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0. Introduction  
 

In this study, we have tried to answer the question, what types of nonlinearities 

yield chaotic oscillations? In particular, we are concerned with the general mechanism 

responsible for chaotic dynamics, which is typical of high-dimensional systems in ,nR  

.2n  So far, little attention has been paid to such a general mechanism. In the present 

paper, we define the notion of cyclic composite that consists of interdependent relations 

between different variables. By using the cyclic composite, we can often reduce high-

dimensional systems to one-dimensional systems. By reducing the number of dimensions 

and employing the perturbation method introduced by Marotto (1979), we prove a general 

result on the existence of chaos in high-dimensional systems. By demonstrating the 

application of the result to some examples, we clarify that the nonlinearity of cyclic 

composites is an important source of chaotic oscillations in high-dimensional systems. In 

particular, we demonstrate the application of the result to an interdependent consumer 

model and detect chaos. 

This paper is organized as follows. In Section 1, some notions and a mathematical 

result on chaos are given. Moreover, we state a general sufficient condition for the 

existence of a snap-back repeller. In Section 2, we demonstrate the application of the 

results obtained by us to the interdependent consumer model. In Section 3, conclusions 

are given. In Appendix, the proofs of several results obtained in this paper are given. 

 

1. Preliminaries and the Main Result 
 

In this section, we assume that all the functions dealt with in this study are of class 

.1C  Marotto (1978, 2005) was the first to prove that topological chaos is associated with 

the existence of a snap-back repeller. We explain it briefly. A fixed point c  for 
mm RRF :  is called a snap-back repeller if all the eigenvalues of )(cJF  have 

absolute values larger than 1, and there exists a point cz 0  in )(cW U
loc  (the local 

unstable set of c ) and some positive integer N  such that czF N )( 0  and 

0)(det kzJF  for },,1{ Nk  , where )( 0zfz k
k   and )(uJf  denotes the 

Jacobian matrix of a map f  evaluated at .u  Marotto (1978) proved that if a fixed point 

c  for mm RRF :  is a snap-back repeller, then )(1 nn xFx   shows topological 

chaos such that the following conditions are true. 
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(C.1)  There exists a positive integer 0p  such that for each 0pp  , F  has a  

point of period p . 

   (C.2)  There exists an uncountable set mRS   containing no periodic points of  

F  such that 
(C.2.1)  SSF )( ; 

(C.2.2)  for every Szy ,  with zy  , 

0)()(suplim  zFyF kk
k ; and 

(C.2.3)  for every Sy  and any periodic point z  of F , 

0)()(suplim  zFyF kk
k . 

(C.3)  There exists an uncountable subset SS 0  such that for every 0, Szy  , 

0)()(inflim  zFyF kk
k . 

 

The perturbation method of Marotto (1979) is often useful for the detection of snap-

back repellers. Marotto (1979) has listed some applications of the perturbation method to 

biological models. Dohtani et al. (1996) have discussed the application of the method to 

an economic model. By using the perturbation method, we herein derive a general result 

on the existence of a snap-back repeller, which states that the composites of nonlinear 

relations between different variables are sources of chaotic dynamics.  

First, we define the notion of cyclic composites. Consider a parameterized s -

dimensional discrete-time system:  
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where .kR  We here suppose that the set   contains a parameter #  that 

satisfies  
 

,),,,,,()(),,,,,()( #
21232

#
21121   ss xxxfxxxxfx   

).,,,,()(,),,,,()( #
211

#
2111  sssssss xxxfxxxxfx     

 

Then, we define a cyclic auxiliary system as follows: 
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(1.2)       




























).(

,)(

),(

,)(

,11,

,11,1

,321,2

,211,1

nsns

nssns

nn

nn

xx

xx

xx

xx







  

 
We define .21 s   For simplicity, we introduce the following notion. 

 
Definition 1. The map   is said to be a cyclic composite.■ 

 

For the original system given by (1.1), we have the following result that shows that the 

nonlinearities of cyclic composites may be a source of chaotic dynamics. 

 
Theorem 1. Suppose that the cyclic composite   possesses a snap-back repeller r . 

Then ))(),(,),(),(,(),,( 1321 rrrrrppp ssssss     is a 

snap-back repeller of the cyclic auxiliary system given by (1.2). Hence, there exists an 

open neighborhood )( #U  of #  and a continuous function sRU  )(: #  

such that )(  is a snap-back repeller of the original system given by (1.1) for any 

  )( #U  and p)( #  holds.■ 

 

Proof. See Appendix.■ 

 

We have used the perturbation method in Theorem 1. The theorem states that if the cyclic 

auxiliary system has a snap-back repeller, any system that is sufficiently close to the 

cyclic auxiliary system (i.e., any system slightly perturbed with respect to the cyclic 

auxiliary system) has a snap-back repeller, too. The reason for this is that snap-back 

repellers are robust under small perturbations. We provide two numerical examples to 

illustrate the application of Theorem 1. 

