalent to (A.3).

Then, together with |S| = 1,

(ω − x′
i) y

′ < (ω − (y − x′ (N \ {i}))) y ≤ ωy.

Thus, we obtain (3). ■
Proposition 1 plays an important role in the subsequent proofs of Theorem

1 and 2.

A.2 Proof of Theorem 1

Proof of Theorem 1. Let n = 2. We first prove the necessity. Assume

that X (y) is a stable set. It suffices to show that y ≥ 2ω
3

by Proposition 1.
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Suppose that y < 2ω
3
. Consider a strategy profile x′ satisfying x′

i =
2ω
3

for

i = 1, 2. Thus, x′ ({1, 2}) = 4ω
3
.

For each i = 1, 2, 4ω
3
− y > 2ω

3
= xi by y < 2ω

3
. Thus, neither {1} nor

{2} satisfies (2) in Proposition 1. Hence for each i = 1, 2, there exists no

x ∈ X (y) such that x ≻{i} x
′. Further, {1, 2} does not satisfy (1) since

2ω − y >
4ω

3
= x′ ({1, 2})

by y < 2ω
3
. Thus, there neither exists x ∈ X (y) such that x ≻{1,2} x

′. Hence

X (y) is not externally stable.

Next, we turn to the sufficiency. Fix an arbitrary y ∈
[
2ω
3
, ω

]
. Fix an

arbitrary x′ ∈ XN such that x′
1+x′

2 > y. Denote y′ = x′
1+x′

2. By Proposition

1, it suffices to prove that some S ∈ N satisfies (1)-(3) for these y′ and x′.

We distinguish two cases.

Case 1. Both x′
1 > y and x′

2 > y.

We prove that N = {1, 2} satisfies all (1)-(3) in Proposition 1. By x′
i >

y ≥ 2ω
3

for each i = 1, 2, x′ (N) > 2y ≥ 2ω − y. Thus, N satisfies (1). By

y > 0, x′ (N) = y′ > y′− y. Thus, N satisfies (2). Since x′
i > y ≥ 2ω

3
for each

i = 1, 2 and y′ ≤ 2ω, ωy ≥ 2ω2

3
≥ ωy′

3
> (ω − x′

i) y
′ for each i = 1, 2. Thus,

N satisfies (3).

Case 2. Either x′
1 ≤ y or x′

2 ≤ y.

We consider the case where x′
1 ≥ x′

2. The case where x′
1 < x′

2 can be

proved by a similar argument.

In this case, x′
2 ≤ y and x′

1 ≥ y′

2
hold. Thus, x′

1 > ω
3
by y′ > y ≥ 2ω

3
.

We show that {1} satisfies (1)-(3) in Proposition 1. By y ≥ 2ω
3

and x′
1 >

ω
3
,

x′
1 > ω

3
≥ ω − y. Thus, {1} satisfies (1). By x′

2 ≤ y, x′
1 = y′ − x′

2 ≥ y′ − y.

Thus, {1} satisfies (2). Since |{1}| = 1, {1} satisfies (3) by the last statement

of Proposition 1.
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By Proposition 1 and Case 1 and 2, X (y) is a stable set. ■

A.3 Proof of Theorem 2

We first prove five lemmas. Then, we turn to the proof of Theorem 2.

In what follows, for each s ∈ {1, ..., n} and any x ∈ XN , let S∗ (x, s)

denote the coalition such that |S∗ (x, s) | = s and xi ≥ xj for any i ∈ S∗ (x, s)

and j /∈ S∗ (x, s). Of course, there may be multiple coalitions satisfying

these conditions. In such a case, we can choose one coalition according to an

arbitrary rule. Note that for any y ∈ [0, y], x ∈ X(y), and s ∈ {1, ..., n},

x (S∗ (x, s)) ≥ s

n
y. (A.7)

Suppose that there exist some ȳ ∈ [0, nω], x̄ ∈ X (ȳ), and s̄ ∈ {1, ..., n}
such that x̄ (S∗ (x̄, s̄)) < s̄

n
ȳ. By the definition of S∗ (x̄, s̄), x̄i < ȳ

n
for all

i /∈ S∗(x̄, s̄). Thus, x̄ (N) < ȳ, contradicting that x̄ ∈ X (ȳ). Hence (A.7)

holds.

