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Abstract

We investigate the stable sets of social conflict games by employing
the framework of the (abstract) system by Greenberg (Theory of So-
cial Situations: An Alternative Game theoretic Approach, Cambridge
University Press, 1990). The social conflict game includes the pris-
oners’ dilemma and the chicken game. We show that the stable set
may fails to exist in the system directly derived from the social con-
flict game. The stable set exists if and only if the strong equilibrium
exists in the underlying game. We consider another system where an
agent is prepared and each player is allowed to delegate his decision
to the agent. Then, the stable set always exists and consists of Pareto
efficient outcomes with a certain property. We also discuss the re-
lationship between the strong equilibrium and the stable set for the
model with delegations.
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1 Introduction

Game theory well treats situations where individual interests conflict with the

social interest completely (the prisoners’ dilemma) or partially (the chicken

game). In such a game, each player has two strategies, cooperation and de-

fection, and there is usually an insufficient number of cooperating players for

the efficiency at the Nash equilibrium. We will refer to the games describ-

ing such conflicting situations as social conflict games. Examples include the

public good provision game with binary choices (Taylor and Ward, 1982) and

the game of voluntary participation in a public good provision mechanism

(Saijo and Yamato, 1999).

In line with the usual inefficiency of the Nash equilibrium, the Nash equi-

librium is usually unstable against coalitional deviations; the grand coalition

can deviate from a Nash equilibrium unless the Nash equilibrium is efficient.

Indeed, a strong equilibrium (Aumann, 1959) exists if and only if the Nash

equilibrium is efficient in the games with social conflicts. The coalition-proof

equilibrium (Bernheim et al., 1989) is a relaxed concept that requires the

deviating coalition to be credible. The coalition-proof equilibria in the vol-

untary participation game was characterized by Shinohara (2010). However,

the inefficiency of the equilibrium remains unchanged.

We consider the stable set for a strategic game by applying the theory of

social situations by Greenberg (1990). Specifically, we employ the (abstract)

system and its stable set. The relationship between the set of the strong

equilibrium and the stable set is just like that between the core and the

stable set for the coalitional game. In the theory of social situations, the

stable set is regarded as a recommendation of an acceptable course of action.

However, we will show that the stable set may not exist. Therefore, no

recommendation is acceptable for the players in such a situation.
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Several studies have approached the stable set for the social conflict

game by applying the theory of social situations, especially in the prisoners’

dilemma. Nakanishi (2001) considered the stable set when only individual

deviations are allowed. He showed that the stable set exists and contains at

least one efficient strategy profile. Suzuki and Muto (2005) considered the

farsighted stable set by Chwe (1994), allowing coalitional deviations. They

showed that any singleton consisting of an efficient and individually rational

strategy profile is always a farsighted stable set. Further, Nakanishi (2009)

considered the farsighted stable sets where only individual deviations are al-

lowed. These studies imposed some requirements on the ability of the players.

Nakanishi (2001, 2009) restricted the players from forming a coalition, and

Suzuki and Muto (2005) and Nakanishi (2009) required the players to be

fully farsighted.

This paper takes another approach to the stable set for social conflict

games by exogenously giving the players the option to delegate. Specifically,

we consider a model with a (non-player) agent, to whom each player can

choose to delegate his decision or not, such as an international or intrana-

tional arbitration organization, a national or local government, or a lawyer.

Each player has the option to delegate his decision to the agent or not, and

the agent, who is common to all the players, acts on behalf of all the dele-

gating players.

The idea of delegation is traced back to Schelling (1960): a player may

be benefited by delegating his decision to the agent (who may or may not

be a player), who has a different interest from the delegating player. In this

paper, each player is, of course, interested in his own payoff only, while the

agent is uniformly interested in the payoffs of all the delegating players. Then,

delegation plays the role of a commitment device in the sense that delegating
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players must give up their decision to change their strategies selfishly. The

role of the agent here differs from that in Okada (1993), who also considered

the prisoners’ dilemma model with an agent. In his model, the agent plays

as a punishment device fo force the players to abide by the agreement in an

endogenously arranged institution.

To make the delegation an effective commitment device, we will assume

that each player cannot withdraw his delegation once he has delegated his

decision. However, the players are completely free to decide whether or not

to delegate; they are never forced. Therefore, the stable set recommends an

acceptable course of action for the players that includes whether they should

delegate their decision or not.

