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Abstract

This paper considers an extension of generalized Lorenz dominance (GL) criterion

to the case of multivariate attributes. Based on the uniform majorization of Kolm

(1977), we propose an extended version of GL which we call uniform supermajoriza-

tion which allows for attributes with different means. It is verified that uniform su-

permajorization has similar implications as uniform majorization for welfare ordering.

Furthermore, we show that this criterion can be used for comparison of distributions of

unequal populations. We also provide a procedure for empirical investigations which

is in the standard form of linear programming problems.

key words: Generalized Lorenz dominance, Multidimensional inequality, Uniform
majorization.
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1 Introduction

Generalized Lorenz dominance (GL) proposed by Shorrocks (1983) and Kakwani (1984) is

one of the most frequently used criteria in the empirical literature of income inequality.1

There are some important reasons why GL is appropriate for investigating income inequal-

ity and social welfare ordering. First, as with the ordinary Lorenz dominance criterion,

GL brings a clear welfare implication referred to as Shorrocks Theorem.2 Second, under

the assumption of replication invariance on social evaluation function (SEF), a welfare

∗This study is supported by CEAKS University of Toyama, and JSPS KAKENHI (21530309). An
earlier version of this paper was presented at the workshop held at Renmin University of China. I am
grateful to Guanjian Xu, Jun Cui, and Jianguo Jiao.

†Faculty of Economics, University of Toyama. Email: knakamur@eco.u-toyama.ac.jp
1Kakwani (1984) provided an international comparison of welfare rankings based on GL. Bishop et al.

(1993) implemented GL comparison for ten western countries based on Luxembourg Income Study data.
Chiou (1996) analyzed the Taiwanese distribution of income by using GL. Mukhopadhaya (2003) analyzed
the change in the social welfare in Singapore using GL and other dominance criteria.

2See Shorrocks (1983) and Lambert (1993, ch.3).
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comparison between societies with different population sizes can be performed easily.3 Fi-

nally, drawing the generalized Lorenz curve, we can easily implement welfare comparison

based on the GL criterion.

Although income and wealth are primary factors characterizing well-being of person,

other variables such as health, education and environmental quality also play key roles as

determinants of welfare. For example, the Human Development Index (HDI) of the United

Nations is intended to evaluate well-being of society with respect to living standard, health,

and education. Investigations on disparities based on multivariate attributes have been

considered in many fields of economics, including development economics, public finance

and regional economics.

This paper extends the GL criterion to the case of multivariate attributes. Inferences

on multidimensional inequality are classified into two approaches: aggregative and non-

aggregative. In the aggregative approach, a variety of inequality indices that reflect the

multivariate attributes have been developed and their properties have been investigated.4

Furthermore, by using developed indices, much literature has considered empirically mul-

tidimensional inequality in various countries and periods.5 Within the context of the non-

aggregative approach, Lorenz dominance criterion by Atkinson (1970) has been extended

to various types of multidimensional criteria. For example, Atkinson and Bourguignon

(1987) proposed a procedure referred to as sequential generalized Lorenz dominance (SGL)

which compares the distribution of income reflecting differences in needs among house-

holds.6

Uniform majorization (UM) proposed by Kolm (1977) also can be classified into the

non-aggregative approach as an extension of the ordinary Lorenz dominance criterion.7

As pointed out by Kolm, UM has a clear welfare implication which is the same as that of

univariate Lorenz dominance. A pair-wise comparison of distributions employing UM can

be implemented in the case of equal means for each pair of compared attributes. However,

this is not always the case in practice. In empirical analysis, we usually have to consider

welfare ordering by comparing distributions having different mean and population sizes.

3 It should be noted that replication invariance is a controversial property in evaluating social welfare.
See Aboudi et al. (2010) and Blackorby et al. (2009).

4For example, see Weymark (2006), and Tsui (1999).
5Lugo (2007) compared the multidimensional inequality indices by applying them to Argentina data,

and investigated the features and limitations of multidimensional inequality indices including Maasoumi
(1986), Tsui (1995) and Bourguignon (1999). Brandolini (2008) investigated income and health inequalities
in EU countries by using various inequality indices including those of Maasoumi (1986), Tsui (1995), and
Bourguignon and Chakravaty (2003).

6Employing multi-dimensional dominance approaches based on SGL, Nilsson (2010) considered the
inequality among Zambian households. Muller and Trannoy (2011) proposed a multidimensional dominance
criterion having attributes consisting of income, health and education and investigated the change in the
welfare distribution among countries between 2000 and 2004.

7Various concepts of multivariate majorization are discussed in Marshall and Olkin (2009, ch.15). In
the literature of the economic inequality, by introducing the concept of Lorenz zonotope, Koshevoy (1995)
investigated a multivariate generalization of the Lorenz curve. See also Koshevoy and Mosler (2007). Tsui
(1999) proposed correlation increasing majorization which focuses on the transfer of resources to increase
correlation among individual resource endowment. Kolm (1977) and List (1999) considered nonnegative
price majorization, in which the attributes of each person are summed up using nonnegative weight.
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As a result, UM itself is not employed to compare such distributions, although it has been

taken as an axiom to be satisfied by multidimensional inequality indices.8

Herein, we focus on an extension of UM to the case where both population size and

attribute mean differ for the pair of distributions. Consequently, such an extension is

also a generalization of GL. It is desirable that an extended version of GL maintains

the convenient properties noted above. The extension we propose has the same welfare

implications as GL. In addition, this is achieved without any additional specifications on

the utility and social welfare.

In order to link the theoretical results with practical investigation, we provide an em-

pirical procedure based on linear programming. When considering well-being consisting of

multivariate attributes, it is not possible to provide a graphical representation like the gen-

eralized Lorenz curve. Instead of such geometric investigation, we will show a procedure

to obtain the welfare ranking by using a linear-programming model. The procedure pre-

sented in this paper has some advantages. First, when one distribution does not dominate

the other distribution, we can show quantitatively each individual’s shortage of attributes

to achieve welfare superiority by solving the linear programming problem. This may be

useful information for policy makers. Second, by solving the linear programming problem,

we can know a preference on attributes that does not lead to welfare superiority if there

is no relationship between distributions of attributes.

The remainder of the present paper is organized as follows. In Section 2, we provide

an analytical framework. In Section 3, we consider the extension of GL to the case of

multivariate attributes. In Section 4, we deal with comparisons among distribution with

different population sizes. In Section 5, we present an empirical procedure. We illustrate

the procedure by using Chinese provincial data in Section 6. In the last section, we

conclude the analysis.

2 Analytical Framework

2.1 Individuals, Attributes and their Distributions

Let X and Y be two empirical distributions of m attributes among nX and nY persons,

respectively. Thus, two distributions of attributes are represented by m-by-nJ matrices as

follows:

X ≡ [x1, ...,xnX ] ∈ Rm,nX , (1)

Y ≡ [y1, ...,ynY ] ∈ Rm,nY , (2)

where m-dimensional column vectors xi and yi represent the attributes of person i as

follows:
8For example, see Tsui (1995, 1999), and Gajdos and Weymark (2005).
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xi =

⎡⎢⎢⎣
x1i
...

xmi

⎤⎥⎥⎦ ∈ RnX , yi =

⎡⎢⎢⎣
y1i
...

ymi

⎤⎥⎥⎦ ∈ RnY .
Hereinafter, a society whose distribution of attributes is characterized by J = X,Y is

referred to as society J . In a later section when we focus on a distribution of one of

m attributes, row vectors xj and yj representing the marginal distribution of attribute

j = 1, . . . ,m will be used. That is,

xj = [xj1, ..., xjnX ],

yj = [yj1, ..., yjnY ].

