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ABSTRACT

   Iridoviruses are considered infectious pathogens that are responsible for causing

serious systemic diseases among aquatic animals in many parts of the world. In fish,

outbreaks of an iridoviral disease known as red seabream iridoviral disease (RSIVD)

have been recorded in at least 31 cultured marine fish species. The causative pathogen

was first isolated from diseased red seabream (Pagrus may'or) in Japan in 1992 and hence

named red seabream iridovirus (RSIV). Due to the devastating effects ofthis pathogen to

marine aquaculture, the pathogenic mechanism ofRSIV infection has been well-studied

at the organismal level. Some rapid, sensitive diagnostic methods as well as some kinds

of vaccines have also been developed for RSIV. RSIV gene regulation strategies that

occur in a common temporal kinetic manner of the family Jridoviridae with 3 stages

(Immediate-Early, Early and Late) have been well-defined in a cell culture system.

However, the molecular pathogenic mechanism or the spread ofRSIV in a fish model at

the molecular ievel is still not fully understood. The development of alternative antiviral

approaches based on advances in molecular technology may also need to be undertaken.

Such studies will be of enormous contribution to the thorough knowledge of RSIV

infection and control ofiridoviral diseases.

   Recent significant advances in molecular genetic technology, such as DNA

microarray and RNA interference (RNAi), have been successfu11y appiied in virological

studies. The DNA microarray technology has been considered as a powerful tool for the

parallel analysis of whole-genome expression levels in a single experiment, allowing a

better understaRding of viral gene regulation strategies and viral molecular pathogenic

mechanisms. While the RNAi technology, a process of sequence-specific gene silencing

triggered by small molecules ofdouble-stranded RNAs (siRNAs and miRNAs), has been

considered as a promising antiviral tool. The antiviral potency of RNAi can be evoked by

the introduction of viral gene-specific siRNAs or plasmid-based virus-encoded hairpin

RNA expression system into cells. In this study, therefore, we demonstrated the

molecular pathogenic mechanism of RSIV infection in a fish model using viral DNA

Xi



microarrays and the potential antiviral activity of RSIV-derived dsRNAs through the

introduction of viral gene-specific siRNAs and plasmid expressing virus-encoded pre-

miRNAs into a cell culture system.

   The transcriptional profile of RSIV was explored over the time-course of the virus

infection in infected spleen of red seabream using viral DNA microarrays containing

almost all RSIV putative open reading frames (ORFs). cDNAs derived from spleens at

different time points upto 14 days post-infection (d.p.i.) were labeled with cy5 and

hybridized with cDNAs derived from spleens at O d.p,i. that were labeled with cy3 onto

the DNA microarrays. In addition, differential gene expression patterns in spleens and

kidneys were also investigated throughout the virus infection by hybridization of cy5-

labled-cDNAs derived from spleens with cy3-labeled-cDNAs derived from kidneys.

Microarray data indicated that the pathogenesis of RSIV infection appears to spread at

around day 5 and continued with high Ievels of viral multiplication until viral clearance

by host antiviral defenses starting from around 10 d.p.i. A comparison of RSIV gene

expression patterns between spleens and kidneys showed that all viral genes were

expressed at higher levels or at similar levels in the spleens when compared with those in

the kidneys throughout the infection. The infectious viral concentration in infected

spleens, as measured by TCIDso assay, was also higher than that in infected kidneys. The

microarray data was further confirmed by RT-PCR assay. Our results provided a greater

understanding of the pathogenesis of RSIV infection and further confirmed, at the

molecular level, that the spleeR is a suitable organ for diagnosis ofRSIV infection.

   Major capsid protein (MCP) gene ofRSIV, a gene essential for the formation ofviral

particles, was selected as the target gene for study ofthe potential anti-RSIV option based

RNAi-related mechanisms. A siRNA specific to the MCP gene (siR-MCP) were

synthesized and introduced into HINAE cells in order to test for inhibitory effects on

virus replication. The inhibition of virus replication was demonstrated by reduced MCP

expression levels and reduced RSIV titers. siR-MCP dose-dependently inhibited the

expression of MCP gene in cells that were transiently transfected or stably transfected

with a plasmid expressing the target MCP gene (pCMV-MCP). Under RSIV infection,

siR-MCP reduced the expression of MCP gene by 55.20/o and 97.10/o at 84 and 96 hours
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post-infection, respectively. Transfection with siR-MCP reduced the production ofRSIV

particles in supernatants of samples infected with RSIV, while the corresponding

mismatched siR-MCP (MsiR-MCP) and nsRNA controls did not exhibit this effect.

These results show that MCP-targeted siRNA can effectively and specifically inhibit the

expression ofthe target gene and hinder RSIV replication during an in vitro infection.

   With the use ofplasmid-based pre-miRNA expression system (Block-iT'M Pol II miR

RNAi Expression Vector), we described another potential approach to trigger antiviral

RNAi, termed microRNAs (miRNAs). In this miRNA study, another marine fish-

pathogenic virus, HIRRV (Hirame rhabdovirus) also was an interesting candidate. By

incorporating sequences encoding miRNAs specific to MCP gene (miR-MCPs) and a

miRNA targeting to HIRRV (miR-HIRRV) into a murine miR-155 pre-miRNA backboRe,

we were able to intracellularly express miR-MCPs and miR-HIRRV in HINAE cells. The

anti-RSIV activity of miR-MCPs was initially assessed by measuring MCP gene

silencing by employing transient transfection of a plasmid expressing the target gene

(pCMV-MCP). We then investigated the inhibitory effect of the miR-MCPs on RSIV

replication following challenge with RSIV. The inhibitory effect of miR-HIRRV on

HIRRV replication was demonstrated by reduced expression of viral glycoprotein (G)

gene and reduced HIRRV titers in plasmid-transfected cells over the time-course of the

virus infection. Our results suggested that engineered viral-encoded miRNAs were able to

trigger the antiviral miRNA•-related pathways in fish cells. However, further analyses

revealed that the expression of pre-miRNAs also activated IFN-related pathways,

correlating with the up-regulation of antiviral IFN-induced Mx protein, resulting in non-

specific antiviral effects. The antiviral effects of engineered virus-encoded miRNAs

observed here were partly the result ofthe antiviral miRNA-related pathways and partly

the result of the antiviral IFN-related pathways. We propose that engineered virus-

encoded pre-miRNA can engage not only RNAi-related pathways but also IFN-related

pathways to induce potent antiviral responses in fish cells.

   Also in this study, some general discussions, suggestions and future perspectives

                                            'were included.
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GENERAL INTRODUCTION
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1.1 Overview

   Over the past three decades, aquaculture has become the fastest growing food-

producing sector all over the world. As the aquaculture industry has expanded, intensified

and diversified, numerous aquatic animal diseases have emerged and become widespread

as a result of global trade and modern transportation systems. Diseases caused by viruses,

bacteria, fungi, parasites and other undiagnosed pathogens have thus become a primary

constraint to the culture of many aquatic species, impeding both economic and social

development in many countries. Among these pathogens, viruses pose the most serious

threat to fish because they affect almost all phases of its developmental stages (Ellis,

2001).