This paper shows that the stable set uniquely exists in the model with del-

egations and consists of efficient outcomes that include some outcomes where

no player delegates his decision. In this sense, we can recommend an accept-

able course of action in a social conflict by arranging an agent exogenously.

This contrasts with the model without delegations where the stable set does

not to exist iff the Nash equilibria are not strong equilibria. On the other

hand, some outcomes with full cooperation, (these are sometimes regarded as

“best” outcomes) are usually excluded from the stable set. Therefore, when

players are not forced to delegate their decision, full cooperation may not be

acceptable to the players. We also investigate the relationship between the

strong equilibrium and the stable set in the model with delegations.

The rest of the paper is organized as follows. In Section 2, we briefly

introduce the (abstract) system and the stable set. In Section 3, we define

the social conflict game. We derive a system from the social conflict game and

investigate the stable set in Section 4. In Section 5, we derive another system

by incorporating delegations. We also state and prove the unique existence
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and the characterization of the stable set for this system. In Section 6, we

conclude with some remarks.

2 The (abstract) system and the stable set

This section briefly introduces the (abstract) system and the stable set for

the system by Greenberg (1990).

A system is a pair (A,≻), where A is a nonempty set and ≻ is a binary

relation on A. The set A is called an outcome set, and the binary relation

≻ is called the dominance relation. For each x, y ∈ A, x ≻ y means that x

dominates y.

The stable set for the system is defined as follows, which is a direct

application of the original one by von Neumann and Morgenstern (1944).

Definition 1 Let (A,≻) be a system. A subset K of A is a stable set for

(A,≻) iff K satisfies the following two stabilities.

Internal stability: For any x, y ∈ K, it is not true that x ≻ y.

External stability: For any x ∈ A \K, y ≻ x for some y ∈ K.

3 The social conflict game

We consider a strategic game Γ = (N, (Xi)i∈N , (ui)i∈N), where N = {1, ..., n}
is the set of players, Xi is the set of strategies of i ∈ N , and ui is the payoff

function of i ∈ N . Let N = {S ⊂ N | S ̸= ∅} be the set of coalitions. We

denote XS = ×i∈SXi for all S ∈ N and X = XN for simplicity. A strategy

profile x ∈ X is (weakly Pareto) efficient iff there exists no y ∈ X such that

ui(y) > ui(x) for all i ∈ N .
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We say Γ is a (symmetric) social conflict game if Xi = {C,D} for all

i ∈ N and there exists some f : {C,D} × {0, ..., n− 1} → R such that

ui(x) =

{
f(C, |C(x)| − 1) if xi = C;

f(D, |C(x)|) if xi = D

for all i ∈ N and x ∈ X, where C(x) = {i ∈ N | xi = C} and f satisfies

Assumption 1 below.

Assumption 1 (a) f(C, h) and f(D, h) are increasing in h = 0, ..., n− 1;

(b) There exists some ĥ = 0, ..., n − 1 such that f(C, h′) < f(D, h′) for all

h′ ≥ ĥ and f(C, h′′) > f(D, h′′) for all h′′ < ĥ;

(c) f(C, n− 1) > f(D, 0).

(d) for all (a, h), (a′, h′) ∈ {C,D} × {0, ..., n − 1}, (a, h) ̸= (a′, h′) implies

f(a, h) ̸= f(a′, h′).

In Assumption 1, (a) requires cooperation to benefit other players, (b) as-

sumes the existence of a threshold, (c) assures the efficiency of full cooper-

ation, and (d) is for simplicity. Note that (b) excludes the case where C is

the dominant strategy for all players, which is less interesting.

In addition to ĥ, we define another threshold. Let h∗ = 0, ..., n− 1 be the

minimum integer such that f(D, h∗) > f(C, n− 1). Note that the existence

and positivity of h∗ are assured by Assumption 1(b) and (c). Note also

that ĥ ≤ h∗; otherwise, f(C, h∗) > f(D, h∗) > f(C, n − 1) > f(C, h∗), a

contradiction.

We introduce some notations. Given x ∈ X, j ∈ N , and S ∈ N , we

denote xS = (xi)i∈S, x−S = xN\S, and x−j = (xi)i̸=j. Given S ∈ N , CS

denotes xS such that xi = C for all i ∈ S, and DS denotes xS such that

xi = D for all i ∈ S.

