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0. Introduction

In this study, we have tried to answer the question, what types of nonlinearities
yield chaotic oscillations? In particular, we are concerned with the general mechanism
responsible for chaotic dynamics, which is typical of high-dimensional systems in R",
n>2. So far, little attention has been paid to such a general mechanism. In the present
paper, we define the notion of cyclic composite that consists of interdependent relations
between different variables. By using the cyclic composite, we can often reduce high-
dimensional systems to one-dimensional systems. By reducing the number of dimensions
and employing the perturbation method introduced by Marotto (1979), we prove a general
result on the existence of chaos in high-dimensional systems. By demonstrating the
application of the result to some examples, we clarify that the nonlinearity of cyclic
composites is an important source of chaotic oscillations in high-dimensional systems. In
particular, we demonstrate the application of the result to an interdependent consumer
model and detect chaos.

This paper is organized as follows. In Section 1, some notions and a mathematical
result on chaos are given. Moreover, we state a general sufficient condition for the
existence of a snap-back repeller. In Section 2, we demonstrate the application of the
results obtained by us to the interdependent consumer model. In Section 3, conclusions
are given. In Appendix, the proofs of several results obtained in this paper are given.

1. Preliminaries and the Main Result

In this section, we assume that all the functions dealt with in this study are of class
cl. Marotto (1978, 2005) was the first to prove that topological chaos is associated with
the existence of a snap-back repeller. We explain it briefly. A fixed point ¢ for
F:R™ > R™ is called a snap-back repeller if all the eigenvalues of JF(c) have
absolute values larger than 1, and there exists a point zy #c in W,t’c(c) (the local
unstable set of c ) and some positive integer N such that FN(zo)zc and
detJF(z ) =0 for ke{l---,N}, where z,=f¥(zy) and Jf(u) denotes the
Jacobian matrix of amap f evaluated at u. Marotto (1978) proved that if a fixed point
¢ for F:R™ > R™ is a snap-back repeller, then x,,; = F(x,) shows topological
chaos such that the following conditions are true.



(C.1) There exists a positive integer py such that foreach p>p,, F hasa
point of period p.

(C.2) There exists an uncountable set S = R™ containing no periodic points of
F such that

(C21) F(S)cS;
(C.2.2) forevery y,zeS with y=z,
Iimsupk_m‘Fk(y) - Fk(z)‘ >0: and
(C.2.3) forevery yeS andany periodic point z of F,
Iimsupk_)oo‘Fk(y) —FX (z)‘ >0.
(C.3) There exists an uncountable subset Sy < S such that for every y,ze S,
Iiminfk_,w‘Fk(y)— Fk(z)‘ -0,

The perturbation method of Marotto (1979) is often useful for the detection of snap-
back repellers. Marotto (1979) has listed some applications of the perturbation method to
biological models. Dohtani et al. (1996) have discussed the application of the method to
an economic model. By using the perturbation method, we herein derive a general result
on the existence of a snap-back repeller, which states that the composites of nonlinear
relations between different variables are sources of chaotic dynamics.

First, we define the notion of cyclic composites. Consider a parameterized s -
dimensional discrete-time system:

Xnel = fl(Xl,n'X2,n7""xs,n|5)l
Xontl = f2(xl,n’X2,nv""Xs,n’5)a

Xsnel = 1:s(xl,n’)(Z,n""’xs,n"c;),

(1.1)

where &e.QcRX. We here suppose that the set (2 contains a parameter & that
satisfies

P (Xp) = fl(xl’XZ""’Xs’g#)a P2(X3) = fz(Xl’Xz"“’Xs,S#)y """ ,

P51 (Xs) = Fo1(X, %o, Xs, €7), @s(%) = Fo(Xe, Xp, o, X, 67).

Then, we define a cyclic auxiliary system as follows:



X101 = @1(Xon ),
Xons1 = @2(X3n),
12) 1 e
Xs1n4l = (Ps—l(xs,n)v
Xsnil = Ps (Xl,n )-

We define ¢ =@y oy 0---0 5. For simplicity, we introduce the following notion.
Definition 1. The map ¢ is said to be a cyclic composite.ll

For the original system given by (1.1), we have the following result that shows that the
nonlinearities of cyclic composites may be a source of chaotic dynamics.