   Viral infections that occur as sporadic events in wild fish populations may cause high

mortality in intensive aquaculture systems. Hence, for the aquaculture industry to prosper

and be sustainable, it is imperative that losses caused by viral diseases and the use of

antimicrobials are kept at the minimum. Unlike other pathogens, viruses are very small

pathogens that multiply only within the living cells, and must utilize the system of the

infected host cells for survival and replication, therefore, viral diseases cannot be

controlled with medication. Although innate immune system is the first line of defense

against disease, this system only provides adequate protection in conditions of low

infection pressures from pathogens, and indeed, dead fish release very large numbers of

pathogens into the water, increasing infection pressure, resulting in increased ri'sk for the

rest ofthe population in a farm (Ellis, 2001). Moreover, most pathogens have developed

mechanisms for avoiding these defenses. Many RNA and DNA viruses counteract the

host antiviral immune defenses through mutation of their genome, by encoding viral

suppressors, or both (Zheng et al., 2005). In these cases, antiviral immunity responses

need to be enhanced to combat viral infections. Despite significant advances made in

management of environment and control of viral diseases, current biochemiCal agents and

vaccines are limited by many factors, such as toxicity, complexity, cost and resistance

(Dave and Pomerantz, 2003). For instance, virus-inactivated vaccines show poor

induction of cell-mediated immunity, poor immunogenicity and the increased risk of

environmental exposure to viral products (Caipang et al., 2006). Moreover, though
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vaccination is used routinely to prevent viral diseases in humans and mammals, it is still

limited in fish because fish are cold-blooded animals, and their immune response to a

vaccine is not as predictable as that of warm-blooded animals. Thus, understanding the

molecular pathogenic mechanisms of viral infections in fish will be of enormous help in

the proper management and prevention of viral diseases. The development of alternative

potential approaches that are experimentally exploited based on relatively antiviral

pathways in fish to control viral infections will eventually lead aquaculture towards

sustainable production in the aquatic ecosystem. Recent potential advances in molecular

genetic technologies, such as DNA microarray and RNA interference (RNAi) could be

applied in these directions.

   The DNA microarray technology has been considered as a powerfu1 tool for the

parallel analysis of whole-genome expression levels in a single experiment and for the

comparative analysis of series of samples. The design and construction of a DNA

microarray for any given microbial genome are straightforward, facilitating our

understanding of various aspects of both sides of the host-pathogen interaction in

molecular detail (Cummings and Relman, 2000). While RNAi technology, a process of

gene sequence-specific silencing triggered by small molecules of double-stranded RNA

(dsRNAs), has been considered as a promising antiviral tool. RNAi-related mechanisms

can also be triggered by experimentally introduced synthesis dsRNAs into cells in various

ways allowing to target any gene with high specificity and efficiency based on homology

in sequences (Schutze, 2004; Sledz and Williams, 2005; van Rij and Andino, 2006;

Zheng et al., 2005).

1.2 Major infectious viral diseases in fish aquacu}ture

   Although about 60 different viruses have been detected in fish worldwide, only a few

cause severe diseases in aquaculture (dne, 1994). The causative agents Qf major viral

diseases in fish worldwide are briefly updated in Table 1. Among the diseases caused by

these viruses, epizootic haematopoietic necrosis, infectious haematopoietic necrosis,

spring viremia of carp, viral haemorrhagic septicemia, infectious salmon anaemia, red

seabream iridoviral disease, and koi herpesvirus disease are recently listed as "notified"

viral diseases by Office International des Epizooties (OIE) because they are considered to

3



Table 1. The causative agents of major viral diseases in fish

Viruses Distribution of d .

Iseases
                              Jridoviridae

Epizootic haematopoietic necrosis virus (EHNV)
Erythrocytic necrosis virus (ENV)

Lymphocystisvirus (LCV)

Red seabream iridovirus

White sturgeon iridovirus

Australia, Europe, North America

Worldwide
Worldwide
Japan, East and South-East Asian

Europe, North America

Anguilla herpesvirus

Carmel catfish virus (CCV)

Coho salmontumorvirus

Flounder herpesvirus

Herpesvirus salmonis

Koi herpesvirus (KHV)

Oncorhychus masou virus (OMV)

Herpesviridae

Japan

North America

Japan

Japan

USA
Worldwide
Japan

                            Rhabdoviridae
Anguilla rhabdovirus (EVA, EVX)

Hirame rhabdovirus

Infectious hematopoietic necrosis virus (IHNV)

Pike fry rhabdovirus

Spring viremia of carp virus (SVCV)

Ulcerative disease rhabdovirus

Viral hemorrhagic septicemia virus (VHSV)

Japan, Europe

Japan

Asia, USA, Europe

Europe

Europe

Burma, Sri Ianka, Thailand

Japan, USA, Europe

                             BirnaviTi
Infectious pancreatic necrosis virus (IPNV)

dae
Worldwide

                             No daviridae
Viral encephalopathy and retinopathy (VER) or
Viral nervous necrosis (VNN)

Worldwide

                           Orthomyxoviridae
Infectious salmon anaemia virus (ISAV) Norway, Canada, UK, USA

Reoviridae

Grass carp reovirus

Reovirus ofcommon carp
Reovirus of salmonids

China

China

Taiwan
Coronaviridae

Coronavirus of carp Japan
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1.3 Viral diseases ofmarine fish in Japan

   The intensification of aquaculture in both the number of species and the amount of

production without proper regulations for disease control is considered to be the major

factor for the failure of establishing a disease control system in Japan. The viruses

infecting marine fish and shellfish were comprehensively discussed by Muroga (2001)

(Muroga, 2001). Yellowtail ascites virus (YTAV) isolated from juvenile yellowtail in

1983 was reported as the first marine fish-pathogenic virus in marine aquaculture

(Sorimachi, 1985). Since then, several viral diseases have been recorded from marine

fish. There have been cases of rhabdoviral diseases that was caused by Hirame

rhabdovirus (HRV) (Kimura, 1986) or viral hemorrhagic septicemia (VHSV) (Isshiki,

2001; Takano, 2000), and red seabream iridoviral disease that was caused by red

seabream iridovirus (RSIV) (Inouye et al., 1992). Other viruses include fiounder

herpesvirus (FHV) which causes epidermal hyperplasia in Japanese flounder, tiger puffer

virus which causes "white mouth disease" in puffer fish (Wada, 1986), epithelial necrosis

virus identified in black seabream (Miyazaki, 1989), and viral nervous necrosis (VNN)

that was first identified in Japanese parrotfish (Yoshikoshi, 1990) and has since infected

several other marine fish (Nguyen, 1994). These viruses are considered to be important

pathogens in marine aquaculture in Japan.

   Concerning red seabream iridoviral disease (RSIVD), .it is reported as an acute and

highly infectious disease that causes a significant mortality in red seabream (Inouye et al.,

1992) and 30 other cultured marine fish spanning three taxonomic orders (Table 2)

(Kawakami and Nakajima, 2002). The first outbreak of RSIVD was recorded in cultured

red seabream in Shikoku Island in 1990 and the disease has since been documented in

cultured marine fish populations in 18 prefectures in the country. The disease was

severely apparent during the summer time when the water temperature is elevated around

250C. The pathological signs were lethargy, severe anemia, petechiae of gills, and

enlargement of spleen and kidney. The disease is characterized by the appearance of
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enlarged cells in the spleen, kidney, liver, heart, and gills that were stained strongly with

Giemsa solution. The causative agent was identified and narned red seabream iridovirus

(RSIV) (Inouye et al., 1992). Iridovirus-like agents of the family Jridoviridae are

observed in both invertebrates and vertebrates (Hedrick, 1992), and most of them are

confirmed to be pathogens that are associated with systemic infection in fish (Wolf,

1988). Because of geographical range and occurrence in fish involved in international

trade, the RSIVD is notified to be quarantined by the OIE.

Table 2. Fish species susceptible to RSIV infection in Japan

Sea bass (Lateolabrax sp)

Red spotted grouper (Epinephelus akaara)

Sevenband grouper (E. Septemfasciatus)

Malabar grouper (E. malabaricus)

Kelp grouper (E. Moara)

Orange-spotted grouper (E. coioides)

Banded grouper (E. AwoaTa)

Cobia (RachycentTon canadum)

Yellowtail (Seriola guingueradiata)

Amberjack (S. dumeTili)

Goldstriped amberjack (S. aureoittata)

Stripedjack (Pseudocaranx dentex)

Buri-hira (Seriola sp.)