6



4 The social conflict system

Let Γ = (N, (Xi)i∈N , (ui)i∈N) be a social conflict game. The outcome set is

defined by X, the set of strategy profiles. Given x, y ∈ X and S ∈ N , we

say y is inducible from x via S, denoted by x →S y, iff xN\S = yN\S; we say

y dominates x via S, denoted by y ≻S x, iff x →S y and ui(y) > ui(x) for

all i ∈ S. Given x, y ∈ X, we simply say y is inducible from x, denoted by

x → y, iff x →S y for some S ∈ N ; we simply say y dominates x, denoted by

y ≻ x, iff y ≻S x for some S ∈ N . We say (X,≻) is a social conflict system

(derived from Γ).

The Nash and strong equilibria were originally defined in strategic games.

These concepts can be applied to the system (X,≻): x ∈ X is a Nash

equilibrium iff there exists no y ∈ X and i ∈ N such that y ≻{i} x; x ∈ X is

a strong equilibrium iff there exists no y ∈ X and S ∈ N such that y ≻S x.

The social conflict system can be regarded as an open negotiation in the

social conflict game allowing coalitional deviations. Indeed, it is essentially

the same as the coalitional contingent threat situation in the theory of so-

cial situations (Greenberg, 1990, Chapter 7). Once an outcome (strategy

profile) is proposed, a coalition may declare that the members will change

their strategies if the players outside the coalition will stick to the proposed

strategies. At the revised outcome, some coalition may declare its intention

to change strategies if the players outside the coalition stick to the current

strategies, and so on.

For later analysis, we confirm the following fundamental properties.

Lemma 1 (a) x ∈ X is a Nash equilibrium if and only if |C(x)| = ĥ.

(b) A Nash equilibrium is a strong Nash equilibrium if and only if ĥ = h∗.

(c) x ∈ X is efficient if and only if |C(x)| ≥ h∗.
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Proof. (a) Straightforward.

(b) Assume that ĥ = h∗. Fix an arbitrary Nash equilibrium x. By (a),

|C(x)| = ĥ = h∗. Fix arbitrary T ∈ N and yT ∈ XT with yi ̸= xi for all

i ∈ T . First, assume that yi = D for all i ∈ T . Since x is a Nash equilibrium

and by Assumption 1(a), ui(x) > ui(D, x−i) ≥ ui(yT , x−T ) for all i ∈ T .

Thus, (yT , x−T ) is false. Assume next that there exists some j ∈ T with

yj = C. Note that xj = D. Since x is a Nash equilibrium and ĥ = h∗,

uj(x) = f(D, ĥ) > f(C, n− 1) ≥ f(C, |C(yT , x−T )| − 1) = uj(yT , x−T ).

Thus, (yT , x−T ) is again false. Hence x is a strong equilibrium.

Assume that ĥ < h∗. Let z ∈ X be a Nash equilibrium. By Lemma 1(a),

|C(z)| = ĥ. By ĥ < h∗ and Assumption 1(a), ui(CN) > ui(z) for all i ∈ N .

Hence z is not a strong equilibrium.

(c) Let x ∈ X. First, assume that x is efficient. If |C(x)| < h∗, then

ui(CN) > ui(x) for all i ∈ N since f(C, |C(x)|−1) < f(C, n−1) by Assump-

tion 1(a) and f(D, |C(x)|) < f(C, n − 1) by |C(x)| < h∗, contradicting the

efficiency of x. Hence f(D, |C(x)|) > f(C, n− 1).

Next, assume that |C(x)| ≥ h∗. Note that |C(x)| ≥ h∗ ≥ ĥ. Fix an

arbitrary y ∈ X. Assume that there exists some j ∈ C(y) \ C(x). Then,

uj(x) = f(D, |C(x)|) > f(C, n−1) ≥ f(C, |C(y)|−1) = uj(y). Thus, y ≻N x

is false. Therefore, assume C(y) ⊂ C(y). Then, ui(y) = f(C, |C(y)| − 1) ≤
f(C, |C(x)|−1) = ui(x) for all i ∈ C(y). Thus, y ≻N x is again false. Hence,

x is efficient. ■

In the social conflict system, the stable set fails to exist in general. For-

mally, the stable set exists if and only if a strong equilibrium exists.