 

Example 1: First, we provide a simple numerical example. Consider the following two-

dimensional systems: 
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The well-known Hénon map is of the type shown in )1.3.1( . In fact, the f -function of 

the Hénon map is given by .2)( 2  xxf  Thus, the nonlinearity of the “diagonal” 

element is responsible for the chaotic dynamics of the Hénon map. The chaos detection 

method that involves focusing on the diagonal elements has often been utilized in 

economics. Dohtani et al. (1996) have demonstrated the use of this method. On the other 

hand, an example where Theorem 1 holds is given by (1.3.2). Theorem 1 shows that for 
suitable forms of the g -function, )2.3.1(  also gives rise to chaos. Unlike the Hénon 

map, chaotic dynamics such as those of systems given by (1.3.2) are a result of the 

nonlinearity of the “off-diagonal” element.■ 

 

In Example 1, we considered a case in which all the variables are separable. Theorem 1 is 

applicable to non-separable cases, too. It is useful to briefly illustrate the application of 

Theorem 1 to such a case.  

 

Example 2: Consider the following two-dimensional system: 
 

(1.4)       











,

,
32

1

1

nnnn

nnnnn

hyexdxy

cyybxaxx
 

 
where }.0,0,0,0,0,0{),,,,,( 6   hedcbaRhedcba  

Before considering this system, we consider the following cyclic auxiliary system: 
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Then, the cyclic composite is given by 
 
              .)()( 22

211 nnnnn euccduuuu     
 

Since the fixed point of   is given by ,/)1( 2eccdr   we have .2)(' cdr   we 

set 1c  and .8.3 ed  Then, ).1(8.3)(1 nnnn uuuu    From the result of 

Marotto (1978)1, it follows that the fixed point r  is a snap-back repeller for this specific 

one-dimensional system. Then, it follows from Theorem 1 that there exists an open 

neighborhood )( #U  of )0,8.3,8.3,1,0,0(#   in 6R  such that for any 
6#)(  RU  , the original system given by )4.1(  yields a snap-back repeller and, 

                        
1 Marotto (1978, EXAMPLE 4.1) numerically proved that if 68.3a , the fixed point given by 

)/1(1 ar   is a snap-back repeller of )1(1 nnn uauu  . 
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therefore, topological chaos. That is, if hba and,,  are sufficiently small positive real 

numbers, c  is close to 1, and ed and  are close to 3.8, then the system given by (1.4) 

has topological chaos. We confirm this by performing a numerical simulation. We set 

).07.0,82.3,77.3,01.1,08.0,06.0(~    Part (1) of Figure 1 shows a chaotic 

attractor of the system given by (1.4). Since topological chaos is not always observable, 

computer simulations are necessary to make sure the observability of chaotic dynamics. 

Moreover, Part (2) of Figure 1 shows that the Lyapunov number of the path shown in Part 

(1) is larger than 1.■ 
 

Figure 1 about here. 
 
 

2. Application 
 

In this section, we apply the result obtained in Section 1 to the interdependent 

consumer model constructed by Gaertner and Jungeilges (1988, 1993). We consider three 

consumers. The utility functions of the consumers are of the Cobb-Douglas type:  
 

,),( 1
11111

rr yxyxu   ,),( 1
22222

ss yxyxu   ,),( 1
33333

tt yxyxu    
 
where kx })3,2,1{( k  is the consumption of goods x  by person k  and ky  

})3,2,1{( k  is the consumption of goods y  by person k ; further, .1,,0  tsr  

The budget constraint of person k  (i.e., })3,2,1{,  kypxpI kykxk  yields the 

subsequent demand functions at time :n   
 

,/1,1 xn prIx   ,/)1( 1,1 yn pIry   ,/2,2 xn psIx   

,/)1( 2,2 yn pIsy   ,/3,3 xn ptIx   yn pIty /)1( 3,3  .  
 

We assume a situation in which each individual’s elasticity of preference depends on 

his/her own consumption and the consumption of the other persons in the immediate past: 
 

),,,,,( ,3,2,1,3,2,11 nnnnnnrn yyyxxxr  , 

),,,,,( ,3,2,1,3,2,11 nnnnnnsn yyyxxxs  , 

),,,,,( ,3,2,1,3,2,11 nnnnnntn yyyxxxt  . 
 

If the above dependence is nonlinear, then chaotic sequences of consumption can emerge. 