Horse mackerel (TrachurusJ'aponicus)

Percopormes (28 species)

         Snubnose dart (Trachinotus bloch                          ii)

Threeline grunt (Parapristi oma trilineatum)

Threeband sweetlips (Plectorhynchus cinclus)

Adjutant (Lethrinus haematopterus)

Spangled emperor (L. nebulosus)

Red seabream (Pagrus mojor)

Crimson seabream (Evynnisl'aponica)

Black seabream (Acanthopagrus schlegeli)

Japanese parrot fish (Oplegnathusfasciatus)

Spotted parrot fish (O. punctatus)

Largescale blackfish (Girellapunctata)

Albacore (Thunnus thynnus)

Japanese mackerel (Scomberomorus ni honius)

Chub mackerel (Scomberl'aponicus)

Japanese flounder (Paral

     Pleuroneetopormes (2 species)

ichthys olivaceus) Spotted halibut (Verasper variegates)

Tiger puffer (Takifugu rubrip

 Tetraodontiformes (1 species)

es)
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1.4 Red seabream iridovirus: characteristic, diagnosis and control

   RSIV is a large, icosahedral, double-stranded (ds)DNA virus, belonging to the family

lridoviridae. Each virion measures 200-240 um in diameter and consisted of a capsid,

intermediate lipid membrane and a central core (Inouye et al., 1992). RSIV is believed to

have a wide geographical distribution not only in Japan but also in other East and South-

East Asian countries (Jeong et al., 2003; Mahardika et al., 2004; Wang et al., 2003),

and shares high homology with iridovirus isolated in Taiwan (Wang et al., 2003), Korea

(Jeong et al., 2003) and in Indonesia (Mahardika et al., 2004). The high homology ofthe

RSIV ATPase and MCP genes with other iridovirus isolates, SBIV (Sea bass iridovirus),

GSDIV (Grouper sleepy disease virus), ALIV (African lampeye virus) and DGIV (Dwarf

gourami iridovirus) led to a proposal to name a new genus for this group in the

lridoviridae family known as "Tropivirus" (Sudthongkong et al., 2002).

   Studies on the biological and physicochemical characteristics showed that RSIV

produced cytopathic effect (CPE) in several fish cell lines at suitable temperature from

20-250C; sensitive to low pH (3), chloroform and ether; unstable to heat treatment but

stable to ultrasonic treatment. However, the virus titers were reduced by repeated freezing

and thawing (Nakajima and Sorimachi, 1994). RSIV induced apoptosis in vitro and is

dependent on the presence ofcaspases (Imajoh et al., 2004). The cell apoptosis by RSIV

consisted ofthree stages: cell shrinkage and rounding at the early stage; cell enlargement

at the middle stage; formation of apoptotic body-like vesicles at the late stage and

phagocytosis by neighboring cells. Caspase-3 and caspase-6 involved in the

morphological changes during the mid- and late apoptotic stages and in viral protein

synthesis in the later stage of the virus infection.

   The complete genome sequences of RSIV is 1 12, 414 bp containing about 93 putative

open reading frames (ORFs) with a main structural component, the major c.apsid protein

(MCP) gene (Kurita et al., 2002). The MCP gene normally occupies upto 450/o oftotal

virion protein and is highly conserved among the family lridoviridae (Williams, 1996).

The MCP gene of RSIV has been confirmed to be the most suitable gene for detection

and measurement of the virus infection (Caipang et al., 2003). Several ORFs have been

assigned putative function based on significant matches with the potential proteins of
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Fig. 1. Distribution of IE, E and L transcripts in the RSIV genome and correlation with

genomic sequence data, Transcriptionally active regions are shown in black, while inactive or

undetected regions are showB in white. The irmermost circle indicates map units (m.u.) and kilobases (kb)

from map unit O. (A) Distribution oflE transcripts in the RSIV genome. (B) Distribution ofE transcripts in

the RSIV genome. The inner solid circle shows regions of E transcripts. The outer soiid-circle indicates

major clusters ofE transcripts. (C) Distribution ofL transcripts in the RSIV genome. The inner solid circle

shows regions of L transcripts. The outer solid circle indicates major clusters of L transcripts. (D)

Distribution of E and L exciusive regions in the RSIV genome. The three inner solid circles show major

clusters of IE, E, and L transcription in the innermost, middle, and outermost circles, respectively. The

outer solid circle indicates three regions exclusive to E transcripts encoding enzymes associated with viral

DNA replication and an L region contaming MCP. (Adapted from Lua et al. (Lua et al., 2005)).
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LCDV-1 (lymphocystis disease virus 1), RBIV and other better-studied viruses. These

proteins are those involved in DNA replication, DNA modification and processing, DNA

transcription, processing of viral DNA, protein processing and modification and virus-

host interaction. There are also other sequences in the genome that are considered RSIV-

specific genes, the large submit of DNA-dependent RNA polymerase, DNA polymerase,

ATPase and putative ankyrin repeat containing protein genes.

   In vitro RSIV replication and gene regulation strategies have been well-studied using

DNA microarray technology. Individual RSIV ORI?s were characterized at the

transcriptional level and were also classified into temporal kinetic classes by their

dependence on de novo protein synthesis and viral DNA replication. The gene expression

ofRSIV occurred in a temporal kinetic cascade with 3 stages, which includes Immediate-

Early (IE), Early (E) and Late (L) transcripts, following a common feature of the family

Iridoviridae. The three classes of transcripts were distributed throughout the RSIV

genome; however, E transcripts were found to be clustered in at least 6 discrete regions

and L transcripts appeared to originate from 7 discrete regions (Fig. 1) (Lua et al,, 2005).

   Diagnosis of RSIV infection has been achieved through virological, histological and

molecular approaches. These diagnostic techniques include cell culture (Nakajima and

Sorimachi, 1994), Giemsa staining (Inouye et al., 1992), immuno-assay usl'ng a

monoclonal antibody (Nakajima, 1995), conventional PCR (Oshima et al., 1998; Oshima

et al., 1996), as well as some sensitive, rapid diagnostic techniques, such as quantitative

real-time PCR (Caipang et al., 2003) and the loop-mediated isothermal amplification

(LAMP) reaction (Caipang et al., 2004).

   Control of RSIV infection was made possible through vaccination using virus-

inactivated and DNA vaccines. The virus-inactivated vaccine was prepared by addition of

formalin to the RSIV-infected cell culture supernatant and cells (Nakajima, 1997), while

DNA vaccines were produced by construction of DNA plasmids encoding the MCP and

an ORF containing a transmembrane domain ofRSIV (Caipang et al., 2006). The RSIV-

inactivated vaccine has been found to be highly efficiept in protecting the vaccinated-fish

both at the laboratory-scale (Nakajima, 1997) and field trials (Nakajima, 1999) and is

9



now commercially available. The RSIV-DNA vaccines have also been found to be able to

induce significant protection in fish against RSIV infection (Caipang et al., 2006).

1.5 DNA microarray technology (gene chip technology)

1.5.1 Baekground

DNA microarrays, a high-capacity system, was first described and used for quantitative

expression measurements ofmany genes in 1995 by Schena et al. (Schena et al., 1995).

The DNA microarrays are basically a miniature foim ofdot blot, but in a high-throughput

format spotting thousands of different target probes on a small solid surface, such as a

coated glass slide or nylon membrane. The target probes can be DNA, cDNA or

oligonucleotides of selected genes, and are used to determine complementary binding of

the unlmown sequences. Although several different types of DNA microarrays have been

developed based on their target probes, the key unifying principle of all DNA microarray

experiments is a labeled nucleic acid hybridization-based technique with high sensitivity

and specificity. Each experiment consists of five discrete steps (Sellheyer and Belbin,

2004): (1) fabrication of the DNA microarray, (2) preparation of the biological sample,

(3) hybridization of the labeled nucleic acid sample with the array, (4) signal detection

and data visualization, and (5) data processing and analysis (Fig. 2).

   It is widely believed that thousands of genes and their products in a given living

organism function in a complicated and orchestrated way that creates the mystery oflife.