Lemma 5 Let y, y′ ∈ [0, nω[ with y < y′ and s ∈ {1, ..., n}. Then, S∗(x′, s)

satisfies both (1) and (2) in Proposition 1 for any x′ ∈ X(y′) if and only if

n

(
1− y

y′

)
≤ s <

y

ω − (y′/n)
. (A.8)

Proof. Let y, y′ ∈ [0, nω[ with y < y′ and s ∈ {1, ..., n}. For any x′ ∈ X(y′),

x′ (S∗ (x′, s)) ≥ s
n
y′ for any x′ ∈ X (y′) and the equality holds if x′

i =
y′

n
for

all i ∈ N by (A.7). Thus, S∗(x′, s) satisfies (1) for any x′ ∈ X(y′) if and only

if

0 <
s

n
y′ − (sω − y) = s

(
y′

n
− ω

)
+ y.

This is equivalent to the latter inequality of (A.8) since
(

y′

n
− ω

)
< 0 by

y′ < nω. On the other hand, S∗ (x′, s) satisfies (2) for any x′ ∈ X (y′) if and
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only if
s

n
y′ ≥ y′ − y.

This is equivalent to

s ≥ n− y

y′
n = n

(
1− y

y′

)
by y′ > 0. Thus, we obtain the former inequality of (A.8). ■

Lemma 6 If (n+1)ω
4

≤ y ≤ nω
2
, then for any y′ ∈]y, nω[, there exists some

s ∈ {1, ..., n} such that S∗ (x′, s) satisfies (1) and (2) in Proposition 1 for

any x′ ∈ X(y′).

Proof. Let y ∈
[
(n+1)ω

4
, nω

2

]
.

We claim that(
y

ω − (y′/n)

)
− n

(
1− y

y′

)
≥ 1 for any y′ ∈]y, nω[. (A.9)

We can transform (A.9) as

ny

(
1

nω − y′
− 1

y
+

1

y′

)
≥ 1 for any y′ ∈]y, nω[.

Differentiating the LHS of (A.9) by y′,

ny

(
1

(nω − y′)2
− 1

y′2

)
=

ny

(nω − y′)2 y′2

(
y′2 − (nω − y′)

2
)

=
ny

(nω − y′)2 y′2
(nω (2y′ − nω))

< 0 if y′ < nω
2

= 0 if y′ = nω
2

> 0 if y′ > nω
2
.

Thus, the LHS of (A.9) is minimized at y′ = nω
2
. Therefore, (A.9) is satisfied

for any y′ ∈]y, nω[ since

ny

(
1

nω − y′
− 1

y
+

1

y′

)
≥ ny

(
2

nω
− 1

y
+

2

nω

)
=

4y

ω
− n ≥ 1,
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where the last inequality follows from y ≥ (n+1)ω
4

.

Then, for any y′ ∈]y, nω[, there exists some integer s (y′) ∈ {1, ..., n} such

that

n

(
1− y

y′

)
≤ s (y′) <

y

ω − (y′/n)

by (A.9) and 0 < n
(
1− y

y′

)
< n. By Lemma 5, for any y′ ∈]y, nω[,

S∗ (x′, s (y′)) satisfies (1) and (2) in Proposition 1 for any x′ ∈ X (y′). ■

Hereafter, define T ∗(y, x′) =
{
i ∈ N

∣∣∣x′
i > ω

(
1− y

y′

)}
and t∗(y, x′) =

|T ∗(y, x′)| for any y ∈
[
0, nω

2

]
, y′ ∈]y, nω], and x′ ∈ X (y′).

Lemma 7 Let y ∈
[
0, nω

2

]
. Then, T ∗(y, x′) is nonempty for any y′ ∈]y, nω]

and x′ ∈ X (y′) if and only if y > nω
4
.

Proof. Let y ∈
[
0, nω

2

]
. We claim that T ∗(y, x′) ̸= ∅ for any y′ ∈]y, nω] and

any x′ ∈ X (y′) if and only if

nω

(
1− y

y′

)
< y′ for any y′ ∈]y, nω]. (A.10)

We first show the contraposition of the necessity. Assume that there

exists some ỹ ∈]y, nω] such that nω
(
1− y

ỹ

)
≥ ỹ. Then,

(
ỹ
n
, ..., ỹ

n

)
∈ X (ỹ)

and T ∗ (y, ( ỹ
n
, ..., ỹ

n

))
= ∅ by ω

(
1− y

ỹ

)
≥ ỹ

n
.

Next, we show the contraposition of the sufficiency. Assume that there

exist some ȳ ∈]y, nω] and x̄ ∈ X (ȳ) such that T ∗(y, x̄) = ∅. Then, x̄i ≤
ω
(
1− y

ȳ

)
for all i ∈ N . Thus, ȳ = x̄ (N) ≤ nω

(
1− y

ȳ

)
.