Example 1 (Empirical distribution of attributes). Consider a society consisting of three
persons. Suppose that income and health status affect their well-being. In this case, the

distribution of attributes can be written by the 2-by-3 matrix X as follows:

person1 p erson2 person3

X =
incom e{
health{

"
x11 x12 x13

x21 x22 x23

#
.

2.2 Utility Index

Suppose that utility of each person depends on her/his attributes and is represented by

a utility index. The utility index is not necessarily a utility function. We can imagine

a situation in which a policy maker or a researcher uses the utility index to evaluate

individuals’ utility. The utility index of i = 1, ..., nX can be written as follows:

ui = u(xi). (3)

The utility index of individuals in society Y can be represented analogously.

We make the following assumption on the utility index.

Assumption 1. The utility index has the following properties:

(i) u is nondecreasing in each attribute. That is, for ∆xi ≥ 0,

u(xi +∆xi) ≥ u(xi).

(ii) u is concave in xi. That is, for λ ∈ [0, 1], x0i and x00i , the following inequality holds:

u[λx0i + (1− λ)x00i ] ≥ λu(x0i) + (1− λ)u(x00i ).
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(iii) u is continuous.

Hereafter, we denote the set of the utility indices satisfying Assumption 1 as Ωu.

2.3 Social Evaluation Function (SEF)

For u ∈ Ωu, consider a SEF represented as follows: for J = X,Y ,

SWJ = SW (uJ), (4)

where uJ ≡ [u1, ..., unJ ] denotes a vector of the utility indices. We make the following
assumptions on the SEF.

Assumption 2. The SEF is an increasing and Schur concave in uJ .

We denote the set of the SEFs satisfying Assumption 2 as ΩW . If we concentrate our

attention on the differentiable function, Schur concave SWF is characterized by the condi-

tions that SW is symmetric with respect to u and (ui − uj) (∂SW/∂ui − ∂SW/∂uj) ≤ 0
holds for all i, j = 1, ..., nJ .9

Example 2 (Schur concave function). The following social welfare functions belong to
ΩW .

SWB =

nJX
i=1

(ui)
β , for β ∈ (0, 1],

SWS =

PnJ
i=1 ui
nJ

(1−GINIu) .

where GINIu denotes the Gini coefficient of the distribution of utility index. ¤

In the above SWFs, SWS , can be interpreted as a utility version of Sen’s social welfare

function.

3 Generalization of Shorrocks Theorem

In this section, we consider a situation in which two societies have equal population. For

notational simplicity, the number of person in each society is denoted by n ≡ nX = nY .
9For detail discussion, see Marshall et al. (2011, ch. 3) and Bhatia (1997, II.3).
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3.1 Generalized Lorenz Dominance

Before considering multivariate dominance criterion, we confirm properties of the uni-

variate GL. If we concentrate on the case of equal population, the GL criterion can be

described as follows:

Definition 1 (Generalized Lorenz Dominance). Let x and y be n-dimensional real row
vectors with nonnegative entries. The vector x dominates y in the sense of generalized

Lorenz dominance if and only if
Pk
i=1 x

↑
i ≥

Pk
i=1 y

↑
i holds for k = 1, ..., n, where x

↑
i and

y↑i are entries of x and y in increasing order, respectively.

In the literature of the theory of majorization, GL is said to be a weak supermajoriza-

tion.10 For two distributions with equal population, if x generalized Lorenz dominates y,

we can say that x is weakly supermajorized by y (in symbols, x ≺w y). Weak superma-
jorization can be characterized by using doubly stochastic matrix, which is a nonnegative

square matrix whose row and column sums are all one. We denote the set of all doubly

stochastic matrices with order n as Ψn.

Lemma 1. Let x and y be n-dimensional row vectors. The following two conditions are
equivalent.

(i) x ≺w y.

(ii) There exist some P ∈ Ψn and nonnegative vector s ∈ Rn+ such that

yP + s = x. (5)

Proof. Suppose that (i) holds. Then, we can find an nonnegative scalar α such asPn
i=1 x

↑
i =

Pn
i=1 y

↑
i + α. Now, we define ŷ↑n ≡ y↑n + α. Since [x↑1, ..., x

↑
n] is majorized by

[y↑1, ..., y
↑
n−1, ŷ

↑
n], there exists P ∈ Ψn such that yP+ ŝ = x holds, where ŝ = [0, ..., 0,α]P ≥

0. This implies (ii). Conversely, suppose that (ii) holds. We have yP = x−s for some
P ∈ Ψn which implies

Pk
i=1(xi − si)↑ ≥

Pk
i=1 y

↑
i for k = 1, ..., n− 1 and

Pn
i=1(xi − si)↑ =Pn

i=1 y
↑
i . Clearly,

Pk
i=1 x

↑
i ≥

Pk
i=1(xi− si)↑ holds for k = 1, ..., n, which implies (i). ¥

It should be noted that in the univariate case, the characterization of majorization

by doubly stochastic matrix coincides with that by T-transform. However, these two

characterizations lead to different consequences when we consider the multidimensional

majorization.11 In the next subsection, we consider an extension of GL criterion in line

with (5).

10For example, see Saposnik (1993).
11See Weymark (2006). In Marshall et al. (2011, ch. 15), the uniform majorization is referred to as

simply majorization. On the other hand, they use the term of chain majorization if a distribution is
obtained from products of T-transformation of the other distribution.
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3.2 Multivariate Majorization

The following definition of multivariate majorization can be regarded as a straightforward

extension of (5).

Definition 2 (Uniform Supermajorization). Let X and Y be m-by-n matrices. X is said

to be uniformly supermajorized by Y (in symbols, X ≺w Y ) if

Y P ≤ X, (6)

holds for a doubly stochastic matrix P .

If (6) holds with equality X is said to be uniformly majorized by Y (in symbols,

X ≺ Y ). It is clear that X ≺ Y implies X ≺w Y . Thus, UM can be regarded as a special

case of uniform supermajorization. It is also clear that GL is a special case of uniform

supermajorization.

Example 3 (Uniform supermajorization). Consider a society consisting of three persons

and two attributes. Let X and Y be two matrices defined as follows:

X =

"
45 65 35

30 50 45

#
, Y =

"
10 50 80

40 20 60

#
.

We can confirm X ≺w Y , since there exists a doubly matrix,

P =

⎡⎢⎣ 0.3 0.1 0.6

0.6 0.3 0.1

0.1 0.6 0.3

⎤⎥⎦ ,
such that Y P ≤ X holds. Indeed,

Y P =

"
41 64 35

30 46 44

#
≤
"
45 65 35

30 50 45

#
= X.

holds.

We can confirm some basic properties of uniform supermajorization as follows:

Remark 1. Let X,Y,Z be m-by-n matrices.

(i) X ≺w X.