The same genes are not active or expressed in every cell. Gene expression is a sensitive

indicator of cellular metabolism, disease state and toxicant exposure, and thus represents

a unique way of characterizing how cells and organisms adapt to changes in the external

environnient (Lettieri, 2006). The measurement of gene expression levels facilitates the

annotation of the molecular mechanisms underlying normal cellular processes as well as

the molecular basis for disease. Obtaining such global views at the molecular level was

impossible using conventional molecular biological techniques (Choudhuri, 2004;

Sellheyer and Belbin, 2004). Thus, DNA microarray technology is revolutionary because

it allows for the monitoring of the expressions of thousands of genes in a single

experiment, providing a platform to perform genome-wide expression analyses across

various biological models. This enormous power of microarrays has already made a
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remarkable impact on many fields of biological and biochemical research, including

cellular physiology, cancer biology, and pharmacology (Cummings and Relman, 2000). It

is an undeniable fact that the number of publications employing microarrays has

undergone exponential growth since its inception in 1995 by Schena et al (Schena et al.,

1995). Since that time, the publications increased from 239 in 2000 to 4099 in 2005 with

an accumulated total of 12,679 microarray papers (Ju et al., 2007).

   DNA microarray experiments have been widely used in both basic and applied

research ranging from viruses to humans in order to answer different research questions

related to gene expression, for instance in gene discovery, drug discovery, disease

diagnosis and toxicological research. D. tt•.A microai`ray technology has. focused ok

identification ofnew genes based on similarities in expression patterns with known genes.

Ultimately, these studies may greatly expand the size of existing gene families, reveal

new patterns of coordinated gene expression across gene families, uncover entirely new

categories of genes, and identify genes involved in the different developmental stages of

diseases. The technology has already focused on the field of drug discovery and

development by screening for changes in gene expression following exposure of cells to

drug treatments. Correlation of gene expression with drug activity may enhance the

armotation of molecular details of drug action, while correlation of transcription profiles

in untreated cells with drug response may reveal mechanisms for sensitivity and

resistance, providing information to synthesize more effective drug targets and reduce

their adverse side effects (Choudhuri, 2004). In addition, with the evolution ofmicroarray

technology, it can be possible to learn more about different diseases and further classify

the types of diseases on the basis of the pattems of gene activity in specific target cells.

Microarray technology has also been a valuable tool in toxicology research involving

both mammals and aquatic anlmals by measuring gene expression levels upon exposure

Åío toxicants (Jv; et a{., 2007; Lettieri, 2006; van I-Ial et al., 2000).
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Fig.2. Principle model of DNA microarray experiment



1.5.2 Application ofthe DNA microarray technology in virologicalstudies

   The concurrent development of DNA microarray technology and the complete

sequencing of a number of viral genomes are providing the opportunity to speed our

understanding of various aspects of both sides of the host-virus interaction at the

molecular level. By understanding the molecular details of this interaction, we can

identify virulence-associated genes, host-defense strategies and characterize the cues to

which they respond and mechanisms by which they are regulated. In fact, DNA

microarray technology has been widely applied in virological studies in both cell culture

systems and experimental animal models. By monitoring viral gene expression, one can

explore viral replication and gene regulation strategies, predict the molecular pathogenic

mechanisms, predict the functions of uncharacterized genes, identify genes involved in

viral pathogenesis, and test the effects of drugs or inhibitors. Similarly, by using host

gene microarrays, one can explore host response at the level of gene expression and

provide a molecular description ofthe events that follow the viral infection (Cummings

and Relman, 2000). Firstly, DNA microarrays have been successfu11y used to study the

transcriptional profiles of variety of viruses, including plant (Pasquini et al., 2007),

insect (Yamagishi et al., 2003), mammalian (Martinez-Guzman et al., 2003; Paulose-

Murphy et al., 2001; Stingley et al., 2000) and aquatic viruses (Lua et al., 2005; Marks

et al., 2005). Secondly, they have focused on the host's transcriptional profiles following

viral infections (Bigger et al., 2001; Cuadras et al., 2002; Jones and /trvin, 2003; Otsuka

                                                            'et al., 2003). Viruses used as models in DNA microarray technology-based studies are

summarized in Table 3.

   Basically, the DNA microarray technology has been applied to explore the

transcriptional profiles of viruses during an infection or under different conditions, such

as different replication stages, drug treatmentslinhibitors and toxicity. Transcription of

HCMV genome was measured during infection by using a microarray of 75-mer

oligonuleotides representing each of the 226 predicted HCMV ORFs (Chambers et al.,

1999). By blocking de novo viral protein synthesis and viral DNA replication, the authors

revealed a detailed classification of HCMV genes into' four temporal kinetic classes, and

also assigned many ORFs, for which expression data were not previously available, into
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Table 3. Viruses used as models in DNA microarray technology-based studies

Virus References

Autographa californica multiple

nuleopolyhedrovirus (AcMNPV)

Coxsackievirus B3

Echovirus 1 (EVI)

Hepatitis B and C viruses

Hepatitis C virus (HCV)

Herpes simplex virus type 1 (HSV-1)

Herpesvirus ofturkeys (HVT)

Human cytomegalovirus (HCMV)

Human herpesvirus 8 or Kaposi'sarcoma-

associated herpesvirus (HHV-8 or KSHV)

HIV-1

Hirame rhadovirus (HRV)

Marek's disease virus (MDV)

Murine grammaherpesvirus-68 (MHV-68)

Plum pox virus (PPV)

Red seabream iridovirus (RSIV)

Rotavirus

SARS coronavirus

Varicella-Zoster virus (VZV)

Viral hemorrhagic septicemia virus (VHSV)

White spot syndrome virus (WSSV)

Zaire Ebolavirus (ZEBOV), Reston Ebolavirus

(REBOV) and Marburgvirus (MARV)

(Yamagishi et al., 2003)

(Taylor et al., 2000)

(Pietiainen et al., 2000)

(Otsuka et al., 2003)

(Bigger et al., 2001)

(Mossman et al., 2001; Stingley et al.,

2000)

(Karaca et al., 2004)

(Chambers et al., 1999)

(Jenner et al., 2001; Nakamura et al.,

2003; Paulose-Murphy et al., 2001)

(de la Fuente et al., 2002; Geiss et al.,

2000; van 't Wout et al., 2003)

(Kurobe et al., 2005)

(Morgan et al., 2001)

(Ahn et al., 2002; Ebrahimi et al.,

2003; Martinez-Guzman et al., 2003)

(Pasquini et al., 2007)

(Lua et al., 2005)

(Cuadras et al., 2002)

(Leong et al., 2005)

(Cohrs et al., 2003; Jones and Arvin,

2003)

(Byon et al,, 2005)

(Khadijah et al., 2003; Liu et al., 2005;

Marks et al., 2005; Tsai et al,, 2004)

(Kash et al., 2006)
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these groups. Similarly, the temporal kinetic transcriptional profiles of RSIV in cell

culture in the presence or absence of de novo protein synthesis and viral DNA replication

inhibitors have already been described (Lua et al., 2005). In other studies, viral DNA

microarrays were used to compare the expression of viral genes during latency and 1ytic

replication (Cohrs et al., 2003; Ebrahimi et al., 2003; Jenner et al., 2001; Martinez-

Guzman et al., 2003). These studies provide a better understanding of viral gene

regulation strategies, pathogenic mechanisms as well as understanding of virus-host cell

interactions. In addition, DNA microarrays have also been applied to investigate the

correlation in expression patterns between unknown and known genes under the same

conditions. Because virulence-associated genes are often tightly and coordinately

regulated, candidate virulence factors are specifically expressed during infection and

likely to be co-regulated with known ones. Thus, such studies allow for the determination

of virulence-associated genes and for predicting their functions. Moreover, gene

expression studies based on the DNA microarray technology may also reveal key

regulatory differences that lead to differing virulence between closely related pathogen

strains or that account for differences in viral replication between different targeted-

cellslorgans of viruses (Cummings and Relman, 2000). A comparison of expression

profiles of known ORFs in AcMNPV by using a viral DNA microarray (Ac-BmNPV

chip) pointed up that most of genes involved in the viral life cycle were regylated

differently in two different cell lines, implying the different expression of these viral

genes accounts for the differences in viral replication between various targeted-cells

(Yamagishi et al., 2003).