It remains to show that (A.10) holds if and only if y > nω
4
. By y′ > 0,

(A.10) is equivalent to

y′2 − nωy′ + nωy > 0 for any y′ ∈]y, nω]. (A.11)
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The LHS of (A.11) is a quadratic convex function of y′ that is minimized at

y′ = nω
2
. Thus, (A.11) holds if and only if nωy− n2ω2

4
> 0. This is equivalent

to y > nω
4
. ■

Proposition 1 and Lemma 7 show that any X (y) with y ≤ nω
4

cannot be

a stable set because it is not externally stable.

Lemma 8 Let y ∈
[
0, nω

2

]
. If y > nω

4
, then T ∗(y, x′) satisfies (1) in Propo-

sition 1 for any y′ ∈]y, nω] and x′ ∈ X (y′) with t∗(y, x′) < n
(
1− y

y′

)
.

Proof. Fix arbitrary y ∈
]
nω
4
, nω

2

]
and y′ ∈]y, nω]. Fix an arbitrary x′ ∈

X (y′) such that t∗(y, x′) < n
(
1− y

y′

)
.

By the definition of T ∗(y, x′), y′ = x′ (N) = x′ (T ∗(y, x′))+x′ (N \ (T ∗(y, x′))) ≤
x′ (T ∗(y, x′)) + (n− t)ω

(
1− y

y′

)
that is equivalent to x′ (T ∗(y, x′)) ≥ y′ −

(n− t∗(y, x′))ω
(
1− y

y′

)
. Thus, it suffices to show that(

y′ − (n− t∗(y, x′))ω

(
1− y

y′

))
− (tω − y) > 0. (A.12)

By t∗(y, x′) < n
(
1− y

y′

)
and y′ > 0,

LHS of (A.12) = y + y′ − nω + (n− t∗(y, x′))
ωy

y′

> y + y′ − nω +

(
n− n

(
1− y

y′

))
ωy

y′

= y + y′ − nω +
nωy2

y′2

= y + y′ − nω

y′2
(
y′2 − y2

)
= (y + y′)

(
1− nω

y′2
(y′ − y)

)
=

nω (y + y′)

y′2

(
y − y′ +

y′2

nω

)
.

25



By y′ > y > nω
4
, (A.12) holds if y > y′− y′2

nω
. Consider a function f(z) = z− z2

nω

that is a quadratic concave function maximized at z = nω
2
. Thus,

y′ − y′2

nω
≤ f

(nω
2

)
=

nω

2
− n2ω2

4nω
=

nω

4
.

By y > nω
4
, y > y′ − y′2

nω
. ■

Lemma 9 Let y ∈
]
nω
4
, nω

2

]
. Then, for any y′ ∈]y, nω] and x′ ∈ X (y′) with

t∗(y, x′) < n
(
1− y

y′

)
, T ∗(y, x′) satisfies (2) in Proposition 1 if and only if

y ≥ h (n) where

h (n) =


nω
3

if n = 3k for some k ∈ N,
(
√
9n2−6n−3−n+1)ω

6
if n = 3k + 1 for some k ∈ N,

(
√
9n2+6n−3−n−1)ω

6
if n = 3k + 2 for some k ∈ N.

Moreover, for any y ≤ h(n), there exist some y′ ∈]y, nω] and x′ ∈ X (y′)

such that t∗(y, x′) < n
(
1− y

y′

)
.

Proof. We begin with five claims, where Claim 1,3-5 are equivalent trans-

formations and Claim 2 is an auxiliary claim. Throughout this proof let

y ∈
]
nω
4
, nω

2

]
.

Claim 1 y satisfies x′ (T ∗(y, x′)) ≥ y′ − y for any y′ ∈]y, nω] and any x′ ∈
X (y′) with t∗(y, x′) < n

(
1− y

y′

)
if and only if y satisfies

y − (n− t∗(y, x′))ω

(
1− y

y′

)
≥ 0 (A.13)

for any y′ ∈]y, nω] and any x′ ∈ X (y′) with t∗(y, x′) < n
(
1− y

y′

)
.

Proof of Claim 1. Let y ∈
]
nω
4
, nω

2

]
. We begin with the sufficiency.

Assume that (A.13) holds for any y′ ∈]y, nω] and any x′ ∈ X (y′) with
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t∗(y, x′) < n
(
1− y

y′

)
. For any y′ ∈]y, nω] and any x′ ∈ X (y′), y′ = x′ (N) =

x′ (T ∗(y, x′)) + x′ (N \ T ∗(y, x′)) ≤ x′ (T ∗(y, x′)) + (n− t∗(y, x′))ω
(
1− y

y′

)
that is equivalent to

x′ (T ∗(y, x′))− y′ ≥ − (n− t∗(y, x′))ω

(
1− y

y′

)
.