(ii) If X ≺w Y and Y ≺w Z hold then X ≺w Z holds.

(iii) If X ≺w Y and Z ≺w Y hold then λX + (1− λ)Z ≺w Y holds for λ ∈ [0, 1].

(iv) If X ≺w Y holds then X [J ] ≺w Y [J ] holds for each J ⊂ {1, ...,m}, where X [J ] is
a submatrix of X whose rows are the rows of X indexed by the elements in J .
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In Remark 1, (i) and (ii) represent reflexivity and transitivity, respectively. (iii) implies

pre-order induced by ≺w is a convex order. (iv) implies that a necessary condition for
X ≺w Y is that xj generalized Lorenz dominates yj for j = 1, ...,m.

3.3 Relation to Other Majorization Criteria

In the theory of stochastic dominance, uniform supermajorization is known as increasing-

concave (second-order) stochastic ordering (ICV).12 In this sense, the concept of uniform

supermajorization is already-known rather than novel. However, by considering ICV based

on empirical distributions, we can relate ICV to other majorization criteria.

First, it should be noted that the doubly stochastic matrix can be regarded as a special

case of row-stochastic matrix. A s-by-k dimensional nonnegative matrix whose row sum are

all one is called row stochastic. Let ΨRs,k be the set of all s-by-k row stochastic matrices.

That is, for R ∈ ΨRs,k, ReTk = eTk and R > O hold, where ek denotes a k-dimensional

row vector whose entries are one.13 The set of all row stochastic square matrices with

n-dimension is denoted as ΨRn .

Dahl (1999) proposed (right) matrix majorization. For X and Y ∈ Rm,n, X is (right)

matrix majorized by Y if there exists R ∈ ΨRn such that Y R = X holds. In Dahl’s matrix

majorization, R is not necessarily square matrix: variable size in population is allowed.

On the other hand, since Y R = X implies Y eTn = XeTn , total amount of each attribute

have to be the same between X and Y .

Kolm (1977) and List (1999) consider non-negative price majorization. For X and

Y ∈ Rm,n, X is said to be non-negative price majorized by Y if vX ≺ vY for all v ∈
Rm+ . That is, vY P = vX holds for some P ∈ Ψn. Price majorization is referred to as
non-negative linear-combinations majorization in Marshall et al. (2011, ch. 15). Since

vY PeTn = vY e
T
n = vXe

T
n , non-negative price majorization considers a situation in which

both population size and attribute mean are the same between the two distributions.

Savaglio (2011) considered rs-majorization. That is, for X and Y ∈ Rm,n, X is said

to be rs-majorized by Y if there exists a row stochastic matrix R such that RY T = XT

holds. In Pería et al. (2005), rs-majorization is referred to as weak matrix majorization.

Marshall et al. (2011, ch. 15) use the term of "column-stochastic majorization" in place

of rs-majorization, since RY T = XT can be rewritten as Y RT = X. In rs-majorization,

total amount of each attribute may differ while the size in population is fixed.

Two types of matrix majorizations proposed by Dahl (1999) and Savaglio (2011) are

closely related to UM as understood from that the relation between two matrices are

related by equality. Clearly, Y P = X for some P ∈ Ψn implies Y R = X and Y RT = X

for some R ∈ ΨRn .
We can consider the inequality versions of the majorizations described above as follows:

Let X and Y be m-by-n matrices.

12For example, see Shaked and Shanthikumar (1994, ch. 5), and Marshall et al. (2011. ch.17).
13 In what follows, superscript T denotes the transpose operation.
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(RM) There exists some row stochastic matrix R such that Y R ≤ X holds.

(PM) For all non-negative m-dimensional vector v, vX ≺w vY holds.

(CM) There exists some row stochastic matrix R such that Y RT ≤ X holds.

It is clear (RM), (PM) and (CM) correspond to the inequality versions of (right)
matrix majorization, non-negative price majorization and rs-majorization, respectively.

The relations between uniform supermajorization, (RM), and (PM) can be summarized
as follows:

Remark 2. Let X,Y ∈ Rm,n. If X ≺w Y then,

(i) Y R ≤ X holds for some R ∈ ΨRn ;

(ii) vX ≺w vY holds for all v ∈ Rm+ .

Proof. (i) follows from Ψn ⊂ ΨRn . Y P ≤ X implies vY P ≤ vX due to v ∈ Rm+ . ¥

Furthermore, we obtain the following property relating (PM) to (CM), which is a
straightforward application of Pería et al. (2003, Proposition 3.3).

Remark 3. Let X,Y ∈ Rm,n. If vX ≺w vY holds for all v ∈ Rm+ then Y RT ≤ X holds

for some R ∈ ΨRn .

Proof. See Appendix. ¥

Thus, from Remark 2, it is verified that X ≺w Y ⇒ (RM). In addition, together
Remark 3 with Remark 2, we obtain X ≺w Y ⇒ (PM)⇒ (CM). However, the reciprocal
implications are not always true as shown in the following examples.

Example 4 ((RM) does not imply X ≺w Y ). Consider the following two matrices.

X =

"
5 10 40

5 1 15

#
, Y =

"
10 10 30

5 5 5

#
.

Considering a matrix

R0 =

⎡⎢⎣ 0.2 0 0.8

0.2 0 0.8

0 0.2 0.8

⎤⎥⎦ ,
we can confirm

Y R0 =

"
4 6 40

2 1 12

#
≤
"
5 10 40

5 1 15

#
= X.
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On the other hand, it is easily verified that X [1] ⊀w Y [1] and X [2] ⊀w Y [2]. This implies
X ⊀w Y from Remark 1(iv).

Example 5 ((PM) does not imply X ≺w Y ). Let X and Y be two matrices.

X =

"
1 2 3

3 4 6

#
, Y =

"
1 2 3

2 5 6

#
.

We can easily confirm (PM) holds. On the other hand, consider a matrix A = [aij ]

such that Y A ≤ X, AeT3 = eT3 and e3A = e3 hold. Since y1a1 ≤ 1 and a1eT3 = 1

must hold, a1 becomes a1 = (1, 0, 0)
T as long as a1 ≥ 0. This means a2 = (0, â, 1− â)T

and a3 = (0, 1− â, â)T . Furthermore, y2a2 ≤ 4 must hold for Y A ≤ X. Noting that

a22 = 1− a32 for e3A = e3, we have to say a32 ≤ −1. Thus, there does not exist doubly
stochastic matrix such that Y A ≤ X.

Example 6 ((CM) does not imply (PM)). Let X and Y be two matrices.

X =

"
10 10 16

10 12 16

#
, Y =

"
10 10 20

10 12 20

#
.

Consider a matrix RC ∈ ΨRn such that

RTC =

⎡⎢⎣ 1 0 0

0 1 0.5

0 0 0.5

⎤⎥⎦ .
By using RTC , we obtain

Y RTC =

"
10 10 15

10 12 16

#
≤
"
10 10 16

10 12 16

#
= X.

However, taking v as v0 = (1, 1), we have v0XeT ≤ v0Y eT which implies v0X ⊀w v0Y .