   On the other hand, the DNA microarray technology is also involved in exploring host

cell transcriptional changes in response to virus infections (Bigger et al., 2001; Geiss et

al., 2000; Jones and Arvin, 2003). These studies promise to accelerate our understanding

of the host side of the host-pathogen interaction, contributing to armotation of

pathogenesis as well as host response to viral infections. The first application of DNA

microarrays to pathogenesis was to monitor global gene expression in primary human

fibroblasts infected by HCMV (Zhu et al., 1998). Among 6,600 spotted human genes,

258 transcripts changed by more than fourfold compared to uninfected cells at either 8 or

24 hours after infection. Some of these changes, such as induction of cytokines, stress-
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inducible proteins, and many interferon-inducible genes were consistent with induction of

cellular immune responses. By identifying factors expressed in the host under vaccination

or stimulation, the DNA microarrays promise to identify vaccine targets, provide a better

understanding of host defensive and virus-counter-defensive mechanisms, and contribute

guidelines for antiviral therapies (Byon et al., 2005; Kurobe et al., 2005; Yasuike et al.,

2007). In addition, a comparison of host responses to related strains of the same virus or

family can explain differences in pathogenesis. Comparison of gene expression responses

in human liver cells infected with Zaire Ebolavirus (ZEBOV), Reston Ebolavirus

(REBOV) and Marburgvirus (MARV) revealed different mechanisms involved in

antagonizing interferon (IFN) signaling pathways by the different members ofthe family

Filoviridae (Kash et al., 2006).

   Recently, to address the limitations of existing viral detection methodologies, DNA

microarrays derived from highly conserved sequence regions within viral families have

been utilized as diagnostic tools (Clewley, 2004; DeFilippis et al., 2003). Using available

sequence data from more than 140 sequenced viral genomes, DeRisi and colleagues

designed a long oligonuleotide (70-mer) DNA microarray with the potential to

simultaneously detect hurrdreds of viruses, including essentially all respiratory tract

viruses (Wang et al., 2002). Plant viral DNA microarrays were similarly constructed to

detect plum pox virus (PPV) and its strains (Pasquini et al., 2007). Historically, standard

viral detection techniques relied on isolation and in vitro viral culture or immunoassays

or even PCR methods can be used to determine the presence or absence of the virus

(Storch, 2000). However, in more complex biological situations, such as diseases where

many different viruses are present or where no etiologic agent has been identified, the

limitations ofthese methodologies become readily apparent. Some viruses are completely

refractory to in vitro culture, and immunoassays depend on the quality and availability of

the antiserum while PCR methods depend on the specificity of primers (Wang et al.,

2002). Thus, the potential use of this technology in routine diagnostics is versatile and

greatly expands the spectrum ofdetectable viruses in a single assay while simultaneously

providing the capability to discriminate among viral subtypes. Such a diagnostic tool will

undoubtedly have many uses in the study of viral pathogenesis and perhaps equally

important has the potential to facilitate novel viral discovery and identification of
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diseases ofunlmown etiology as well as in instances ofbioterrorism. Currently, the DNA

microarray teclmology has even known as highly parallel microbial diagnostic

microarrays (MDMs) because they have allowed rapid and simultaneous identification of

many different microorganisms, not only viruses in a single assay. Recent applications in

the MDM field were comprehensively recorded in a review by Loy and Bodrossy (Loy

and Bodrossy, 2006).

1.6 RNAInterference(RNAi)technology

L6.1 Baekground

   RNA interference (RNAi) was initially characterized in the nematode worm

CaenoThabditis elegans by Fire and colleagues, who found that double-stranded RNAs

(dsRNAs) induced a more potent sequence-specific silencing response than single-

stranded antisense RNA alone, which was customarily used for this purpose (Fire et al.,

1998). It soon turned out that RNAi is not restricted in nematode and can be induced in

fruitfly Drosophila melanogaster (Kennerdell and Carthew, 1998), parasites

Trypanosoma (Ngo et al., 1998), fimgi NeurospoTa crassa (Romano and Macino, 1992),

flowering plant Arabidopsis thaliana (Napoli et al., 1990; van der Krol et al., 1990), and

animals (Elbashir et al., 2001). These phenomena were termed "post-transcriptional gene

silencing" (PTGS) and "co-suppression" in plants, "quelling" in fungi, and "seqUence-

specific gene silencing" in animals. They are phenotypically different but mechanistically

similar forms of RNAi (Agrawal et al., 2003). The core of all these phenomena is the

processing oflong, double-stranded (ds)RNAs by the RNAse III enzyme Dicer into small

21-25 bp dsRNAs molecules, designated small interfering RNAs (siRNAs) and

microRNAs (miRNAs) (Dykxhoorn et al., 2003; Elbashir et al,, 2001; Hutvagner and

Zamore, 2002J Li and Ding, 2005). These small dsRNAs provide sequence specificity to

the related RNA-induced silencing complexes (RISCs), termed siRISC and miRISC,

respectively, and serve as guides for cleavage or inhibition of translation of mRNAs that

share sequence similarity with the dsRNA trigger.

   In the nematode C elegans, the first metazoan in which RNAi was documented,

silencing can be experimentally induced by injection, feeding or transgenic expression of

dsRNA molecules (Fire et al., 1998; Grishok, 2005; Grishok et al., 2005). The systemic
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nature of RNAi in C. elegans is a striking example of the ability of cells to detect and

internalize extracellular dsRNA to initiate intracellular gene silencing events. A number

of cells can naturally take-up exogenous dsRNA and use it to initiate RNAi silencing

(Clemens et al., 2000; Worby et al,, 2001). Thus, RNAi has been widely employed to

manipulate gene expression, elucidate signal pathways and identify gene functions

(Agrawal et al., 2003; Haasnoot et al., 2003). Insurmountable evidences also pointed out

the efficiency of RNAi in mounting antiviral responses.

1.6.2 Small interfering RNA (siRNAs) and microRNA (miRNAs) molecutes:

      deL17nition, origin andfunctionality

   Small molecules of dsRNAs, mediators of RNA-related gene silencing mechanisms,

are classified into siRNAs and miRNAs based on their origin and function (Tang, 2005;

Zheng et al., 2005).

   siRNAs are small RNAs that are produced in the cytoplasm by Dicer-mediated

cleavage of long double-stranded RNA that has been formed by base pairing between two

independent transcripts (Sarnow et al., 2006). The long dsRNAs are normally produced

from foreign genomes, such as virus infections or transposons. In the cytoplasm of cells,

siRNAs are incorporated into RISC containing siRNA (siRISC) for cleavage ofthe.target

mRNA with perfect complementary in sequence (Sledz and Williams, 2005) (Fig. 3).