By substituting this inequality to (A.13), we obtain x′ (T ∗(y, x′)) ≥ y′ − y

for any y′ ∈]y, nω] and any x′ ∈ X (y′) with t∗(y, x′) < n
(
1− y

y′

)
.

Then, we turn to the necessity. Assume that x′ (T ∗(y, x′)) ≥ y′ − y for

any y′ ∈]y, nω] and any x′ ∈ X (y′) with t∗(y, x′) < n
(
1− y

y′

)
. Suppose

that there exist some y′′ ∈]y, nω] and some x′′ ∈ X (y′′) with t∗(y, x′′) <

n
(
1− y

y′′

)
such that

y − (n− t∗(y, x′′))ω

(
1− y

y′′

)
< 0. (A.14)

We claim that there exists some x̃ ∈ X (y′′) such that t∗(y, x̃) ≤ t∗(y, x′′)

and x̃i = ω
(
1− y

y′′

)
for all i ∈ N \ T ∗(y, x̃). Let t̃ = minx∈X(y′′) t

∗ (y, x).

Note that t̃ > 0 by Lemma 7 and y > nω
4
. Denote z = ω

(
1− y

y′′

)
. Define

x̃i =
y′′−(n−t̃)z

t̃
for all i = 1, ..., t̃ and x̃i = z for all i = t̃+ 1, ..., n.

We show that x̃ ∈ X(y′′). By its construction, x̃(N) = y′′ and 0 <

x̃i < ω for all i = t̃ + 1, ..., n are obvious. Moreover, x̃i > z, otherwise

T (x̃) = ∅, contradicting that t̃ > 0. Thus, we show x̃i ≤ ω for all i = 1, ..., t̃.

Suppose that x̃i > ω for all i = 1, ..., t̃. Then, t̃ω + (n − t̃)z < x̃(N) = y′′.

This contradicts the definition of t̃ because more than t̃ players are at least

necessary to contribute more than z to provide y′′ of the public good. Hence

x̃i ≤ ω for all i = 1, ..., t̃ and x̃ ∈ X(y′′).

By the definition of z, i /∈ T (x̃) for all i = t̃ + 1, ..., n. Then, by the

definition of t̃, T ∗(y, x̃) = {1, ..., t̃}. Thus, t∗(y, x̃) = t̃ ≤ t∗(y, x′′) and

x̃i = ω
(
1− y

y′′

)
for all i ∈ N \ T ∗(y, x̃).
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By t̃ ≤ t∗(y, x′′), x̃
(
{1, ..., t̃}

)
= y′′ −

(
n− t̃

)
ω
(
1− y

y′′

)
, and (A.14),

0 > y − (n− t∗(y, x′′))ω

(
1− y

y′′

)
≥ y −

(
n− t̃

)
ω

(
1− y

y′′

)
= y + x̃({1, ..., t̃})− y′′.

Thus, x̃
(
{1, ..., t̃}

)
< y′′−y, contradicting the presumption since t̃ ≤ t∗(y, x′′) <

n
(
1− y

y′′

)
. Hence the necessity is proved. □

Define

y′ (t, y) =
nω +

√
n2ω2 − 4 (n− t)ωy

2

for any t ∈ N. Note that y′(t, y) is well defined if and only if n2ω2 −
4 (n− t)ωy ≥ 0. Note also that y′ (t, y) is the maximum solution to the in-

equality y′ (t, y) ≤ tω+(n− t)ω
(
1− y

y′(t,y)

)
that is equivalent to y′ (t, y)2−

nωy′ (t, y) + (n− t)ωy ≤ 0.

Claim 2 For any t = 1, ..., n, y′ (t, y) is well-defined if and only if there exist

some y′ ∈]y, nω] and x′ ∈ X (y′) such that t∗(y, x′) = t.

Proof of Claim 2. We can easily confirm the necessity by letting y′ =

y′(t, y), x′
i = ω for all i = 1, ..., t, and x′

i = ω
(
1− y

y′(t,y)

)
for all i = t+1, ..., n.

We turn to the sufficiency.