3.4 Welfare Ordering

We turn to welfare implications carried by the uniform supermajorization. In the case of

uniform majorization, it is well known that if and only if X ≺ Y holds, then
Pn
i=1 u (xi) ≥Pn

i=1 u (yi) holds for all concave functions (e.g. Kolm, 1977; Karlin and Rinott, 1983;

Mosler, 1994; Dahl, 1999). In what follows, we will show that a similar welfare implication

holds for uniform supermajorization. To this end, we present the following lemmas.

Lemma 2 (Gale 1960, Theorem 2.8). Let A and b be an m-by-n matrix and m-

dimensional vector, respectively. Exactly one of the following alternatives holds. Either

the inequality

10



Ax ≤ b,

has a nonnegative solution x ∈ Rn+, or the inequalities

vA ≥ 0,

vb < 0,

have a nonnegative solution v ∈ Rm+ .

Proof. See Gale (1960). ¥

This Lemma can be interpreted as a separation theorem of convex sets. The next

lemma characterizes a property of piecewise linear function with concavity.

Lemma 3. Let

V ≡ {[c1,v1] , ..., [cs,vs] : ci ∈ R,vi ∈ R+} ,

be a set of s-tuples ofm+1- dimensional row vectors where vi is nonnegative. For x ∈ Rm+ ,

u(x) = min
[ci,vi]∈V

(
[ci,vi]

"
1

x

#)
, (7)

is a nondecreasing concave function in x.

Proof. Let x0, x00, and λ ∈ [0, 1]. Concavity follows from a direct calculation as

u[λx0 + (1− λ)x00] = min
[ci,vi]∈V

(
[ci,vi]

Ã
λ

"
1

x0

#
+ (1− λ)

"
1

x00

#!)

≥λ min
[ci,vi]∈V

(
[ci,vi]

"
1

x0

#)
+ (1− λ) min

[ci,vi]∈V

(
[ci,vi]

"
1

x00

#)
=λu(x0) + (1− λ)u(x00).

Since vi ≥ 0, u is nondecreasing in x. ¥

The utility index addressed in (7) can be interpreted as a piecewise linear approxima-

tion of general nondecreasing concave utility index. Now, we state the main theorem. The

proof of proposition is motivated by Dahl (1999, Theorem 3.3).

Proposition 1. Let X,Y ∈ Rm,n be m-by-n matrices consisting of n-dimensional column
vectors xi and yi, respectively. The following two conditions are equivalent:

(i) X ≺w Y .

11



(ii)
Pn
i=1 u (xi) ≥

Pn
i=1 u (yi) holds for all u ∈ Ωu.

Proof. (i)⇒ (ii) follows from the nondecreasingness and concavity of u. Now we turn to

(ii)⇒ (i). Let us consider a situation where

Y P 6≤ X, (8)

for all P ∈ Ψn. Vectorizing (8), we obtain an equivalent condition as follows14:

Ãp̂ ≤ b̃, (9)

does not have nonnegative solution p̂, where

Ã ≡

⎡⎢⎢⎢⎢⎢⎢⎣
In ⊗ Y
en ⊗ In
−en ⊗ In
In ⊗ en
−In ⊗ en

⎤⎥⎥⎥⎥⎥⎥⎦ , b̃ ≡

⎡⎢⎢⎢⎢⎢⎢⎣
vecX

eTn

−eTn
eTn

−eTn

⎤⎥⎥⎥⎥⎥⎥⎦ .

In the above expressions, ⊗ and vec stand for the Kronecker product and column stacking
operators, respectively. In addition, en denotes an n-dimensional row vector whose entries

are one, and In is an n-dimensional identity matrix. From Lemma 2, it can be verified

that

vÃ ≥ 0, (10)

and

vb < 0, (11)

have a nonnegative solution. Let v∗ ≡ [v∗1, ...,v∗n, ž∗, ẑ∗, č∗, ĉ∗] be a solution of (10) and
(11), where v∗i ∈ Rm+ for i = 1, ..., n and ž∗, ẑ∗, č∗, ĉ∗ ∈ Rn. Thus, from (10), we obtain

v∗iyj + z
∗
j + c

∗
i ≥ 0 for i, j = 1, ..., n, where z∗j ≡ ž∗j − ẑ∗j and c∗i ≡ č∗i − ĉ∗i . Furthermore,

from (11), we have
Pn
i=1 (v

∗
i xi + z

∗
i + c

∗
i ) < 0. Defining V ≡ {[c∗1,v∗1] , ..., [c∗n,v∗n]}, we can

easily verify that

nX
i=1

(v∗i xi + z
∗
i + c

∗
i ) ≥

nX
i=1

min
[cj ,vj ]∈V

(
[c∗j ,v

∗
j ]

"
1

xi

#)
+

nX
i=1

z∗i ,

nX
i=1

min
[cj ,vj ]∈V

(
[c∗j ,v

∗
j ]

"
1

yi

#)
+

nX
i=1

z∗j ≥ 0.

Thus, we have

14 In this vectorizing procedure, P is converted to p̂(≡ vecP ).

12



nX
i=1

min
[cj ,vj ]∈V

(
[c∗j ,v

∗
j ]

"
1

yi

#)
>

nX
i=1

min
[cj ,vj ]∈V

(
[c∗j ,v

∗
j ]

"
1

xi

#)
.

From Lemma 3, u(x) = min
[ci,vi]∈V

(
[ci,vi]

"
1

x

#)
is nondecreasing and concave. By con-

sidering a utility index that takes the form of (7), we can conclude that

nX
i=1

u(xi) <
nX
i=1

u(yi), (12)

holds. Therefore, if
nP
i=1
u(xi) ≥

nP
i=1
u(yi) holds for all u ∈ Ωu then Y P ≤ X holds for some

P ∈ Ψn. ¥

In the literature of inequality, a SEF based on individual utility is sometimes employed.

The result obtained by Proposition 1 does not change even if we adopt a two-step approach

to obtain a welfare implication from multivariate distribution.15

Corollary 1. Let X,Y ∈ Rm,n. The following conditions are equivalent.

(i) X ≺w Y .

(ii) SW (uX) ≥ SW (uY ) holds for all u ∈ Ωu and SW ∈ ΩW .

Proof. (ii) ⇒ (i) is obvious because
Pn
i=1 u(xi) ∈ ΩW and from Proposition 1. Con-

versely, suppose that X ≺w Y holds. From Proposition 1, we obtain that

nX
i=1

u(xi) ≥
nX
i=1

u(yi),

holds for all u ∈ Ωu. Let V ∗∗ be a set such that V ∗∗(zk) = {[zk, 0], [0, 1]} for zk ∈ (0,∞).
From Lemma 3,

g (xi, zk) = min
v∗∗∈V ∗∗(zk)

(
v∗∗

"
1

u(xi)

#)
, (13)

is nondecreasing concave. Thus, applying Proposition 1 to (13), we obtain
Pn
i=1 g (xi, zk) ≥Pn

i=1 g (yi, zk) for all zk ∈ (0,∞). Let us define u
↑
X ≡ [u(x1)↑, ..., u(xn)↑], whose elements

are arranged in increasing order of u(xi). We define u
↑
Y in a similar manner. We choose

zk as u(yk)↑ for k ∈ {1, ..., n}. Substituting zk = u(yk)↑ into (13) and summing, we can
verified that
15For example, Trannoy and Weymark (2007) considered the properties of the generalized Lorenz dom-

inance for a utility distribution.
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nX
i=1

g[yi, u(yk)
↑] =

kX
i=1

u(yi)
↑ + (n− k)u(yk)↑,

and

nX
i=1

g[xi, u(yk)
↑] =

nX
i=1

u(xi)
↑ −

nX
i=1

[u(xi)
↑ − u(yk)↑]+

=
kX
i=1

u(xi)
↑ +

nX
i=k+1

n
u(xi)