Proposition 1 In the social conflict system (X,≻), the stable set exists if

and only if ĥ = h∗. If ĥ = h∗, then {x ∈ X| |C(x)| = ĥ} is the unique stable
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set.

Proof. Let (X,≻) be the social conflict system. First, assume that ĥ = h∗.

Define K = {x ∈ X| |C(x)| = ĥ}. By Lemma 1(a) and (b), K is the set of

strong equilibria. Therefore, K is internally stable.

Fix an arbitrary x̄ /∈ K. Suppose that |C(x̄)| > ĥ. Let x∗ ∈ X be such

that C(x∗) ⊂ C(x̄) and |C(x∗)| = ĥ. By the choice of x∗, x̄ →C(x̄)\C(x∗) x
∗.

By ĥ = h∗, ui(x
∗) = f(D, ĥ) > f(C, n− 1) ≥ f(C, |C(x̄)| − 1) = ui(x̄) for all

i ∈ C(x̄) \ C(x∗). Thus, x∗ ≻C(x̄)\C(x∗) x̄.

Suppose that |C(x̄)| < ĥ. Let y∗ ∈ X be such that C(x̄) ⊂ C(y∗)

and |C(y∗)| = ĥ. By the choice of y∗, x̄ →C(y∗)\C(x̄) y∗. By the definition

of ĥ, ui(y
∗) = f(C, ĥ − 1) > f(D, ĥ − 1) ≥ f(D, |C(x̄)|) = ui(x̄) for all

i ∈ C(y∗) \ C(x̄). Thus, y∗ ≻C(y∗)\C(x̄) x̄. Hence, K is externally stable.

We turn to the uniqueness. Let K ′ ⊂ X with K ′ ̸= K. Assume that

K \K ′ ̸= ∅. Let x ∈ K \K ′. Since x is a strong equilibrium by Lemma 1(b),

there exists no x′ ∈ K ′ such that x′ ≻ x. Thus, K ′ is not externally stable.

Therefore, assume that K \K ′ = ∅. By K ′ ̸= K, there exists some y ∈ K ′

such that y /∈ K. Therefore, there exists some y′ ∈ K such that y′ ≻ y by

the external stability of K. Since K ⊂ K ′ by K \K ′ = ∅, K ′ is not internally

stable. Hence, there exists no stable set other than K.

Next, assume that ĥ < h∗. Suppose that there exists a stable set K̄.

Claim 1 For any x, y ∈ X with C(x) ⊊ C(y), either x ≻ y or y ≻ x.

Proof of Claim 1. Let x, y ∈ X such that C(x) ⊊ C(y). By C(x) ⊊
C(y), both x →C(y)\C(x) y and y →C(y)\C(x) x. By Assumption 1(d), either

f(C, |C(y)| − 1) > f(D, |C(x)|) or f(C, |C(y)| − 1) < f(D, |C(x)|). In the

former case, y ≻C(y)\C(x) x. In the latter case, x ≻C(y)\C(x) y. □

We prove that there exists no x ∈ K̄ such that |C(x)| > ĥ by a mathe-
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matical induction.

Induction Base: CN /∈ K̄.

Proof of Induction Base. Suppose that CN ∈ K̄. Fix an arbitrary i ∈ N .

By n > ĥ, (D,C−i) ≻{i} CN . Then, there exists some y ∈ X such that

y ≻ (D,C−i) by the external stability of K̄. By Claim 1 and C(y) ⊊ N ,

either CN ≻ y or y ≻ CN . This contradicts the internal stability of K̄.

Hence, CN /∈ K̄.

Induction Step n− ℓ + 1 (ℓ > ĥ): Let ℓ > ĥ. Assume that x′ /∈ K̄ for all

x′ ∈ X with |C(x′)| > ℓ. Then, x /∈ K̄ for all x ∈ X with |C(x)| = ℓ.