Let t = 1, ..., n. Assume that there exist some y′′ ∈]y, nω] and x′′ ∈ X (y′′)

such that t∗(y, x′′) = t. By x′′
i ≤ ω for all i ∈ T ∗(y, x′′) and x′′

i ≤ ω
(
1− y

y′′

)
for all i ∈ N \ T (y, x′′), y′′ = x′′ (N) ≤ tω + (n− t)ω

(
1− y

y′′

)
, equivalently

y′′2 − tωy′ + (n − t)ωy ≤ 0. Therefore, the inequality y′2 − tωy′ + (n −
t)ω (1− y) ≤ 0 has a solution y′ = y′′. Thus, the maximum solution is

well-defined, and it is y′ (t, y). □
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Claim 3 y satisfies (A.13) for any y′ ∈]y, nω] and any x′ ∈ X (y′) with

t∗(y, x′) < n
(
1− y

y′

)
if and only if y satisfies

y − (n− t)ω

(
1− y

y′ (t, y)

)
≥ 0 (A.15)

for any t ∈ N such that y′ (t, y) is well-defined and t < n
(
1− y

y′(t,y)

)
.

Proof of Claim 3. We first show the sufficiency. Assume that (A.15) holds

for any t ∈ N such that y′ (t, y) is well-defined and t < n
(
1− y

y′(t,y)

)
. Fix

arbitrary ȳ ∈]y, nω] and x̄ ∈ X (ȳ) such that t∗(y, x̄) < n
(
1− y

ȳ

)
. Denote

t̄ = t∗(y, x̄). Note that y′ (t̄, y) is well-defined by Claim 2. Then, t̄ satisfies

(A.15) by the presumption. By ȳ = x̄ (N) ≤ t̄ω + (n− t̄)ω
(
1− y

ȳ

)
, ȳ2 −

nωȳ + (n− t)ωy ≤ 0. Since y′ = y′ (t̄, y) is the maximum solution for the

inequality y′2 − nωy′ + (n− t)ωy ≤ 0, ȳ ≤ y′ (t̄, y). Together with (A.15)

and t̄ = t∗(y, x̄),

y − (n− t∗(y, x̄))ω

(
1− y

ȳ

)
≥ y − (n− t̄)ω

(
1− y

y′ (t̄, y)

)
≥ 0,

the desired inequality.

Next, we show the necessity. Assume that (A.13) holds for any y′ ∈]y, nω]
and any x′ ∈ X (y′) with t∗(y, x′) < n

(
1− y

y′

)
. Fix an arbitrary t̂ ∈ N such

that y′
(
t̂, y

)
is well-defined and t̂ < n

(
1− y

y′(t̂,y)

)
. Let x̂ ∈ X such that

x̂i = ω for all i = 1, ..., t̂, and x̂i = ω

(
1− y

y′(t̂,y)

)
for all i = t̂+ 1, ..., n. By

the definition of y′
(
t̂, y

)
, x̂ ∈ X

(
y′
(
t̂, y

))
. Note that t̂ = t∗(y, x̂). By (A.13),

x̂ ∈ X(y′(t̂, y)), and t̂ < n

(
1− y

y′(t̂,y)

)
,

y − (n− t∗(y, x̂))ω

(
1− y

y′(t̂, y)

)
≥ 0.

Substituting t̂ = t∗(y, x̂), we obtain (A.15). □
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Claim 4 y satisfies (A.15) for any t ∈ {1, ..., n} such that y′ (t, y) is well

defined and t < n
(
1− y

y′(t,y)

)
if and only if y satisfies

y ≥

(√
t (4n− 3t)− t

)
ω

2
(A.16)

for any t ∈ {1, ..., n} such that y′ (t, y) is well defined and t < n
(
1− y

y′(t,y)

)
.

Proof of Claim 4. Let t ∈ N such that y′ (t, y) is well-defined and t <

n
(
1− y

y′(t,y)

)
. By the definition of y′ (t, y), (A.15) is equivalently trans-

formed as

(y − (n− t)ω)
√
n2ω2 − 4 (n− t)ωy ≥ ω (n (n− t)ω − (3n− 2t) y) .

(A.17)

By t < n
(
1− y

y′(t,y)

)
and y′ (t, y) ≤ nω,

y − (n− t)ω < y −
(
n− n

(
1− y

y′ (t, y)

))
ω

= y − nωy

y′ (t, y)

≤ y − y

= 0.

Thus, the both sides of (A.17) are negative. Then, by squaring both sides of

(A.17),

(y − (n− t)ω)2
(
n2ω2 − 4 (n− t)ωy

)
≤ ω2 (n (n− t)ω − (3n− 2t) y)2 .

Simplifying this inequality,

−4 (n− t)ωy3 − 4t (n− t)ω2y2 + 4t (n− t)2 ω3y ≤ 0.
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By y > 0, ω > 0, and n− t > 0, we finally have y2 + tωy − t (n− t)ω2 ≥ 0.