↑ − [u(xi)↑ − u(yk)↑]+
o

−
kX
i=1

[u(xi)
↑ − u(yk)↑]+

≤
kX
i=1

u(xi)
↑ +

nX
i=k+1

min{u(xi)↑, u(yk)↑},

hold for k = 1, ..., n, where a+ ≡ max{0, a}. Noting that (n−k)zk ≥
Pñ
i=k+1min

©
u(xi)

↑, zk
ª

and (12), we obtain
Pk
i=1 u(xi)

↑ ≥
Pk
i=1 u(yi)

↑, for k = 1, . . . , n. This inequality implies

that uY weakly supermajorizes uX . Since SW is assumed to be increasing and Schur

concave in u,

SW (uX) ≥ SW (uY ),

holds. ¥

Proposition 1 and its corollary state that the Shorrocks Theorem can be extended

to case of multivariate attributes. However, in practice, we have to compare situations

involving populations of different size. In the next section, we will turn to this problem.

4 Different Population Sizes

4.1 SEF with Replication Invariance

In this section, we characterize uniform supermajorization under different population sizes.

In the case of univariate attributes, the generalized Lorenz curve provides complete infor-

mation to a SEF that satisfies replication invariance.16 For the multivariate case, we can

obtain the welfare implications based on a doubly stochastic matrix.

First, we rewrite the SEF (4) so as to make the replication explicit. Consider the

following representation using the natural number μ:

16For further discussion, see Aboudi et al. (2010).
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sw (uJ ,μnJ) = sw(u1, ..., u1| {z }
μ

, ..., unJ , ..., unJ| {z })
μ

. (14)

In (14), μ = 1 implies a SEF with no scale adjustment. In order to maintain comparability,

we focus on SEFs satisfying the following property.

Assumption 3. The SEF (14) is homogenous degree of zero in nJ : for μ > 0,

sw (uJ , nJ) = sw (uJ ,μnJ) , (15)

holds.

Assumption 3 is referred to as the replication invariance principle.17 We denote the

set of SEFs satisfying Assumption 2 and 3 as Ωw. Clearly, Ωw ⊂ ΩW .

4.2 Uniform Supermajorization under Different Population Sizes

Let us replicate X and Y so as to have a population of ñ ≡ nXnY explained as follows. In
order to obtain a replicated distribution of attributes, we define replication matrices GY
and GX as follows:

GY ≡ InY ⊗ enX ∈ R
nY ,ñ
+ ,

GX ≡ InX ⊗ enY ∈ R
nX ,ñ
+ ,

By using the replication matrix GJ , J = X,Y , we obtain the distribution of a ñ ≡ nXnY
population based on X and Y . The replicated distributions X∗ and Y ∗ are respectively

defined as follows:

Y ∗ ≡ Y GY ∈ Rm,ñ+ , (16)

X∗ ≡ Y GX ∈ Rm,ñ+ . (17)

Thus, we can apply Proposition 1 to the distributions Y ∗ and X∗. However, it is diffi-

cult to solve the matrix inequality (6) due to the extreme size of the matrices. Fortunately,

we can reduce the size of vector and matrices to investigate the welfare orderings. To this

end, we define a compressed form of doubly stochastic matrix. This is essentially same as

the matrix defined in Aboudi et al. (2010, Definition 3.1).

Definition 3 (Compressed Doubly Stochastic Matrix). A nY -by-nX matrix Q is said to

be a compressed doubly stochastic matrix for nY and nX if the following properties are

satisfied:
17For example, see Tsui (1999).
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enYQ = nY enX , (18)

QeTnX = nXe
T
nY
, (19)

and

Q ≥ O. (20)

The compressed doubly stochastic matrix is a nonnegative matrix whose column- and

row-sum are respectively nY and nX . Hereafter, we denote the set of all compressed

doubly stochastic matrices for nY and nX as Ψ (nY , nX). Clearly, Q ∈ Ψ(nY , nX) implies
QT ∈ Ψ(nX , nY ). In addition, we define a matrix X̃ as follows:

X̃ ≡ nYX. (21)

The following lemma gives an equivalent condition for uniform supermajorization when

the populations differ in size.

Lemma 4. LetX ∈ Rm,nX , Y ∈ Rm,nY , andX∗, Y ∗ ∈ Rm,ñ. The following two conditions
are equivalent:

(i) X∗ ≺w Y ∗.

(ii) Y Q ≤ X̃ holds for some Q ∈ Ψ(nY , nX).

Proof. It is sufficient to prove that Y ∗P = X∗ ⇔ Y Q = X̃ for P ∈ Ψñ and Q ∈
Ψ(nY , nX). Suppose that there exists P ∈ Ψñ such that Y ∗P = X∗. Noting that

Y ∗ = Y GY , we obtain Y ∗PGTX = Y GY PG
T
X = X∗GTX , where GY PG

T
X is an nY -by-nX

matrix with nonnegative elements. In addition, GY PGTXe
T
nX
= nXe

T
nY
and enYGY PG

T
X =

nY enX hold. Therefore, we obtain GY PGTX ∈ Ψ(nY , nX). Furthermore, it is clear that
X∗GTX = nYX. Conversely, suppose that Y Q = X̃ holds for some Q ∈ Ψ(nY , nX). We
can easily confirm that G̃Y ≡ (1/nX)GTY and G̃X ≡ (1/nY )GTX are the generalized inverse
matrices of GY and GX , respectively.18 Noting that Y = Y ∗G̃Y , we obtain Y Q = Y ∗G̃YQ.

Furthermore, we have X̃G̃TX = X∗. Therefore, Y Q = X̃ implies that Y ∗G̃YQG̃TX = X∗.

In this equation, we can easily confirm that

G̃YQG̃
T
Xe

T
ñ = G̃YQe

T
nX
= nXG̃Y e

T
nY
= eTñ ,

and

eñG̃YQG̃
T
X = enYQG̃

T
X = nY enX G̃

T
X = eñ,

18A matrix G̃ is said to be a generalized inverse of G if and only if G̃GG̃ = G holds. See Rao and Mitra
(1971, ch. 2).
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hold. Moreover, it is obvious that G̃YQG̃TX ≥ O holds. Hence, we obtain G̃YQG̃TX ∈ Ψñ.
Thus, Y ∗P = X∗ ⇔ Y Q = X̃ is proved. ¥

Putting together Proposition 1 with Lemma 4, we have the following result.

Proposition 2. Let X ∈ Rm,nX and Y ∈ Rm,nY be two distributions of attributes. The
following two conditions are equivalent:

(i) There exists Q ∈ Ψ(nY , nX) satisfying

Y Q ≤ X̃. (22)

(ii) sw(uX , nX) ≥ sw(uY , nY ) for all u ∈ Ωu and sw ∈ Ωw.