Theorem 1. Suppose that the cyclic composite ¢ possesses a snap-back repeller r.
Then  p=(py,---, Ps)=(r,@po--0p5(r), @30 0ps(r), -+, @5 1 0@ (), ps(r)) is a
snap-back repeller of the cyclic auxiliary system given by (1.2). Hence, there exists an
open neighborhood U (¢*) of &* and a continuous function 7:U(s*) @ — RS
such that z(g) is a snap-back repeller of the original system given by (1.1) for any

eeU(e)nQ and z(¢¥)=p holds. A
Proof. See Appendix.ll

We have used the perturbation method in Theorem 1. The theorem states that if the cyclic
auxiliary system has a snap-back repeller, any system that is sufficiently close to the
cyclic auxiliary system (i.e., any system slightly perturbed with respect to the cyclic
auxiliary system) has a snap-back repeller, too. The reason for this is that snap-back
repellers are robust under small perturbations. We provide two numerical examples to
illustrate the application of Theorem 1.

Example 1: First, we provide a simple numerical example. Consider the following two-
dimensional systems:

(1.3.1) { Xne1 = F(Xn) —ayn,
Yni1 = Xn >

(1.3.2) { Xns1 = bXy +9(Yn),
Yn+1 = Xn -



The well-known Hénon map is of the type shown in (1.3.1). In fact, the f -function of
the Hénon map is given by f(x):x2+2. Thus, the nonlinearity of the “diagonal”

element is responsible for the chaotic dynamics of the Hénon map. The chaos detection
method that involves focusing on the diagonal elements has often been utilized in
economics. Dohtani et al. (1996) have demonstrated the use of this method. On the other

hand, an example where Theorem 1 holds is given by (1.3.2). Theorem 1 shows that for
suitable forms of the g -function, (1.3.2) also gives rise to chaos. Unlike the Hénon

map, chaotic dynamics such as those of systems given by (1.3.2) are a result of the
nonlinearity of the *“off-diagonal” element. ll

In Example 1, we considered a case in which all the variables are separable. Theorem 1 is
applicable to non-separable cases, too. It is useful to briefly illustrate the application of
Theorem 1 to such a case.

Example 2: Consider the following two-dimensional system:

(1 4) { Xny1 = aXy _bxn Yn tCYn,

yn+1:dxn—exn2+hyn3,
where e=(a, b, ¢, d, e, h)eR®, ={a>0, b>0, ¢>0, d>0, e>0, h>0}

Before considering this system, we consider the following cyclic auxiliary system:

{ Xni1 = CYn = @1 (Yn),
Yn1 = dX, _exnz = 0o (Xn)-

Then, the cyclic composite is given by
Upst = @(U,) = @y 0 9, (U,,) = cdu,, —c2eu,?.

Since the fixed point of ¢ is given by r=(cd —1)/c2e, we have ¢'(r)=2-cd. we
set c=1 and d=e=3.8. Then, u,,; =¢(u,)=3.8u,(1-u,). From the result of
Marotto (1978)*, it follows that the fixed point r is a snap-back repeller for this specific
one-dimensional system. Then, it follows from Theorem 1 that there exists an open
neighborhood U (¢*) of £*=(0, 0, 1, 3.8, 38, 0) in R® such that for any
ceU(e")NRE, | the original system given by (1.4) yields a snap-back repeller and,

! Marotto (1978, EXAMPLE 4.1) numerically proved that if a > 3.68, the fixed point given by
r=1-(1/a) isasnap-back repeller of u,,; =au,(1-u,).



therefore, topological chaos. That is, if a, b, and h are sufficiently small positive real
numbers, ¢ isclosetol,and d and e are close to 3.8, then the system given by (1.4)
has topological chaos. We confirm this by performing a numerical simulation. We set
&=¢=(0.06, 0.08 1.01, 3.77, 3.82, 0.07). Part (1) of Figure 1 shows a chaotic
attractor of the system given by (1.4). Since topological chaos is not always observable,
computer simulations are necessary to make sure the observability of chaotic dynamics.
Moreover, Part (2) of Figure 1 shows that the Lyapunov number of the path shown in Part
(1) is larger than 1.1

Figure 1 about here.