For example, to illustrate this fact, we consider a case in which the dependence is given 

by the following relations: 
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nnnnnnn yxyxyxr ,3,313,2,212,1,1111   , 

nnnnnnn yxyxyxs ,3,323,2,222,1,1211   , 

       nnnnnnn yxyxyxt ,3,333,2,232,1,1311   , 
 
where })3,2,1{,( jkkj  is a parameter showing the influence of person j ’s 

consumption pattern on person k ’s consumption pattern. This type of nonlinear 

experience-dependent function was introduced by Gaertner and Jungeilges (1988). It 

generalizes the experience-dependent function originally introduced by Benhabib and 

Day (1981). Here, we assume 0kj  }).3,2,1{,( jk  Then, a simple calculation 

yields the three-dimensional discrete-time interdependent consumer model given by the 

following relations: 
 

(2.1)       
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I
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  9
333231232221131211 ),0[),,,,,,,,( . 

 
We define }).3,2,1{,()1()(  jivvvg jjijjij   It is well known that the one-

dimensional map )1(1 nnn uauu   shows chaotic dynamics (Example 2). Therefore, 

the nonlinearity of the map })3,2,1{( jg jj  can be a direct source of chaos in the 

system given by (2.1). Such an expectation is essentially based on the remarkable findings 

of Benhabib and Day (1981), which show that consumer behavior is chaotic when the 

preference of a consumer depends on his/her own past consumption decisions. However, 

in this paper, we consider the cyclic composites of the nonlinear interdependent consumer 

decisions of different persons. Especially, we focus on the cyclic composites 

312312 ggg  . In this section, we demonstrate that the cyclic composites can be sources 

of chaos in the interdependent consumer model. By using Theorem 1, we now obtain 

several results for the system given by (2.1). 

 

Result 1. Let ).0,0,9.3,1.3,0,0,0,6.3,0(#   There is an open neighborhood 

)( #U  of #  in 9R  such that for any   )( #U , the interdependent consumer 

model given by (2.1) possesses a snap-back repeller.■ 
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Proof. See Appendix.■ 

 

Result 1 shows that for any   )( #U , the consumer model (2.1) has topological 

chaos.  Now, we  set  )06.0,07.0,8.3,12.3,06.0,1.0,1.0,58.3,08.0(~   

.)( #  U  Part (1) of Figure 2 describes a chaotic attractor in the case where .~   

Moreover, Part (2) of Figure 2 shows that the Lyapunov number of the path shown in Part 

(1) is larger than 1.  
 

Figure 2 about here. 
 
 

3. Conclusions and Final Remark 
 

We defined the notion of cyclic composites of interdependent relations between 

different variables and considered high-dimensional systems in which a cyclic composite 

can be constituted for specific parameters. By using the cyclic composite, a high-

dimensional system with specific parameters is reduced to a one-dimensional system. By 

reducing the number of dimensions and employing the perturbation method introduced by 

Marotto (1979), we proved a general result on the existence of chaos in the original high-

dimensional system. By the application of the result to some examples, we showed that 

the cyclic composites of different variables are sources of chaotic dynamics in high-

dimensional economic systems. In particular, we applied the results to an interdependent 

consumer model in which each individual’s consumption pattern depended not only on 

his/her own past consumption decisions but also on the consumption decisions of other 

persons; moreover, we showed that the cyclic composites of the nonlinear interdependent 

relations between different persons can be sources of chaotic consumption patterns. We 

expect that by paying attention to the cyclic composites, new insights into chaotic 

dynamics are obtained.  

 

4. Appendix 
 

   In the appendix, we prove Theorem 1 and Result 1. For simplicity, we denote 

)( pW S
loc  as S

locW  and )( pW U
loc  as .U

locW  
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Proof of Theorem 1. Without loss of generality, we may assume .3s  We define   
)).(),(,),((),,,( 112111 xxxxxx sssss      

 
For simplicity, we define .11 kjjkjj     Then, we have 
 
(4.1)       ))(,),(),(,()( 32 rrrrp sss   .))(,),(),(( 2 prrr ss     
 
This implies that p  is a fixed point of the system given by (1.2). The characteristic 

equation of the Jacobian matrix of   evaluated at p  is given by 
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Since ,1 s   the eigenvalues satisfy the following relation: 
 

)('))((')),((')(')(')(' 322113221 rrrppp ssss
s     

                             ./)(/)(1 durddurd s     
 
Since r  is a snap-back repeller for  , we have ,1  and there exists an integer 

0N  and 1
1 Ra   such that  

 
(4.2)        ),(1 rWa U
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where )(rW U

loc  is the unstable set of   for .r  Here, 1a  can be arbitrarily chosen to 

be close to .r  Therefore, without loss of generality, we may assume that 
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We define the orbit }.,1,0:),,(),,({ 11   nbbaaO snns

n  Now, let us prove 

that O  is a homoclinic orbit of the system given by (1.2) for p  (i.e., for some ,M  