Proof. This follows from Proposition 1, Corollary 1, and Lemma 4. ¥

If we consider a distribution consisting of one attribute e.g., income, we can infer

the welfare implications for two distributions without relying on Proposition 2. That is,

the generalized Lorenz dominance criterion can be easily checked by using the familiar

graphical representation. However, in the present situation where individual’s well-being

depends on more than two attributes, it is difficult to obtain the welfare implications by

geometrical procedures. In the next section, we show an algebraic procedure to confirm

Proposition 2.

5 Empirical Procedures

5.1 Equivalent Linear Programming Model

In this section, we describe the empirical procedures to confirm Proposition 2. In the the-

ory of majorization, Dahl (1999, Theorem 3.6) suggests a characterization of majorization

using a linear programming model.19 In line with his perspective, we propose a procedure

for the empirical analysis.

First, vectorizing the matrix inequality (22), we obtain

[InY ⊗ Y ] vecQ ≤ vec X̃. (23)

Next, Q ∈ Ψ(nY , nX) implies that"
enX ⊗ InY
InX ⊗ enY

#
vecQ =

"
nXe

T
nY

nY e
T
nX

#
, (24)

and vecQ ≥ 0 must hold.
19See also Mosler and Scarsini (1991, Example 3.4).
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From (23) and (24), we can consider the following linear programming problem.

Problem 1 (P1).

min
q
aq, (25)

subject to

Aeqq = beq, (26)

q ≥ 0, (27)

where

a ≡ [0ñ+mnX ,wL] ∈ R
ñ+2mnX
+ ,

Aeq ≡

⎡⎢⎣ InX ⊗ Y ImnX −ImnX
enX ⊗ InY O O

InX ⊗ enY O O

⎤⎥⎦ ∈ R(m+1)nX+nY ,ñ+2mnX+ ,

beq ≡

⎡⎢⎣ vec X̃

nXe
T
nY

nY e
T
nX

⎤⎥⎦ ∈ R(m+1)nX+nY+ ,

and wL ∈ RmnX++ .

For (P1), the dual problem can be written as maxq̃ q̃beq subject to q̃Aeq ≤ a. It can
be easily shown that the solution to the dual problem exists.20 By the duality theorem,

therefore, (P1) also has a bounded optimal solution. Thus, we have the following result.

Proposition 3. The following two conditions are equivalent:

(i) The optimal value of (P1) is zero.

(ii) sw(uX , nX) ≥ sw(uY , nY ) holds for all u ∈ Ωu and sw ∈ Ωw.

Proof. This is obvious from (23) and (24). ¥

According to Proposition 3, we can easily verify the relationship of welfare dominance

for two societies. Given two distributions X and Y , we first solve (P1) and obtain the

optimal value. If the optimal value is equal to zero, then the social welfare in society X

is higher than that in society Y in the sense of uniform supermajorization. In contrast, if

20 It is obvious that q̃ = 0 is a feasible solution. We decompose the vector q̃ as q̃ = [q̃n, q̃v], where
q̃ñ ∈ Rñ and q̃v ∈ RnX+nY . Since q̃ñ is restricted by 0 ≥ q̃ñ ≥ −wL, the optimal solution is bounded.
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the optimal value is strictly positive, then we have two possibilities. One is that the social

welfare in Y is higher than in X. The other is that neither society is superior in terms of

social welfare. Interchanging the roles of X and Y in (P1), one can identify which is the

case.

Of course, uniform supermajorization gives a preorder to distribution of attributes.

Thus, we may face a situation where the welfare orderings between two distributions

cannot be determined. Even in such a situation, solving (P1), we obtain useful information.

Consider a situation in which X 6≺w Y and Y 6≺w X. First, it should be noted that in (P1),
the vector, wL, can be interpreted as shadow prices of the respective attributes. That is,

the optimal value represents a minimum amount of resources to be added in situation X

for achieving more preferable situation than that of Y . Thus, if the policy maker has

information on the unit cost required for improving each attribute of individuals, he can

easily find a strategy for improving the welfare based on the optimal solution of (P1).

Second, the optimal vector of the dual problem provides the parameter of the utility index

which violates the majorization criterion.

One difficulty of applying this procedure in practice lies in the size of data. In order to

solve (P1), the number of variables is ñ+ 2mnX and the number of constraints including

nonnegativity constraints is (3m + 1)nX + nY + ñ. In this sense, this procedure will be

appropriate for grouped data or sampled data with small size. However, recent progress

in computer capabilities partially mitigates this difficulty.

5.2 Numerical Example

Consider two societies denoted as X and Y . In society X, there are five persons, whose

attributes are denoted as follows:

X =

⎡⎢⎣ 230 500 430 305 150

140 200 250 230 245

175 150 325 265 150

⎤⎥⎦ .
Similarly, society Y has four persons, whose attributes are represented as follows:

Y =

⎡⎢⎣ 100 50 800 300

300 400 100 50

50 400 250 150

⎤⎥⎦ .
We set wL = 500 × e5. Solving (P1), we obtain the optimal value as aq∗ ≈ 5000 > 0.

This means that the distribution X does not dominates Y .21 Solving the dual problem of

(P1), we have the following vectors22

21Clearly, Y does not uniform supermajorize X, since (1/nX)XeT5 ≥ (1/nY )Y eT4 holds.
22The vectors vi and the scalar ci are generated by partitioning the optimal solution of the dual problem

as q̃ = [−v1, ...,−v5, z,−c1, ...,−c5], where z ∈ R4.
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"
c1 c2 c3 c4 c5

vT1 vT2 vT3 vT4 vT5

#
=

⎡⎢⎢⎢⎢⎣
−165568 −3803 3727 −3063 −7368
500 0 0 2.928 17.623

382.363 1.485 1.973 0 11.304

0 49.969 19.650 38.236 37.106

⎤⎥⎥⎥⎥⎦ .

Let V be a set defined as V ≡ {[c1,v1], ..., [c5,v5]}. Take the SEF as

sw(uX , nX) =
1

nX

nXX
j=1

min
[ci,vi]∈V

(
[ci,vi]

"
1

xj

#)
.

Thus, we obtain sw(uX , nX) = 5726.37 < 5976.15 = sw(uY , nY ). It should be noted that

for j = 1, 2, 3, xj dominates yj in the sense of GL. This example stresses the importance

of simultaneous consideration of income and other attributes.

Detail expression of the optimal solution can be represented as follows:

aq∗ = wL ×

⎡⎢⎢⎢⎢⎣
10

0
...

0

⎤⎥⎥⎥⎥⎦ .
Thus, if the attribute 1 for individual 1 in X is increased by ∆x11 = 10/nY = 10/4 = 2.5,

then the social welfare will be improved. Indeed, if we consider a modified distribution,

X 0, in which the x1 term, [230, 140, 175]T , is replaced by [232.5, 140, 175]T , the optimal

value of (P1) becomes zero. Furthermore, from the optimal solution, we can find a doubly

stochastic matrix such that Y Q ≤ X̃ 0 holds as follows:

Q∗ =

⎡⎢⎢⎢⎢⎣
0.6 2.0 0.0 0.4 2.0

0.6 0.0 2.0 1.6 0.8

0.0 2.0 2.0 1.0 0.0

2.8 0.0 0.0 1.0 1.2

⎤⎥⎥⎥⎥⎦ .
It can be easily verified that Q∗ ∈ Ψ(nY , nX).