2. Application

In this section, we apply the result obtained in Section 1 to the interdependent
consumer model constructed by Gaertner and Jungeilges (1988, 1993). We consider three
consumers. The utility functions of the consumers are of the Cobb-Douglas type:

Up (X, ¥1) = Xlr Y1l_r, Uy (X, Y2) = Xst21_S’ Us(X3, Y3) = X3t y31_t,

where x, (ke{l ,2, 3}) is the consumption of goods x by person k and vy,
(ke{l ,2, 3}) is the consumption of goods y by person k; further, 0 <r,s,t <1.
The budget constraint of person k (i.e., I = pyX +pyYx, kefl, 2, 3}) yieldsthe

subsequent demand functions at time n:

Xpn =Tl pyy Yan=@=1)11/py, Xon=5lo/py,
y2,n :(l_S)IZ/ py' X3ln :“3/ px, y3ln =(1—t)|3/ py

We assume a situation in which each individual’s elasticity of preference depends on
his/her own consumption and the consumption of the other persons in the immediate past:

Ma = er (Xl,n 1 X201 X3n Yin Yono y3,n) )
Sn1 = ‘95 (Xl,n 1 Xon1X3n Yin Yono y3,n) )
tn+1 = ‘9t (Xl,n ' X2,n ) X3,n ' yl,n ’ y2,n’ y3,n) .

If the above dependence is nonlinear, then chaotic sequences of consumption can emerge.
For example, to illustrate this fact, we consider a case in which the dependence is given
by the following relations:



M1 = 11X nYin + @12X nYo,n T @13X3n Y3 n s
Sl = X1 X nY1in + A20Xp nYo,n T @23X3 0 Y30

thi1 = 31X nY1n + X32X0 0 Y20 + X33%3.n Y30

where «; (k,jefl, 2, 3}) is a parameter showing the influence of person j’s

consumption pattern on person k °s consumption pattern. This type of nonlinear
experience-dependent function was introduced by Gaertner and Jungeilges (1988). It
generalizes the experience-dependent function originally introduced by Benhabib and
Day (1981). Here, we assume ;=20 (k,jeq{l, 2, 3}). Then, a simple calculation

yields the three-dimensional discrete-time interdependent consumer model given by the
following relations:

Vint1 = 13V, n =V ) + m1V0 n (L= Vo ) + 13V3 n (1= V3 ),
(2.1) Vo i1 = 21V n (L= Vy ) + Vo n (L= Vo ) + 23V3 n (1= V3 ),
V3 ni1 = 3Ven (L= Vi 0) + 732V0 n (L= Vo ) + 7233V n (L= V3 ),

where

2
PxXin PxX2n PxX3n ajklk
(Vins V2,0, V3n) = ( , ) ), T =

I 5 I3 Px Py

(hke{l, 2, 3}),

9
(711, 12, 135 215 o2, o3, 31, W3, a3) = € €[0,0)” = 2.

We define g;(vj)=m;viA-v;) (,je{l, 2, 3}). It is well known that the one-
dimensional map u,,; =au,(l—u,) shows chaotic dynamics (Example 2). Therefore,
the nonlinearity of the map g;; (je{lL 2, 3}) can be a direct source of chaos in the

system given by (2.1). Such an expectation is essentially based on the remarkable findings
of Benhabib and Day (1981), which show that consumer behavior is chaotic when the
preference of a consumer depends on his/her own past consumption decisions. However,
in this paper, we consider the cyclic composites of the nonlinear interdependent consumer
decisions of different persons. Especially, we focus on the cyclic composites
012 © O3 © U31 - In this section, we demonstrate that the cyclic composites can be sources
of chaos in the interdependent consumer model. By using Theorem 1, we now obtain
several results for the system given by (2.1).

Result 1. Let ¢*=(0, 3.6, 0, 0, 0, 3.1, 3.9, 0, 0). There isan open neighborhood
U(e¥) of ¢* in R® such that for any £eU (%) 2, the interdependent consumer
model given by (2.1) possesses a snap-back repeller.l



Proof. See Appendix.l

Result 1 shows that for any &eU (")~ €2, the consumer model (2.1) has topological
chaos. Now, we set & =(0.08 358, 0.1, 0.1, 0.06, 3.12, 3.8, 0.07, 0.06)
eU (") n Q. Part (1) of Figure 2 describes a chaotic attractor in the case where & =z.
Moreover, Part (2) of Figure 2 shows that the Lyapunov number of the path shown in Part
(1) is larger than 1.

Figure 2 about here.