Solving this inequality for y regarding with y > 0, we obtain (A.16). □

Let t∗ ∈ {1, ..., n} maximize the RHS of (A.16), and define

y∗ =

(√
t∗ (4n− 3t∗)− t∗

)
ω

2
.

Claim 5 Assume that y′ (t∗, y∗) is well-defined and t∗ < n
(
1− y∗

y′(t∗,y∗)

)
.

Then, y satisfies (A.16) for any t ∈ {1, ..., n} such that y′ (t, y) is well-defined

and t < n
(
1− y

y′(t,y)

)
if and only if y ≥ y∗.

Proof of Claim 5. Assume that y′ (t∗, y∗) is well-defined and t∗ < n
(
1− y∗

y′(t∗,y∗)

)
.

First, assume that y ≥ y∗. For any t ∈ {1, ..., n}, if y′ (t, y) is well-

defined, then y′ (t, y∗) is well-defined and y′ (t, y) ≤ y′ (t, y∗) by the definition

of y′ (t, y). Thus, for any t ∈ {1, ..., n}, if y′ (t, y) is well-defined and t <

n
(
1− y

y′(t,y)

)
, then y′ (t, y∗) is well-defined and t < n

(
1− y∗

y′(t,y∗)

)
. Then,

for any t ∈ {1, ..., n} such that y′ (t, y) is well-defined and t < n
(
1− y

y′(t,y)

)
,

y ≥ y∗ =

√
t∗ (4n− 3t∗)− t∗

2
≥

√
t (4n− 3t)− t

2

by the definitions of t∗ and y∗.

Next, assume that y < y∗. By the definition of y′ (t, y), y′ (t∗, y) is well-

defined and y′(t∗, y) > y′(t∗, y∗) since y′ (t∗, y∗) is well-defined and y < y∗.

Then, t∗ < n
(
1− y∗

y′(t∗,y∗)

)
< n

(
1− y

y′(t∗,y)

)
by y < y∗. By the definition of

t∗ and y∗,

y < y∗ =

√
t∗ (4n− 3t∗)− t∗

2
.

Hence y does not satisfy (A.16) for t∗ while y′ (t∗, y) is well-defined and t∗

satisfies t∗ < n
(
1− y

y′(t∗,y)

)
. □

For proving the former part of Lemma 9, it remains to prove that y∗ =
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h(n), y′ (t∗, y∗) is well-defined, and t∗ < n
(
1− y∗

y′(t∗,y∗)

)
by Claim 1-5. Note

that this is also sufficient for the last statement of the Lemma 9 as follows.

The necessity part of the proof of Claim 5 proves that y′ (t∗, y) is well-defined

and t∗ satisfies t∗ < n
(
1− y

y′(t∗,y)

)
for any y < y∗, provided that y′ (t∗, y∗)

is well-defined and t∗ satisfies t∗ < n
(
1− y∗

y′(t∗,y∗)

)
. Then, for any y < y∗,

by defining x′
i = ω for all i = 1, ..., t∗ and x′

i = ω
(
1− y

y′(t∗,y)

)
for all i =

t∗ + 1, ..., n, we have x′ ∈ X(y′(t∗, y)) and t∗(y, x′) = t∗ < n
(
1− y

y′(t∗,y)

)
.

To find t∗, it suffices to find t that maximizes
√
t (4n− 3t) − t. To this

end, we consider a function f (z) =
√
z (4n− 3z) − z defined on z ∈]0, n[.

Differentiating f (z) twice,

f ′ (z) =
2n− 3z√
z (4n− 3z)

− 1;

f ′′ (z) =
−z (4n− 3)− (2n− 3z)2

(z (4n− 3z))
3
2

.

By f ′′ (z) < 0 for any z ∈]0, n[, f (z) is a concave function that is maximized

when f ′ (z) = 0. Solving 2n − 3z =
√

z (4n− 3z) regarding with z < n, we

obtain z = n
3
.

Recall that t in (A.16) must be a natural number as it is the cardinality of

a coalition. Thus, the RHS of (A.16) is maximized at some natural number

next to n
3
. In what follows, we complete the proof by distinguishing three

cases according to the statement of Lemma 9.

(a) Let k ∈ N and n = 3k. Then, n
3
= k is the natural number. Thus,

t∗ = k and y∗ = nω
3
.

We need to show that y′ (t∗, y∗) is well-defined and t∗ < n
(
1− y∗

y′(t∗,y∗)

)
.