6 Empirical Illustration Using Chinese Provincial Data

In this section, we illustrate the empirical procedure by applying to Chinese provincial

data.23 We investigate well-being of the residents during the period of 2005 to 2009.

China, which exhibits the most rapid growth in GDP in this period, faces a serious income

disparity between the coastal and inland areas. Since the implementation of the open door

23 In what follows, we focus on the province-level divisions including province, autonomous area, and
direct-controlled municipalities. Hereinafter, we refer these divisions as province.
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policy, the Chinese government has promoted economic growth in urban areas under the

policy that regions with most potential are preferentially developed. As a result, the

economic disparity between the urban and rural areas has expanded.24 After 2000, in

order to reduce this regional inequality, the government of China has emphasized the

development of inland areas.

An increase in regional inequality resulting from the rapid growth affects some aspects

of well-being of individuals. The first is environmental degradation in industrialized areas.

For example, urban air pollution causes a serious environmental problem, especially in the

industrialized areas of northern and central China (Vennemo et al., 2009). In 11th five-year

plan, China’s government has set compulsory targets for environmental protection (Cao

et al., 2009). Second, during the transition period from a command economy, accessibility

to health care services has been impaired. The number of health care workers in rural

areas has decreased by 35.9% (Liu et al., 2007) and senior level health professionals tend

to concentrate in urban facilities (Liu et al., 2007; Bloom, 2001).

Therefore, focusing on the interregional disparities of income, environmental quality,

and accessibility of health care services, we consider the welfare implications of the recent

development of the Chinese economy.25

6.1 Modified Analytical Framework

The theoretical framework presented in the previous sections should be slightly modified

since we employ the grouped data by province. Let xi and yi be the attributes of individual

who lives province i. Individuals who live in a same province are regarded as having the

same attributes. That is, the distribution of attributes can be written as follows:

X = [x1, ...,x1| {z }
n1(X)

, ...,xr, ...,xr| {z }
nr(X)

],

Y = [y1, ...,y1| {z }
n1(Y )

, ...,yr, ...,yr| {z }
nr(Y )

],

where ni(J) denotes the number of population in province i for the distribution J . Thus,

rX
i=1

ni(J) = nJ ,

where r is the total number of province. The distribution of attributes can be written

compactly as follows:

24Tsui (1996) analyzed the interprovincial inequality of income in the post-1978 period. Lee (2009)
argued that the source of regional inequality in output has shifted from intraprovincial to interprovincial
inequality since the early 1980s. Fan and Sun (2008) also considered the interprovincial inequality in
output by using recent statistical data.
25Brajer et al. (2010) and Groom et al. (2010) considered the relationship between income inequality

and environmental quality. Zhang and Kanbur (2005) considered spatial inequality in education and health
care in China.
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X̂ ≡ [x1, ...,xr], (28)

Ŷ ≡ [y1, ...,yr], (29)

where xi denotes the attributes of individual who lives province i.

The SEF can be written as follows:

sw(uJ ,nJ) = sw(u1(J), ..., u1(J)| {z }
n1(J)

, ..., ur(J), ..., ur(J)| {z }
nr(J)

),

for J = X,Y , where nJ ≡ (n1(J), ..., nr(J)) denotes a vector consisting of the population
number for each province for J . We assume that for μ > 0, sw(uJ ,nJ) = sw(uJ ,μnJ)

holds, which implies Assumption 3 holds.

Second, the compressed doubly matrix is also slightly modified. Instead of the com-

pressed doubly stochastic matrix defined by Definition 3, we consider a r-by-r matrix as

follows.

Definition 4. An r-by-r matrix Q̂ is said to be modified compressed doubly stochastic if
the following conditions are satisfied:

erQ̂ =
1

nX
nX ,

Q̂eTr =
1

nY
nTY ,

and

Q̂ ≥ O.

Let Ψ (nY ,nX) be the set of modified compressed doubly stochastic matrices. That is,

a matrix Q̂ ∈ Ψ (nY ,nX) is a nonnegative square matrix whose row-sum is equal to the

population share for Y and whose column-sum is equal to that for X.

Furthermore, we define a vector corresponding to (21) in the basic model.

X̂∗ ≡ 1

nX

£
n1(X)x1, ..., nr(X)xr

¤
∈ Rr. (30)

The following proposition is a modified version of uniform supermajorization.

Proposition 4. For the distributions Ŷ and X̂, the following two conditions are equiva-

lent:

(i) Ŷ Q̂ ≤ X̂∗ holds for some Q̂ ∈ Ψ(nY ,nX).

(ii) sw(uX ,nX) ≥ sw(uY ,nY ) holds for all u ∈ Ωu and sw ∈ Ωw.

Proof. It follows from Proposition 1 and Lemma 1. ¥
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Thus, based on Proposition 4, we can set up the linear programming model corre-

sponding to (P1).

6.2 Data and Results

The data includes 22 provinces, 4 autonomous areas, and 4 direct-controlled municipalities

consisting of Beijing, Tianjin, Shanghai and Chongqing.26 We compile the data from the

China Statistical Yearbook, 2006-2010. As a proxy variable of individual income, we

employ per capita household consumption in each region, which is deflated by the GDP

deflator.27 Industrial and household SO2 emissions per land area are used as a proxy

variable representing environmental quality.28 Accessibility to health care service, where

we concentrate our attention on the physical accessibility, is measured by the number of

doctors per thousand population for each province.

Summary statistics are represented in Table 1. From Table 1, we can confirm rapid

growth in consumption. Except for the period from 2005 to 2006, the mean value of SO2
decreased. In addition, the number of doctors increased during the period. Since the

univariate GL is a necessary condition for uniform supermajorization, Table 1 shows that

pair-wise comparison for 2005 and 2006 is nonrankable.

Before investigating uniform supermajorization, we briefly show the result of the item-

by-item approach that implies the GL comparison of each attribute. Table 2 summarizes

the results. As easily expected, the pair-wise comparison of household consumption indi-

cates that recent situations are more preferable than those of earlier years except for 2007

and 2008. The distribution of environmental quality is improved after 2007. However, we

cannot say that the allocation of medical resources represented by the number of doctors

improved during the period. As a result, only three pairs, {2005, 2009}, {2007, 2009} and

{2008, 2009}, are candidates of uniform supermajorization.

Table 3 shows the optimal value of (P1) for each pair of years. From Table 3, we can

conclude that the distribution in 2009 uniformly supermajorizes the distributions of 2007

and 2008. Although the item-by-item approach implies that the distribution in 2009 is

preferable to that in 2005, the optimal value of (P1) is different from zero, which means

the 2009 distribution is not necessarily preferred to that of 2005.