3. Conclusions and Final Remark

We defined the notion of cyclic composites of interdependent relations between
different variables and considered high-dimensional systems in which a cyclic composite
can be constituted for specific parameters. By using the cyclic composite, a high-
dimensional system with specific parameters is reduced to a one-dimensional system. By
reducing the number of dimensions and employing the perturbation method introduced by
Marotto (1979), we proved a general result on the existence of chaos in the original high-
dimensional system. By the application of the result to some examples, we showed that
the cyclic composites of different variables are sources of chaotic dynamics in high-
dimensional economic systems. In particular, we applied the results to an interdependent
consumer model in which each individual’s consumption pattern depended not only on
his/her own past consumption decisions but also on the consumption decisions of other
persons; moreover, we showed that the cyclic composites of the nonlinear interdependent
relations between different persons can be sources of chaotic consumption patterns. We
expect that by paying attention to the cyclic composites, new insights into chaotic
dynamics are obtained.

4. Appendix

In the appendix, we prove Theorem 1 and Result 1. For simplicity, we denote
Wige(P) as Wigg and Wige(p) as Wige.



Proof of Theorem 1. Without loss of generality, we may assume s>3. We define
P (X, 5 Xso1, Xs) = (@1(X2), 5 051 (Xs ), 5 (X0))-
For simplicity, we define @; o @j,10-- o =@jj a...- Then, we have
(4.1) Y(p) =¥ (1o s(r)p3.5(r),-- 05(r)) = (@(r), @25 (r), -, 05 (r)) = p.

This implies that p is a fixed point of the system given by (1.2). The characteristic
equation of the Jacobian matrix of ¥ evaluated at p is given by

A -1 (P2) 0 0 ]

0 A —@'(p3) - 0

det(Al —J¥) =det : : : : :
0 0 0 o = 51'(Ps)
-~ s (p1) 0 0 A

=2 =o' (P2)@2" (P3) 05" (Py)-
Since ¢ =¢,...5, the eigenvalues satisfy the following relation:

A =l (P2)e2" (P3) -+ 05" (1) = |t (02...5 (1)), 02" (93...6 (1)~ (1)
—[dgy..s(r)/ du] = |dep(r) / dul.
Since r is a snap-back repeller for ¢, we have |4|>1, and there exists an integer
N >0 and a eR' suchthat
(4.2) 8 €Wioe (), @ (&) = py =, and do(p? (ay))/du =0,
forany je{0,---,N-1},
where W5, (r) is the unstable set of ¢ for r. Here, a, can be arbitrarily chosen to

be close to r. Therefore, without loss of generality, we may assume that

(4.3) (83,85,83,*,85_1,85) = (81, P2...5 (1), @35 (A1), 515 (1), 05 (1)) € Wi

We define a;, =¢"(a;) (ne{0,--}). Then, alozgoo(al):al. It can be checked
inductively that for any ne{0,---},

(4.4)  (bisnikr Pssnik) = Sk (-, a)

(A1n, @2...5 (@10 ), 3.5 (B1n )+ @515 (310 ), @5 (A1n)), if k=0,
(@141, @25 (@1n), 02,5 (1), 0515 (810 ), @5 (81)), if k=1,
(A1n41, 92...5(A1n ), @35 (@1n )+, @515 (B1n ), @5 (Qansa)), if k=2
(A1n+1, 92...5(A1n ), 025 (A1n ) @515 (Bansa), 0 (Bansa)),  iF k=3,

(Q1n12192..5(Q1n), @35 (Q1n11) 2 @515 (@an11), @5 (Agn41)), If k=s-1.




We define the orbit O ={%"(a;, +,as) = (by,,--+,bgy): N=0, 1,--F}. Now, let us prove
that O is a homoclinic orbit of the system given by (1.2) for p (i.e., for some M,
(b - b ) = p). Since agy :(pN(al): r, the equations given by (4.1) and (4.4)
show that

(4.5) g SN (2.5 (ag), - 05 (81)) = (Brn 2.5 (B ) s (Ban ) = P

Then, it follows from (4.3) that O is a homoclinic orbit of the system given by (1.2).