   In contrast to siRINAs, miRNAs are small RNAs that are produced by Drosha- and

Dicer-mediated cleavage of RNA-hairpin structures that are encoded in cellular and viral

genomes (Sarnow et al., 2006). miRNAs are most often transcribed by RNA polymerase

II and the resulting primary miRNAs (pri-miRNAs) are processed in the nucleus by the

RNAse type III Drosha to produce precursor miRNAs (pre-miRNAs). Pre-miRNAs are

then exported to the cytoplasm by Exportin-5 and processed into mature miRNAs

through the action of Dicer. miRNAs are incorporated into RISC containing miRNA

(miRISC) and guide for their mRNA targets. Unlike siRNAs, miRNA-armed RISC can

enforce either degradation ofmRNA (in the case ofperfect sequence complementarity) or

inhibition of mRNA translation (in the case of imperfect sequence complementarity)

(Sullivan and Ganem, 2005; Triboulet et al., 2007) (Fig. 3).
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  After the milestone discovery ofthe first miRNA in 1993 (Misk4 2005), hundreds of

miRNAs are discovered in nematodes, fi'uit flies and humans, and it comes as no surprise

that viruses, which typically employ many components of the host gene expression

machinery, also encode miRNAs (Kim and Nam, 2006). To date, 73 viral miRNAs have

been identified in genomes of 7 viral species, including EBV, KSHV, HCMV, MHV68,

HSVI, SV40 and rhesus lymphocryptovirus (rLCV) (Pan et al., 2007). It is believed that

many miRNAs are ubiquitously expressed, whereas others are expressed in a cell-type-

specific manner. A single miRNA can target transcripts from multiple genes and,

conversely, several miRNAs can control a single target. Therefore, miRNAs and their

targets function as a complex regulatory network (Nair and Zavolan, 2006). miRNAs
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influence diverse cellular processes ranging from embryonic development, cellular

differentiation, proliferation, apoptosis and metabolism to cancer. A recent study showed

that cellular miRNAs have direct antiviral effects in addition to their regulatory functions

(Lecellier et al., 2005). In particular, as reviewed by Nair and Zavolan (Nair and

Zavolan, 2006), virus-encoded miRNAs are involved both in the regulation oftheir own

genes and in the subversion ofcellular defense mechanisms.

1.6.3 Application ofRNAi technology in virological studies and R7VA-based antiviral

      approaches

   Significant advances in the RNAi technology, together with the completion of several

viral genome sequences, paved the way for new approaches in studying molecular

virology. It has been applied to study disease-related genes and elucidate their roles in the

viral cycle and in virus-host cell interactions as well as to investigate cellular pathways

involved in viral pathogenesis (Colbere-Garapin et al., 2005).

   RNAi-based option is considered to be of tremendous potential as an antiviral

approach against a wide variety of viruses in plants, invertebrate and vertebrate systems.

In plants, RNA silencing in the context of viral infections has been extensively studied

and is well established that it functions as adaptive antiviral immune response, although

viruses have evolved strategies to suppress the RNA-silencing pathways as a counter-

defense (van Rij and Andino, 2006). In insects, RNAi pathway was reported to direct

innate immunity against viruses. An evidence showed that fiock house virus (FHV), a

member of the Nodaviridae family, is targeted by the RNAi machinery in the insect

Drossophila (Wang et al., 2006). Furthermore, several studies have established that

RNAi-based antiviral approach protects insects from viral infection (Keene et al., 2004;

Sanchez-Vargas et al., 2004). Introduction of dengue virus genomic sequences with a

Sindbis virus vector into cells of the mosquito Aedes albopictus resulted in RNAi-based

resistance to subsequent challenges with dengue virus (Sanchez-Vargas et al., 2004).

Current reports revealed the existence ofboth innate (non sequence-specific) and RNAi-

related (sequence-specific) antiviral phenomena ip other invertebrates, such as

crustacean, as reviewed by Robalino et al. (Robalino et al., 2007).
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   In vertebrate system, it has long been thought that dsRNA, a common virus-

associated molecular pattern, is a potent inducer of non-specific immune mechanism

involving interferon response, implying RNAi ineffectivity for gene sequence-specific

silencing in interferon-producing organisms like mammals (Dykxhoorn et al., 2003;

Robalino et al., 2005; Schott et al., 2005). However, the pioneering work by Elbashir et

al. (Elbashir et al., 2001) showed that 21-22 nucleotide siRNAs are able to silence genes

in a sequence-specific manner, considered as a breakthrough in RNAi studies. This was

followed by an outburst of reports that dsRNAs of less than 30 nucleotides bypass the

IFN-induced pathways and evoke RNAi-type silencing (Caplen et al., 2001; Dave and

Pomerantz, 2003). Thus, RNAi-like mechanisms are also believed to act as an antiviral

defense in vertebrates (Browne et al., 2005; Karpala et al., 2005; Li and Ding, 2005) and

can be induced through the introduction ofnaked siRNAs and plasmid expressing short-

hairpin (sh)RNAs or pre-miRNAs into cells from the outside (Elbashir et al., 2001;

McManus et al., 2002). Plasmid-based expression systems using RNA polymerase II

(Pol II) or III (Pol III) promoters have been commonly used (Dykxhoorn et al., 2003). A

model of expression vector using Pol II promoter, Block-iT Pol II miR RNAi expression

vector with EmGFP, is shown in Fig. 4. This vector is designed to allow cloning ds oligo

duplexes encoding a pre-miRNA target sequence and permit high-level expression ef the

pre-miRNA through co-cistronic expression of EmGFP in most mammalian cells. The

expression vector includes flaking and loop sequences from an endogenous murine miR-

155 which allow proper processing of the engineered pre-miRNA sequence. Additionally,

the vector also contains resistance genes for selection of positive clones in E. coli and

stable cell lines that stably expressing the miRNA (Invitrogen, Catalog no. K4936-OO).

     Introduction of naked viral-gene specific siRNAs or plasmid expressing virus-

derived miRNAs into cells may lead to inhibit viral gene expression and block viral

replication (Zheng et al., 2005). When naked viral-gene specific siRNAs are delivered to

cells, they directly guide siRISC.without processing by Dicer to their homologous target

mRNAs for cleavage. On the other hand, the use of plasmid expressing virus-derived

shlUNIAs or pre-miRNAs is the dependency on Dicer processing. Virus-derived shRNAs

or pre-miRNAs are expressed by nucleus enzymes arid processed by Dicer into mature
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miRNAs prior to being guided to miRISC

mRNAs (Dykxhoorn et al., 2003).
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   Roles ofviral gene-specific siRNAs and virus-derived pre-miRNAs as antiviral tools

are proposed in Fig. 5 and Fig. 6, respectively. Thus, RNAi has been currently considered

as a gene-specific therapeutic option for controlling viral infections in many ways, such

as, inhibiting the expression of viral antigens and accessory genes, controlling the

transcription of viral genome, hindering the assembly of viral panicles or blocking viral

replication (Tan and Yin, 2004). RNAi mediated by artificial introduction of viral-

specific siRNAs or shRNAs has been successfu11y used to inhibit viral replication of

mammalian viruses both in a cell culture system and an experimental animal model,

although the outcome of individual RNAi events varies depending on the designed RNAi

and their target regions, as well as the escape from RNAi-mediated suppression ofviruses

through mutations within the targeted regions (Zheng et al., 2005). Poliovirus was one of
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the first to be tested for siRNA-mediated sequence-specific inhibition. HeLa cells

transfected with an siRNA specific for a capsid protein or viral polymerase before

infection with Poliovirus markedly reduced the titer of virus progeny (Gitlin et al.,

2002). Studies on HIV-1 inhibition by RNAi showed that almost a complete inhibition of

HIV-1 production was obtained by the combined expression of siRNAs against Tat and

Rev genes (Lee et al., 2002), and HIV-1 production in T-lymphocytes expressing

shRNAs targeting Nef gene was reduced to more than 1O-fold, and virus replication was

inhibited upto 1,OOO-fold 20 days post-infection (Haasnoot et al., 2003). siRNA

molecules targeted to different genome segments of influenza virus, a virus responsible

for acute upper respiratory disease causing an estimated 500,OOO deaths each year, were

also tested and shown that siRNA effectively inhibited virus replication not only in vitro,

but also in mice in vivo (Stram and Kuzntzova, 2006). Various mammalian viruses were

targeted for RNAi-based antiviral studies both in vitro and in animal models (Table 4 and

5). Almost all these studies have used synthesized viral gene-specific siRNAs or plasmids

expressing viral-derived shRNAs, which were introduced into cells either shortly before

or after challenge with viruses.