As noted in the previous section, further investigation on the nonrankable distributions

provides useful information. For example, let us compare the two distributions 2006 and

2009. From Table 3, the optimal value of (P1) is 0.0499. If we look at optimal vector q in

detail, we can find q1062 = 9.975 ∗ 10−5, where q1062 corresponds to the number of doctors
26Tibet autonomous area is excluded from the sample due to lack of data.
27We also considered per capita GRP as the income variable, and the basic results are not affected.
28Since SO2 emission negatively affects the well-being of people, we define environmental quality in

province i as E − SO2emission, where E denotes the reference level of environmental quality, which is
assumed to be the same among both provinces and periods. Our analysis does not depend on the value of
E.
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in Guizhou province, located in the southwestern part of China.29 Based on this result,

we can conclude that if in 2009 the number of doctors in Guizhou province was larger by

132 than the actual data, the distribution in 2009 would dominate that in 2006 in the

sense of uniform supermajorization.30

7 Concluding Remarks

We have considered an extension of the GL criterion to the case of multivariate attributes.

Based on the uniform majorization by Kolm (1977) and Marshall and Olkin (1979), we

proposed a uniform supermajorization that allows for attributes with different means.

It can be verified that uniform supermajorization has a similar implication to uniform

majorization for welfare ordering. Furthermore, we show that this criterion will work under

comparison of distributions with unequal population sizes. We also provide a procedure

for empirical investigations which is in the standard form of linear programming problems.

The methodology proposed here has a clear welfare implication as well as GL. In

addition, the result obtained from the linear programming problem may provide useful

information to policy makers and researchers: the optimal value indicates the minimum

value for achieving welfare superior distribution compared with the base period. If the

appropriate shadow prices are available, the procedure reveals the cost for redistribution.

In the present paper, we do not provide procedures for statistical inference on uniform

supermajorization. In order to connect the theoretical analysis with the practical inves-

tigation, it will be important to check the statistical significance of the results. We leave

this for future research.

8 Appendix

8.1 Proof of Remark 3

First, vectorizing the inequality Y RT ≤ X, we obtain

Ǎr ≤ b̆, (A.1)

where

Ǎ ≡

⎡⎢⎣ In ⊗ Y
In ⊗ en
−In ⊗ en

⎤⎥⎦ , b̆ ≡
⎡⎢⎣ vecXeTn
−eTn

⎤⎥⎦ ,
29 In the optimal vector of (P1), qi for i = 1, ..., r2, represents the elements of the compressed doubly

stochastic matrix, and qj for j = r2 + 1, ..., r2 +mr represnts the slack variables in (6).
30The population of Guizhou province in 2009 is 39780 (thousands) which is 2.89% of the whole popu-

lation in the country. If the number of doctors per thousand population were increased by q1062/2.89, the
distribution of 2009 would be preferable to that of 2006 in the sense of unform supermajorization. Thus,
we obtain the number of doctors to be increased in Guizhou province as (q1062/2.89)%× 39780 ≈ 132.
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and r = vecR. Thus, if there exists R ∈ ΨRn such as Y RT ≤ X then Ǎr ≤ b̆ has non-
negative solution r∗. Now, suppose that (A.1) does not have nonnegative solution, which

is equivalent to Y RT £ X for all R ∈ ΨRn . From Lemma 2 stated in Section 3.4, it can be

verified that

vǍ ≥ 0, (A.2)

and

vb̆ < 0, (A.3)

have a nonnegative solution v∗ ∈ Rn(m+2)+ . We decompose v∗ into the sub-vectors as

v∗ = [v∗1, ...,v
∗
n, č

∗, ĉ∗] where v∗i ∈ Rm+ for i = 1, ..., n and č∗, ĉ∗ ∈ Rn+. From (A.2), we

obtain v∗i yj + c
∗
i ≥ 0 for i, j = 1, ..., n, where c∗i ≡ č∗i − ĉ∗i . It can be easily verified that

nX
i=1

min
1≤k≤n

(v∗i yk) +
nX
i=1

c∗i ≥ 0. (A.4)

On the other hand, (A.3) can be written as
Pn
i=1 v

∗
i xi +

Pn
i=1 c

∗
i < 0. This implies

nX
i=1

min
1≤k≤n

(v∗i xk) +
nX
i=1

c∗i < 0. (A.5)

Together (A.4) with (A.5), we have
Pn
i=1min1≤k≤n (v

∗
i yk) >

Pn
i=1min1≤k≤n (v

∗
i xk).

Thus, there exists at least one index i∗ such that

min
1≤k≤n

(v∗i∗yk) > min
1≤k≤n

(v∗i∗xk) ,

holds. This implies that v∗i∗X ⊀w v∗i∗Y because (v∗i∗yk)
↑
1 > (v∗i∗xk)

↑
1. Therefore, if

vX ≺w vY holds for all v ∈ Rm+ then Y RT ≤ X holds for some R ∈ ΨRn . ¥
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Table 1 Descriptive statistics 

  2005 2006 2007 2008 2009 

Per capita household consumption (in ten thousands 2005 RMB) 

 Mean 0.560  0.610  0.657  0.705  0.778  
 Std. Dev. 0.263  0.289  0.310  0.324  0.351  
 Min 0.330  0.354  0.382  0.366  0.421  
 Max 1.840  1.997  2.146  2.253  2.450  
SO2 emissions per provincial area (t / km2 ) a) 
 Mean 7.277  7.287  6.958  6.473  6.082  
 Std. Dev. 7.654  7.589  7.450  6.763  5.906  
 Min 0.173  0.181  0.187  0.188  0.189  
 Max 62.265  61.658  60.422  54.145  45.989  
Number of doctors per thousand population b)  
 Mean 1.510  1.545  1.550  1.592  1.770  
 Std. Dev. 0.376  0.380  0.382  0.388  0.413  
 Min 1.080  1.095  1.007  1.024  1.092  
 Max 3.293  3.339  3.385  3.484  3.581  
Total population (in ten thousands) 
  128046 128850 129635 130540 131371 
GDP deflator (2005=100) 
  100.000  103.807  111.735  120.410  119.669 c) 
Number of provinces and municipalities 
  30 30 30 30 30 
Source: National Bureau of Statistics of China, China Statistical Yearbook. 
Notes: a). Based on the total amount of sulphur dioxide emissions by industry and consumption. 

b). Based on the total number of licensed doctor including assistant doctor. 
c). Estimated value by IMF, The World Economic Outlook. 

 

 

 

Table 2  Univariate GL dominance 

  Given Year: x 

  2005 2006 2007 2008 2009 

2005 - C, D C, E C, E C, E, D 
2006 none - C, E C, E C, E 
2007 none none - E, D C, E, D 
2008 none none none - C, E, D 

Base year: 
y 

2009 none none none none - 
Notes: C=household consumption, E= SO2 emission, D=number of doctors. In each cell, J (=C, E, D) indicates 

variable J in the base year is GL dominated by that in the given year. 
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Table 3  Optimal value of the linear programming model (P1)a) 

  Given Year: X 

  2005 2006 2007 2008 2009 

2005 - 4.905E+00 1.349E+00 1.020E+00 8.854E-03 
2006 7.858E+01 - 3.471E+00 1.208E+00 4.987E-02 
2007 2.304E+02 1.944E+02 - 6.595E-01 4.930E-11 
2008 5.161E+02 4.792E+02 2.875E+02 - 3.622E-13 

Base year: 
Y 

2009 8.364E+02 7.984E+02 6.081E+02 3.209E+02 - 
Notes: a). wL=500. Calculations have been implemented by the ‘linprog’ function of MATLAB. TolFun, which 
is a lower bound on the change in the value of the objective function during a step, is set aｔ 10E-8.   

 

 

 

 