We have

y′ (t∗, y∗) =
nω +

√
n2ω2 − 4

(
n− n

3

)
ω
(
nω
3

)
2

=
2nω

3
.
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Therefore, y′ (t∗, y∗) is well-defined. Moreover, n
(
1− y∗

y′(t∗,y∗)

)
= n

2
> n

3
=

k = t∗, the desired inequality. Hence (a) is proved.

(b) Let k ∈ N and n = 3k + 1. Thus, n
3

= k + 1
3
. Then, t∗ = k

or k + 1 by the concavity of f (z). Thus, it suffices to check the sign of

g (k) = f (k + 1)− f (k). Note that g (k) =
√
9k2 + 10k + 1−

√
9k2 + 4k− 1

by n = 3k + 1. We claim that g (k) < 0. This is equivalent to

√
9k2 + 10k + 1 <

√
9k2 + 4k + 1.

Since the both sides are positive, we can equivalently transform by squaring

both sides as

9k2 + 10k + 1 < 9k2 + 4k + 1 + 2
√
9k2 + 4k

that can be simplified as 3k <
√
9k2 + 4k, the desired inequality. Thus,

t∗ = k = n−1
3

and

y∗ =

√
(3n2 − 2n− 1)/3− (n− 1)/3

2
=

√
9n2 − 6n− 3− n+ 1

6
.

Note that t∗ ≥ n
4
by n ≥ 4 in this case.

We turn to showing that y′ (t∗, y∗) is well-defined and t∗ < n
(
1− y∗

y′(t∗,y∗)

)
.

We have

nω

3
−

(√
9n2 − 6n− 3− n+ 1

)
ω

6
=

ω

6

(
3n− 1−

√
9n2 − 6n− 3

)
>

ω

6

(
3n− 1−

√
9n2 − 6n+ 1

)
= 0.

By nω
3

>
(
√
9n2−6n−3−n+1)ω

6
= y∗ and t∗ = k = n−1

3
≥ n

4
,

n2ω2 − 4 (n− t∗)ωy∗ > n2ω2 − 4
(
n− n

4

)
ω
(nω

3

)
= 0.
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Thus, y′(t∗, y∗) is well-defined, and y′(t∗, y∗) > nω
2

by this inequality and the

definition of y′(t∗, y∗). Moreover,

n

(
1− y∗

y′ (t∗, y∗)

)
> n

(
1− nω/3

nω/2

)
=

n

3
>

n− 1

3
= k = t∗,

the desired inequality. Hence (b) is proved.

(c) Let k ∈ N and n = 3k + 2. Thus, n
3

= k + 2
3
. Then, t∗ = k

or k + 1 by the concavity of f (z). Thus, it suffices to check the sign of

g (k) = f (k + 1)− f (k). Note that g (k) =
√
9k2 + 14k + 5−

√
9k2 + 8k− 1

by n = 3k + 2. We claim that g (k) > 0. This is equivalent to

√
9k2 + 14k + 5 >

√
9k2 + 8k + 1.

Since the both sides are positive, we can equivalently transform as

9k2 + 14k + 5 > 9k2 + 8k + 1 + 2
√
9k2 + 8k

that can be simplified as 3k + 2 >
√
9k2 + 4k. This is the desired inequality

since 3k + 2 =
√
9k2 + 12k + 4 >

√
9k2 + 4k. Thus, t∗ = k + 1 = n+1

3
and

y∗ =

√
(3n2 + 2n− 1)/3− (n+ 1)/3

2
=

√
9n2 + 6n− 3− n− 1

6
.

We turn to showing that y′ (t∗, y∗) is well-defined and t∗ < n
(
1− y∗

y′(t∗,y∗)

)
.

We have

nω

3
−

(√
9n2 + 6n− 3− n− 1

)
ω

6
=

ω

6

(
3n+ 1−

√
9n2 + 6n− 3

)
>

ω

6

(
3n+ 1−

√
9n2 + 6n+ 1

)
= 0.

By nω
3

>
(
√
9n2+6n−3−n−1)ω

6
= y∗ and t∗ = k + 1 = n+1

3
> n

3
,

n2ω2 − 4 (n− t∗)ωy∗ > n2ω2 − 4
(
n− n

3

)
ω
(nω

3

)
=

n2ω2

9
> 0.
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Thus, y′(t∗, y∗) is well-defined, and y′(t∗, y∗) > 2nω
3

by this inequality and the

definition of y′(t∗, y∗). Moreover,

n

(
1− y∗

y′ (t∗, y∗)

)
> n

(
1− nω/3

2nω/3

)
=

n

2
>

n+ 1

3
= k + 1 = t∗

by n ≥ 5, the desired inequality. Hence (c) is proved. ■

Proof of Theorem 2. The necessity follows from Proposition 1 and Lemma

7, 9. Thus, we turn to the proof of the sufficiency. For each n ≥ 3, let

h (n) =


nω
3

if n = 3k for some k ∈ N;
(
√
9n2−6n−3−n+1)ω

6
if n = 3k + 1 for some k ∈ N;

(
√
9n2+6n−3−n−1)ω

6
if n = 3k + 2 for some k ∈ N.