   In aquatic animal viruses, applications of RNAi-based antiviral approaches have been

ill-studied but this strategy has been reported to be effective against two marine

crustacean viruses, including wnite Spot Syndrome Virus (WSSV) and Yellow Head

Virus (YHV), and two marine fish viruses, including Tiger Frog Iridovirus (TFV) and

Viral Hemorrhagic Septicemia Virus (VHSV) (Table 6). Using dsRNA specific for

WSSV, a model of antiviral immunity in shrimp was proposed, by which viral dsRNA

engages not only innate immune pathways but also an RNAi-like mechanism to induce

potent antiviral responses in vivo (Robalino et al., 2005). Similarly, YHV•-specific

dsRNAs were effectively inhibited YHV replication in both shrimp primary cell culture

and in the shrimp Penaeus monodon (Tirasophon et al., 2005; Yodmuang et al., 2006).

Unlike aquatic invertebrates such as shrimp, virus-specific siRNAs, instead of using

virus-specific long dsRNAs, were used in RNAi-based antiviral approaches in aquatic

vertebrates such as frog and fish.
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Table 4 : RNAi-mediated suppression ofmammalian virus replication in cell culture

                         system

Mammalian RNA virus RNAi References

Avianmetapneumovirus(AMPV) siRNA (Ferreira et al., 2007)

Coxsackievirus B3

Enterovirus 71 (EV71)

Foot-and-mouth disease virus

Hepatitis A virus

Hepatitis C virus

Hepatitis delta virus

HIV-1

Human parainfluenza virus-3

Human rhinovirus 16

Influenza A virus

Poliovirus

Respiratory syncytial virus

Rotavirus

SARS-associated CoV

Vaccinia virus

Venezuelan equine encephalitis

virus (VEEV)

Vesicular stomatitis virus

West Nile virus

siRNAIshRNA

siRNA

shRNA

siRNA

siRNA/shRNA

siRNA

    '
siRNAIshRNA

siRNA

siRNA

siRNAIshRNA

siRNA

siRNA

siRNA

siRNA

siRNA

siRNA

siRNA

shRNA

(Kim et al., 2007; Yuan et al.,

2005)

(Sim et al., 2005)

(Chen et al., 2004)

(Kanda et al., 2004; Kanda et

al., 2005)

(Kronke et al., 2004; Yokota

et al., 2003)

(Chang and Taylor, 2003)

(Capodici et al., 2002;

Huelsmann et al 2006'                         '                  -p
Novina et al., 2002)

(Barik, 2004)

(Phipps et al., 2004)

(Ge et al., 2003; McCown et

al., 2003)

(Gitlin et al., 2002)

(Bitko and Barik, 2001)

(Dector et al., 2002)

(He et al., 2006; Wang et al.,

2004; Wu et al., 2005; Zhao

et al., 2005)

(Dave et al., 2006)

(O'Brien, 2007)

(Barik, 2004)

(McCown et al., 2003)

25



Table 5: Use of RNAi in in "ViVO animal models ofvirus infections

Virus RNAi Method of delivery References

SAR-associated CoV

West Nile Vims

Foot and mouth
disease virus

Respiratory syncytial

virus

Parainfluenza virus

Influenza A virus

Hepatitis B virus

siRNA

siRNA

shRNA

siRNAIshRNA

siRNA

siRNAIshiUslA

siRNA

siRNAIshRNA

siRNA!shRNA

Intramuscular injection

Hydrodynamic injection

Subcutaneous injection

Intranasal delivery

Intranasal delivery

Intravenous injection

Hydrodynamic injection,

intranasal delivery

Hydrodynamic injection

Intravenous injection

(Zhao et al., 2005)

(Bai et al., 2005)

(Chen et al., 2004)

(Bitko et al., 2005;

Zhang et al., 2005)

(Bitko et al., 2005)

(Ge et al., 2004)

(Tompkins et aL,
2004)

(Giladi et al., 2003;
McCaffrey et al.,
2003)

(Morrissey et al.
2005; Uprichard et al.,

2005)

Table 6 : RNAi-mediated suppression of aquatic animal virus re plication

Virus RINAi Method of delivery References

Tiger frog iridovirus

(TFV)

Viral hemorrhagic
septicemia virus (VHSV)

Yellow head virus (YHV)

White spot syndrome

virus (wssv)

siRNA

siRNA

dsRNA

dsRNA

Transfection (cell culture)

Transfection (cell culture)

Transfection (primary cell

culture) or inj ection

(shrimp)

Inj ection (shrimp)

(Xie et al., 2005)

(Schyth et al.,

2006)

(Tirasophon et al.,

2005; Yodmuang

et al., 2006)

(Robalino et al.,

2005)
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   The inhibition of TFV replication by siRNAs targeting the MCP gene was

demonstrated by reduced MCP RNA Ievel, postponed emergence of cytopathogenic

effect, as well as reduced virus titer and particles in fish cells (Xie et al., 2005).

Consistent with the activation of RNA by siRNAs, siRNAs specific to the viral

glycoprotein gene ofVHSV efficiently inhibited viral replication in infected cell cultures,

while the corresponding mismatched siRNAs did not exhibited this antiviral effect

(Schyth et al., 2006). Such studies significantly establish RNAi as a potential approach to

therapy ofviral diseases in aquaculture.

1.7 Obj ectives and contents of the study

   Disease problems particularly of viral origin have continuously plagued the

aquaculture industry due to rapid intensification of farming practices. Moreover, the

control of viral infection is difficult and complex because of the Iimited effectiveness of

existing antiviral agents and the high speed mutation rate of the viral genome (Lee and

Rossi, 2004). Toward this end, understanding the pathogenic mechanisms of viral

infections at the molecular level and the development of alternative antiviral approaches

based on advances in molecular genetic technology will be of enormous contribution to

the control ofviral diseases.

   This study aimed to better understand of the molecular pathogenic mechanisms of

viral infections in fish using RSIV, a marine-pathogenic iridovirus, as a model based on

DNA microarray technology, and to develop alternative approaches against iridoviral

infections using RSIV-specific siRNAs and miRNAs as antiviral tools based on RNAi

teclmology, instead ofvaccination technology. Specific objectives ofthe study are:

1. to explore the transcriptional profile of RSIV over the time-course of virus

     infection in a fish model

2. to investigate differential gene expression patterns between RSIV-infected spleen

     and kidney in order to find out a suitable organ for diagnosis of iridoviral diseases

     at the molecular level

3. to generate and test the potential antiviral activity ofviral gene-specific siRNAs on

     RSIV replication in a cell culture system
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4. to generate and test the potential antiviral activity of virus-encoded miRNAs on

     RSIV replication in a cell culture system

   The contents ofthis research study are:

1. Chapter 1 (General introduction) provides the backgroufid on global views of the

     research study.

2. Chapter 2 (The pathogenesis of RSIV infection as revealed by viral DNA

     microarrays) provides understanding of the molecular pathogenic mechanism of

     RSIV infection in fish and further confirms, at the molecular level, that the spleen

     is a suitable organ for diagnosis of iridoviral diseases, resulting in the thorough

     knowledge ofiridovirus infection in fish.

3. Chapter 3 (Inhibition of RSIV replication by viral gene-specific siRNAs in a cell

     culture system) evaluates anti-RSIV activity of viral gene-specific siRNAs on

     RSIV replication in vitro, providing a promising alternative antiviral approach

     based on siRNA-related pathways.

4. Chapter 4 (Engineered virus-encoded pre-microRNA (pre-miRNA) induces

     sequence-specific antiviral response in addition to non-specific immunity in a fish

     cell line: Convergence of RNAi-related pathways and IFN-related pathways in

     antiviral response) investigates antiviral activity of viral-encoded microRNAs

     (miRNAs) on viral replication in vitro, providing another option for combating

     iridoviral infections utilizing the antiviral potency of miRNA-related pathways, as

     well as better understanding the complex miRNA-related mechanisms.

5. Chapter 5 (General conclusion and perspectives) provides a comprehensive

     discussion of the proceeding studies, and further discuss perspectives for the use of

     the antiviral potency ofRNAi to control ofviral diseases in aquaculture.

1.8 Literaturecited

Agrawal, N., Dasaradhi, P. V., Mohmmed, A., Malhotra, P., Bhatnagar, R. K. and

   Mukherjee, S. K., 2003. RNA interference: biology, mechanism, and applications.