Proof of Induction Step ℓ. Let ℓ > ĥ. Suppose that there exists some

x ∈ K̄ with |C(x)| = ℓ. By |C(x)| > ĥ, (D, x−i) ≻{i} x for all i ∈ S. Fix

an arbitrary j ∈ S. By the internal stability of K̄, (D, x−j) /∈ K̄. By the

external stability of K̄, there exists some y ∈ K̄ such that y ≻ (D, x−j). By

the induction hypothesis, |C(y)| ≤ ℓ. By Claim 1 and the internal stability

of K̄, C(y) \ C(x) ̸= ∅. Thus, C(y) \ (C(x) \ {j}) ̸= ∅ and (D, x−j) →Q y

implies C(y) \ (C(x) \ {j}) ⊂ Q. By ℓ > ĥ, ui(y) = f(C, |C(y)| − 1) ≤
f(C, ℓ − 1) < f(D, ℓ − 1) = ui(D, x−j) for all i ∈ C(y) \ (C(x) \ {j}). This

contradicts y ≻ (D, x−j). Hence, x /∈ K̄ for all x ∈ X with |C(x)| = ℓ. □

Thus, K̄ ⊂ {x ∈ X| |C(x)| ≤ ĥ}. Then, x ≻ CN is false for all x ∈ K̄

by ĥ < h∗. This contradicts the external stability of K̄. Hence no stable set

exists. ■

Note that the stable set never exists in the prisoners’ dilemma case where

ĥ = 0 < h∗.
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5 The social conflict system with delegations

We derive another system from the social conflict game by incorporating an

agent and allowing the players to delegate their decisions to the agent. We

give a formal definition first.

Let Γ be a social conflict game. Define

X∗ =
∪
S⊂N

(
{S} × {CS, DS} ×XN\S

)
.

Define the dominance relation ≻∗ on X∗ as follows. Let (S, x), (T, y) ∈
X∗ and Q ∈ N . We say (T, y) is inducible from (S, x) via Q, denoted by

(S, x) →∗
Q (T, y), iff either the following D1 or D2 is satisfied.

D1 S ⊂ T ⊂ Q and xN\Q = yN\Q;

D2 S = T , Q ∩ S = ∅, and xN\Q = yN\Q.

We simply say (T, y) is inducible from (S, x), denoted by (S, x) →∗ (T, y),

iff (S, x) →∗
Q (T, y) for some Q ∈ N . We say (T, y) dominates (S, x) via

Q, denoted by (T, y) ≻∗
Q (S, x) iff (S, x) →∗

Q (T, y) and ui(x) > ui(y) for all

i ∈ Q. We simply say (T, y) dominates (S, x), denoted by (T, y) ≻∗ (S, x) iff

(T, y) ≻∗
Q (S, x) for some Q ∈ N . We say (X∗,≻∗) is a social conflict system

with delegations (derived from the social conflict game Γ).

In the social conflict system with delegations, a responsible agent is pre-

pared. Given (S, x) ∈ X∗, S denotes the set of players who have delegated

their decisions to the agent. Therefore, the agent has the right to change

the strategies of S at (S, x). The agent behaves on behalf of all delegating

players. More formally, the agent changes the strategies when it benefits all

the delegating players.

This system also describes an open negotiation. Given a strategy profile,

a coalition of players, which may include the agent, openly declare that it
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will change its strategies if the others stick to the current strategies. This

declaration can involve some players newly delegating their decisions to the

agent, and the agent accept the delegations when the agent is in the coalition

(D1). Of course, no additional delegation occurs when the the agent is not

in the coalition (D2). For simplicity, the agent is assumed to choose identical

strategies for all delegating players.

We also assume that delegation is irreversible. An imaginary situation

is that each player leaves the negotiation after he delegates his decision.

Therefore, a player cannot withdraw his delegation. With this irreversibility,

we emphasize that players are never forced to delegate their decisions to the

agent.

The strong equilibrium can be extended to the case in the social conflict

system with delegations (X∗,≻∗): (S, x) ∈ X∗ is a strong equilibrium (in

(X∗,≻∗)) iff there exists no (T, y) ∈ X∗ such that (T, y) ≻∗ (S, x). In

contrast with the model without delegations, there is a strong equilibrium

in the social conflict system with delegations even if ĥ < h∗. For example,

(N,CN) is always a strong equilibrium by Assumption 1(c) (Lemma 4 below).

On the other hand, (∅, x) where x is efficient is not a strong equilibrium when

ĥ < h∗. In this case, any player taking C at x can be made better off by

changing his strategy from C to D. In the following theorem, we show the

unique existence and the efficiency of the stable set in the social conflict

system with delegations. It is also shown that some efficient outcomes where

no delegation takes place are also included in the stable set.