Next, we prove that p is a snap-back repeller. Since ¢ = ¢...;, we see from (4.2) that

02 dco (al) HN 1dco(c0 (al)) HN 1d€0(alj

) HN—ldgol((pg‘.‘s(alJ)) . d¢2(¢3~~-s(alj)) LA CTY)
1 1o du du du

Here, note that a; = a;9. Thus, we can conclude that forany ne{0,---,N -1},
(4.6) @1 (92..5(1n)) # 0+, 5" (8y5) # 0.
On the other hand, since r is a snap-back repeller for ¢ , we see that

0%¢'(r) =@ (@..5(r)-05'(r). Since  ay, =" (@) = (r)=r, for any
k>0,

(4.7) @1 (@25 (QNk)) = 01 (025 () £ 0,-++, 05" (Aqn k) = 95'(r) # 0.

Consequently, by combining (4.6) with (4.7), we can obtain the following expression for
any nonnegative integer n:

(4.8) @1 (9.5 (1)) #0,-++, 5" (ag,) # 0.

On the other hand, we have

det J ¥ (bysn ks Posnekr* Dssnk)

0 @' (bosn k) 0 0
0 0 92" (B3snsk) -+ 0
= det : : : : :
0 0 0 951" (bsgn k)
| #s" (Brsn ) 0 0 0 |

= (_1)S+l(/’1l (b2snk)P2" (B3sn k)~ Ps—1' (BOssnk )Ps " Orsn i )-

From (4.4) and (4.8), it follows that detJ¥ (Dign.k,Posniks < Bssnik) =0 for any
ke{0, 1---,s-1} and ne{0, 1,--}. Thatis,



(4.9 detJ ¥ (byj,byj,---,bsj) =0 forany je{0,--}.

As proved above, we have |1|>1. Therefore, from (4.3), (4.5), and (4.9), we conclude
that the fixed point p is a snap-back repeller. This proves the first half of Theorem 1.

The latter half follows directly from the fact that any snap-back repeller persists under
small perturbations. Il

Proof of Result 1: It is sufficient to prove that the cyclic auxiliary system with & = P

satisfies all the conditions of Theorem 1. The cyclic auxiliary system is given by the
following relations:

Vins1 = 3-6\/2,n(1_V2,n) =012 (V2,n)’
(4-10) Vone = 3-:l-V3,n(:|-_V3,n) = 923(V3,n)v
Vani1 =39V n(1=Vy ) = 931 (Vy )

Consider the following cyclic composite system:

(4.11) Uns1 =&(Up) =912 ° 923 ° 9s1(Uy)
=3.6x3.1x3.9u,(1-u,){L1-3.9u,(1-u,)}
x[1-3.1x3.9u, (1 -u ) {1-3.9u, (1—-up)}.

Numerical  calculation yields the following:  £(0.77881) >0.77881 and
£(0.77882) < 0.77882. Therefore, the system given by (4.11) has a fixed point that exists
in (0.77881, 0.77882). We denote the fixed point by r. By numerical calculation, we
see that |[d&(u)/du|>1 forany ue(0.77881, 0.77882), so that

(4.12) d&(r)/du > 1.

Theorem 1 shows that p, given by (r,g,3°093(r),g5.(r)), is a fixed point of the
system given by (4.10). We define 1 =(0.763, 0.764). Then, by numerical calculation,
we obtain r e &3(1). This implies that there exists z e | such that

(4.13) E)=r.
Here, we denote a set of critical values by H. Then, d&(u)/du=0 for any ueH.
By numerical calculation, we obtain H mUi:o gk(l) =¢, so that

(4.14) de(EX(2))/du=0 forany ke{0, 1, 2}

We define J =(0.73, 0.8) o1 u{z} and nz§|J. Then, by numerical calculation, we

10



obtain that dz(u)/du<-1.1 for any ueJ and 7 3(J)cJ. Thus, we see that
lim, .7 "(z)=r. Therefore, for a sufficiently large positive N, we have

N (z) eW,5.(r). By combining this result with (4.12) to (4.14), we see that r is a

snap-back repeller of the cyclic composite &. Thus, Result 1 has been proved. R
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Captions of Figures

Caption of Figure 1: (1)-Chaotic path of the system given by (1.4) where ¢==¢.
(2)- Lyapunov number of the chaotic path of Figure 1.1.

Caption of Figure 2: (1)-Chaotic path of the interdependent consumer model given by
(2.1) where & =¢2. (2)-Lyapunov number of the chaotic path of
Figure 2.1.
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