).),,( 1 pbb sMM   Since raa N
N  )( 11  , the equations given by (4.1) and (4.4) 

show that 
 
(4.5)         .))(,),(,())(,),(,( 11211121 paaaaaa NsNsNss

sN      
 
Then, it follows from (4.3) that O  is a homoclinic orbit of the system given by (1.2). 
Next, we prove that p  is a snap-back repeller. Since ,1 s   we see from (4.2) that 
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Here, note that .101 aa   Thus, we can conclude that for any },1,,0{  Nn   
 
(4.6)        ,,0))((' 121  ns a .0)(' 1 ns a   
 
On the other hand, since r  is a snap-back repeller for  , we see that 

)('0 r ).('))((' 21 rr ss    Since  ,)()( 11 rraa kkN
kN  

   for any 

,0k  
 
(4.7)        ,,0))(('))((' 21121   ra skNs  .0)(')(' 1  ra skNs   
 
Consequently, by combining (4.6) with (4.7), we can obtain the following expression for 

any nonnegative integer :n  
 
(4.8)        ,,0))((' 121  ns a .0)(' 1 ns a  
 
On the other hand, we have 
 
            ),,,(det 21 kssnksnksn bbbJ    

































000)('

)('000

0)('00

00)('0

det

1

1

32

21











ksns

kssns

ksn

ksn

b

b

b

b







        

).(')(')(')(')1( 113221
1

ksnskssnsksnksn
s bbbb 
    

 
From (4.4) and (4.8), it follows that 0),,,(det 21  kssnksnksn bbbJ   for any 

}1,,1,0{  sk   and }.,1,0{ n  That is,  
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(4.9)          0),,,(det 21 sjjj bbbJ   for any },0{ j . 
 
As proved above, we have 1 . Therefore, from (4.3), (4.5), and (4.9), we conclude 

that the fixed point p  is a snap-back repeller. This proves the first half of Theorem 1. 

The latter half follows directly from the fact that any snap-back repeller persists under 

small perturbations. ■ 

 

Proof of Result 1: It is sufficient to prove that the cyclic auxiliary system with #   

satisfies all the conditions of Theorem 1. The cyclic auxiliary system is given by the 

following relations: 
 

(4.10)       

).()1(9.3

),()1(1.3

),()1(6.3

,131,1,11,3

,323,3,31,2

,212,2,21,1

nnnn

nnnn

nnnn

vgvvv

vgvvv

vgvvv



















 

 
Consider the following cyclic composite system: 
 
(4.11)   )()( 3123121 nnn uggguu    

)}1(9.31){1(9.31.36.3 nnnn uuuu   

)}].1(9.31){1(9.31.31[ nnnn uuuu   
 
Numerical calculation yields the following: 77881.0)77881.0(   and 

.77882.0)77882.0(   Therefore, the system given by (4.11) has a fixed point that exists 

in )77882.0,77881.0( . We denote the fixed point by .r  By numerical calculation, we 

see that 1/)( duud  for any ),77882.0,77881.0(u  so that 
 

(4.12)         1/)( durd . 
 

Theorem 1 shows that ,p  given by )),(),(,( 313123 rgrggr   is a fixed point of the 

system given by (4.10). We define ).764.0,763.0(I  Then, by numerical calculation, 

we obtain ).(3 Ir   This implies that there exists Iz  such that 
 

(4.13)         rz )(3 . 
 
Here, we denote a set of critical values by H . Then, 0/)( duud  for any .Hu  

By numerical calculation, we obtain ,)(3
0    IH k

k  so that 
 

(4.14)        0/))(( duzd k  for any }.2,1,0{k  
 
We define )8.0,73.0(J }{zI   and .

J
   Then, by numerical calculation, we 
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obtain that 1.1/)( duud  for any Ju  and .)(1 JJ   Thus, we see that 

.)( rzlim n
n 

   Therefore, for a sufficiently large positive ,N  we have 

).()( rWz u
loc

N   By combining this result with (4.12) to (4.14), we see that r  is a 

snap-back repeller of the cyclic composite  . Thus, Result 1 has been proved.■ 
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Captions of Figures 
 

Caption of Figure 1: (1)-Chaotic path of the system given by (1.4) where .~    

(2)- Lyapunov number of the chaotic path of Figure 1.1. 

 

Caption of Figure 2: (1)-Chaotic path of the interdependent consumer model given by 

(2.1) where .~   (2)-Lyapunov number of the chaotic path of 

Figure 2.1. 

 



 

(1) 
 

 

 
(2) 

 

Figure 1 



 

(1)  

 

 

 

(2) 
 

Figure 2 


	1.1
	1.2
	1.3
	1.4