Theorem 1 In the social conflict system with delegations (X∗,≻∗),

K∗ = {(S, x) ∈ X∗| |C(x)| = h∗} ∪ {(S, x) ∈ X∗| C(x) = S, |S| > h∗}

is the unique stable set. Note that x is efficient for all (S, x) ∈ K∗.
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Before starting the proof of Theorem 1, we prove two lemmas.

Lemma 2 Let (S, x), (T, y) ∈ X∗ such that x is efficient. If (T, y) ≻∗ (S, x),

then C(y) ⊂ C(x).

Proof. Let (S, x), (T, y) ∈ X∗ such that x is efficient. Assume (T, y) ≻∗

(S, x). Suppose that C(y) \ C(x) ̸= ∅. Let z ∈ X such that C(z) = C(x) ∪
C(y) and Q = {i ∈ N |xi ̸= yi}. We have |C(z)| > |C(x)| and Q ⊂ C(z). By

(T, y) ≻∗ (S, x), ui(y) > ui(x) for all i ∈ Q. Thus, ui(z) = f(C, |C(z)|−1) ≥
f(C, |C(y)| − 1) = ui(y) > ui(x) for all i ∈ Q. For all i /∈ Q, ui(z) > ui(x)

by Assumption 1(a) and |C(z)| > |C(x)|. This contradicts the efficiency of

x. Hence, C(y) \ C(x) = ∅. ■

Lemma 3 (N,CN) ≻∗
N (S, x) for all S ⊂ N and inefficient x ∈ X.

Proof. Let (S, x) ∈ X∗ where x is inefficient. By Lemma 1(c), |C(x)| < h∗.

Obviously, (S, x) →∗
N (N,CN). By the definition of h∗, ui(CN) = f(C, n −

1) > f(D, |C(x)|) = ui(x) for all i ∈ N \ C(x). By Assumption 1(a),

ui(CN) = f(C, n − 1) > f(C, |C(x)| − 1) = ui(x) for all i ∈ C(x). Hence,

(N,CN) ≻∗
N (S, x). ■

Lemma 4 (N,CN) is a strong equilibrium.

Proof. Suppose that (N,CN) is not a strong equilibrium. Then, there

exist some Q ∈ N and (S, z) ∈ X∗ such that (S, z) ≻∗
Q (N,CN). By the

definition of →∗
Q, S = Q = N . By the definition of X∗, (N, z) ∈ X∗ implies

z ∈ {CN , DN}. Then, (N, z) ≻∗
N (N,CN) is impossible by Assumption 1(c),

a contradiction. Hence, (N,CN) is a strong equilibrium. ■

Proof of Theorem 1. Let (X∗,≻∗) be a social conflict system with dele-

gations. The internal stability of K∗ follows from Lemma 2.
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We show the external stability. Fix an arbitrary (S, x) ∈ X∗ \K∗. If x

is not efficient, then (N,CN) ≻∗ (S, x) by Lemma 3, where (N,CN) ∈ K∗.

Therefore, assume that x is efficient. By (S, x) /∈ K∗, the efficiency of x, and

Lemma 1(c), |C(x)| > h∗ and C(x) ̸= S. Let x∗ ∈ X such that (i) C(x∗) = S

if |S| > h∗ and S ⊂ C(x), (ii) |C(x∗)| = h∗ and S ⊂ C(x∗) ⊂ C(x) if |S| ≤ h∗

and S ⊂ C(x), and (iii) |C(x∗)| = h∗ and C(x∗) ⊂ C(x) if C(x) ⊂ N \ S. In
any case, C(x∗) ⊂ C(x) and C(x) \ C(x∗) ⊂ N \ S. Thus, (S, x) →∗

C(x)\C(x∗)

(S, x∗). In any case of (i)-(iii), (S, x∗) ∈ K∗ and |C(x∗)| ≥ h∗. Then,

ui(x
∗) = f(D, |C(x∗)|) > f(C, n − 1) ≥ f(C, |C(x)| − 1) = ui(x) for all

i ∈ C(x) \ C(x∗). Thus, (S, x∗) ≻∗
C(x)\C(x∗) (S, x). Hence, K∗ is externally

stable.