Fix an arbitrary y such that max
{
h (n) , (n+1)ω

4

}
≤ y ≤ nω

2
. We first prove

that X(y) is a stable set. Then, we turn to showing that h (n) ≥ (n+1)ω
4

for

all n ≥ 3.

Fix an arbitrary y′ ∈]y, nω] and an arbitrary x′ ∈ X (y′). We show that

some S ∈ N satisfies (1)-(3) for these y′ and x′. Note that T (y, x′) ̸= ∅ by

Lemma 7 and y > nω
4
. We distinguish three cases.

Case 1. y′ = nω.

In this case, it is obvious thatX(nω) is a singleton and x′ = (ω, ..., ω). We

show that N satisfies (1)-(3) in Proposition 1 for y′ = nω and x′ = (ω, ..., ω).

Since y > 0, (1) follows from x′(N) = nω > nω − y, and (2) follows from

x′(N) = nω > y′ − y. Since y > 0 and x′
i = ω for all i ∈ N , (3) follows from

ωy > 0 = (ω − x′
i)y

′ for all i ∈ N .

Case 2. y′ < nω and t∗(y, x′) ≥ n
(
1− y

y′

)
.

By y ≥ (n+1)ω
4

and Lemma 6, there exists some s ∈ {1, ..., n} such that

S∗ (x′, s) satisfies both (1) and (2) in Proposition 1. Let s̄ be the minimum

integer such that S∗ (x′, s̄) satisfies both (1) and (2). By Lemma 5, s̄ is
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the minimum integer satisfying s̄ ≥ n
(
1− y

y′

)
. Then, s̄ ≤ t∗(y, x′) and

S∗ (x′, s̄) ⊂ T ∗(y, x′) by the definitions of these two sets. Hence S∗ (x′, s̄)

satisfies (1)-(3) in Proposition 1.

Case 3. y′ < nω and t∗(y, x′) < n
(
1− y

y′

)
.

Since y ≥ max
{
h (n) , (n+1)ω

4

}
> nω

4
, T ∗(y, x′) satisfies (1) by Lemma

8, and (2) by Lemma 9. Together with the definition of T (y, x′), T (y, x′)

satisfies (1)-(3).

By Case 1-3, there exists some coalition that satisfies (1)-(3) in Proposi-

tion 1. Hence X (y) is a stable set.

We turn to proving that h (n) ≥ (n+1)ω
4

for any n ≥ 3. It is easy to see

that nω
3

≥ (n+1)ω
4

by n ≥ 3. Thus, we obtain the sufficiency of (a).

Let n = 3k + 1 for some k ∈ N. It suffices to show that

2
√
9n2 − 6n− 3 ≥ 5n+ 1 (A.18)

since(√
9n2 − 6n− 3− n+ 1

)
ω

6
− (n+ 1)ω

4
=

(
2
√
9n2 − 6n− 3− 5n− 1

)
ω

12
.

By the positivity of both sides of (A.18), it suffices to show that

36n2 − 24n− 12 =
(
2
√
9n2 − 6n− 3

)2

≥ (5n+ 1)2 = 25n2 + 10n+ 1

that can be simplified as 11n2 − 34n − 13 ≥ 0. It is easy to check that this

inequality holds for any n ≥ 4. Thus, we obtain the sufficiency of (b).

Let n = 3k + 2 for some k ∈ N. It suffices to show that

2
√
9n2 + 6n− 3 ≥ 5n+ 5 (A.19)

since(√
9n2 + 6n− 3− n− 1

)
ω

6
− (n+ 1)ω

4
=

(
2
√
9n2 + 6n− 3− 5n− 5

)
ω

12
.
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By the positivity of both sides of (A.19), it suffices to show that

36n2 + 24n− 12 =
(
2
√
9n2 + 6n− 3

)2

≥ (5n+ 5)2 = 25n2 + 50n+ 25

that can be simplified as 11n2 − 26n − 37 > 0. It is easy to check that this

inequality holds for any n ≥ 5. Thus, we obtain the sufficiency of (c). Hence

the sufficiency for each (a)-(c) is proved. ■
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