We show the uniqueness. Let K ⊂ X∗ be a stable set for (X∗,≻∗). By

Lemma 4, (N,CN) ∈ K. By (N,CN) ∈ K, Lemma 3, and the internal

stability of K, (S, x) /∈ K for all (S, x) ∈ X∗ with Pareto inefficient x. Thus,

K ⊂ {(S, x) ∈ X∗| |C(x)| ≥ h∗}. By Lemma 2, for any (S, x) ∈ K∗, there

exists no (T, y) ∈ K such that (T, y) ≻∗ (S, x). Thus, K∗ ⊂ K by the

external stability of K. Then, K = K∗ follows from the internal stability of

K and the external stability of K∗.

The efficiency immediately follows from Lemma 1(c). ■

In the social conflict system (without delegation), the stable set consists

of the strong equilibria if it exists (Proposition 1). Now, we turn to the

problem of the stable set coinciding with the set of strong equilibria in the

social conflict system with delegations. We show that ĥ = h∗, the same

condition as Proposition 1, is a necessary and sufficient condition for the

coincidence of the stable set and the set of strong equilibria.

Proposition 2 Let K∗ be the stable set for the social conflict system with

delegations (X∗,≻∗) defined in Theorem 1. Then, K∗ coincides with the set

14



of strong equilibria in (X∗,≻∗) if and only if ĥ = h∗.

Proof. Let K∗ be the stable set defined in Theorem 1 and Z be the set of

strong equilibria in (X∗,≻∗). It is straightforward that Z ⊂ K∗ from the

external stability of K∗ independent of the relationship between ĥ and ĥ∗.

Therefore, it suffices to show that K∗ ⊂ Z if and only if ĥ = h∗.

Assume that ĥ = h∗. Fix an arbitrary (S, x) ∈ K∗. We distinguish

the proof in two cases. The first case is |C(x)| > h∗. Then, C(x) = S.

Suppose that there exists some (T, y) ∈ X∗ such that (T, y) ≻∗ (S, x). By the

efficiency of x, Lemma 2, and the definition of →∗, y = DN . By ĥ = h∗ and

Assumption 1(c), ĥ > 0. Then, ui(DN) = f(D, 0) < f(C, 0) ≤ f(C, |C(x)| −
1) = ui(x) for all i ∈ S. This contradicts (T, y) ≻∗ (S, x) and yi ̸= xi for all

i ∈ S. Hence, (S, x) is a strong equilibrium.

The second case is |C(x)| = h∗. By the definitions of → and →∗, for all

(S, x), (T, y) ∈ X∗, (S, x) →∗ (T, y) implies x → y. Thus, it follows that

(S, x) is a strong equilibrium from Lemma 1(a) and (b). Hence, K∗ ⊂ Z.

Then, assume that ĥ < h∗. Let x′ ∈ X be such that |C(x′)| = h∗.

We have (∅, x′) ∈ K∗. Fix an arbitrary j ∈ C(x′). By ĥ < h∗, uj(x
′) =

f(C, |C(x′)| − 1) < f(D, |C(x′)| − 1) = uj(D, x′
−j). By the definition of →∗,

(∅, x′) →∗
{j} (∅, (x′

−j, D)). Thus, (∅;D, x′
−j) ≻∗

{j} (∅, x′), and (∅, x′) is not a

strong equilibrium. Hence, K∗ \ Z ̸= ∅. ■

6 Concluding remarks

This paper studies the stable sets in two systems derived from a social conflict

game. We show that the stable set uniquely exists and consists of certain

efficient outcomes in the social conflict system with delegations, while the

stable set fails to exist in the social conflict system (without delegations)
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when the Nash equilibrium is inefficient. Note that the stable set contains

an efficient outcome without any delegation. We also characterize the stable

sets by strong equilibria. We conclude with two remarks.

First, the agent and the possibility of delegations are exogenously ar-

ranged institutions. We may consider the possibility of endogenously ar-

ranged institutions as in Okada (1993) and investigate the stable set for such

models. Second, the irreversibility of the delegations plays an important role.

A similar analysis was given by Hirai (2012), in which payoff transfers are

allowed and full cooperation is achieved. We may also consider what kinds

of institutions lead to full cooperation without payoff transfers.
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