   Microbiol. Mol. Biol. Rev. 67, 657-685.

28



Ahn, J. W., Powell, K. L., Kellam, P. and Alber, D. G., 2002. Gammaherpesvirus lytic

   gene expression as characterized by DNA array. J. Virol. 76, 6244-6256.

Ahne, W., 1994. Viral infections of aquatic animals with special reference to Asian

   aquaculture. Armual Review ofFish Diseases 4, 375-388.

Bai, F., Wang, T., Pal, U., Bao, F., Gould, L. H. and Fikrig, E., 2005. Use of RNA

   interference to prevent lethal murine west nile virus infection. J. Infect. Dis. 191,

   1148-1154.

Barik, S., 2004. Control of nonsegmented negative-strand RNA virus replication by

   siRNA. Virus Res 102, 27-35.

Bigger, C. B., Brasky, K. M. and Lanford, R. E., 2001. DNA microarray analysis of

   chimpanzee liver during acute resolving hepatitis C virus infection. J. Virol. 75, 7059-

   7066.

Bitko, V. and Barik, S., 2001. Phenotypic silencing ofcytoplasmic genes using sequence-

   specific double-stranded short interfering RNA and its application in the reverse

   genetics ofwild type negative-strarLd RNA viruses. BMC Microbiol 1, 34.

Bitko, V., Musiyenko, A., Shulyayeva, O. and Barik, S., 2005. Inhibition of respiratory

   viruses by nasally administered siRNA. Nat Med 1 1, 50-55.

Browne, E. P., Li, J., Chong, M. and Littman, D. R., 2005. Virus-host interactions: new

   insights from the small RNA world. Genome Biol 6, 238.

Byon, J. Y., Ohira, T., Hirono, I. and Aoki, T., 2005. Use of a cDNA microarray to study

   immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder

   (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol 18,

   135-147.

Caipang, C. M., Haraguchi, I., Ohira, T., Hirono, I. and Aoki, T., 2004. Rapid detection

   of a fish iridovirus using loop-mediated isothermal amplification (LAMP). J. Virol.

   Methods 121, 155-l61.

Caipang, C. M., Hirono, I. and Aoki, T., 2003. Development ofa real-time PCR assay for

   the detection and quantification of red sea bream Iridovirus (RSIV). Fish Pathol. 38,

   1-7.

29



Caipang, C. M., Takano, T., Hirono, I. and Aoki, T., 2006. Genetic vaccines protect red

   seabream, Pagrus major, upon challenge with red seabream iridovirus (RSIV). Fish

   Shellfish Immunol 21, 13O-l38.

Caplen, N. J., Parrish, S., Imani, F., Fire, A. and Morgan, R. A., 2001. Specific inhibition

   of gene expression by small double-stranded RNAs in invertebrate and vertebrate

   systems. Proc. Natl. Acad. Sci. U.S.A 98, 9742-9747.

Capodici, J., Kariko, K. and Weissman, D., 2002. Inhibition ofHIV-1 infection by small

   interfering RNA-mediated RNA interference. J. Immunol. 169, 5196-5201.

Chambers, J,, Angulo, A., Amaratunga, D., Guo, H., Jiang, Y., Wan, J. S., Bittner, A.,

   Frueh, K., Jackson, M. R., Peterson, P. A., Erlander, M. G. and Ghazal, P., 1999.

   DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic

   class with drug sensitivity ofviral gene expression. J. Virol. 73, 5757-5766.

Chang, J. and Taylor, J. M., 2003. Susceptibility of human hepatitis delta virus RNAs to

   small interfering RNA action. J Virol 77, 9728-973 1 .

Chen, W., Yan, W., Du, Q., Fei, L., Liu, M., Ni, Z., Sheng, Z. and Zheng, Z., 2004. RINA

   interference targeting VPI inhibits foot-and-mouth disease virus replication in BHK-

   21 cells and suckling mice. J. Virol. 78, 6900-6907.

Choudhuri, S., 2004. Microarrays in biology and medicine. J. Biochem. Mol. Toxicol. 18,

   171-179.

Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings,

   B. A. and Dixon, J. E., 2000. Use of double-stranded RNA interference in Drosophila

   cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97, 6499-

   6503.

Clewley, J. P., 2004. A role for arrays in clinical virology: fact or fiction? J. Clin. Virol.

   29, 2-12.

Cohrs, R. J., Hurley, M. P. and Gilden, D. H., 2003. Array analysis of viral gene

   transcription during 1ytic infection of cells in tissue culture with Varicella-Zoster

   virus. J Virol 77, 11718-11732.

30



Colbere-Garapin, F., Blondel, B., Saulnier, A., Pelletier, I. and Labadie, K., 2005.

   Silencing viruses by RNA interference. Microbes Infect. 7, 767-775.

Cuadras, M. A., Feigelstock, D. A., An, S. and Greenberg, H. B., 2002. Gene expression

   pattern in Caco-2 cells following rotavirus infection, J. Virol. 76, 4467-4482.

Cummings, C. A. and Relman, D. A., 2000. Using DNA microarrays to study host-

   microbe interactions. Emerg, Infect. Dis. 6, 513-525.

Dave, R. S., McGettigan, J. P., Qureshi, T., Schnell, M. J., Nunnari, G. and Pomerantz, R.

   J., 2006. siRNA targeting vaccinia virus double-stranded RNA binding protein [E3L]

   exerts potent antiviral effects. Virology 348, 489-497.

Dave, R. S. and Pomerantz, R. J., 2003. RNA interference: on the road to an alternate

   therapeutic strategy! Rev Med Virol 13, 373-385.

de la Fuente, C., Santiago, F., Deng, L., Eadie, C., Zilberman, I., Kehn, K., Maddukuri,

   A., Baylor, S., Wu, K., Lee, C. G., Pumfery, A. and Kashanchi, F., 2002. Gene

   expression profile of HIV-1 Tat expressing cells: a close interplay between

   proliferative and differentiation signals. BMC Biochem 3, 14.

Dector, M. A., Romero, P., Lopez, S. and Arias, C. F., 2002. Rotavirus gene silencing by

   small interfering RNAs. EMBO Rep 3, 1175-1180.

DeFilippis, V., Raggo, C., Moses, A. and Fruh, K., 20e3. Functional genomics in

   virology and antiviral drug discovery. Trends Biotechnol 21, 452-457.

Dykxhoorn, D. M., Novina, C. D. and Sharp, P. A., 2003. Killing the messenger: short

   RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467.

Ebrahimi, B., Dutia, B. M., Roberts, K. L., Garcia-Ramirez, J. J., Dickinson, P., Stewart,

   J. P., Ghazal, P., Roy, D. J. and Nash, A. A., 2003. Transcriptome profile of murine

   gammaherpesvirus-68 1ytic infection. J Gen Virol 84, 99-109.

Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T., 2001.

   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian

   cells. Nature 41 1, 494-498.

Ellis, A. E., 2001. Innate host defense mechanisms of fish against viruses and bacteria.

   Dev. Comp. Imrnunol. 25, 827-839.

31



Ferreira, H. L., Spilki, F. R., de Almeida, R. S., Santos, M. M. and Arns, C. W., 2007.

   Inhibition of avian metapneumovirus (AMPV) replication by RNA interference

   targeting nucleoprotein gene (N) in cultmed cells. Antiviral Res. 74, 77-81.

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C., 1998.

   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis

   elegans. Nature 391, 806-81 1.

Ge, Q., Filip, L., Bai, A., Nguyen, T., Eisen, H. N. and Chen, J., 2004. Inhibition of

   influenza virus production in virus-infected mice by RNA interference. Proc Natl

   Acad Sci U S A 101, 8676-8681.

Ge, Q., McManus, M. T., Nguyen, T., Shen, C. H., Sharp, P. A., Eisen, H. N. and Chen,

   J., 2003. RNA interference of influenza virus production by directly targeting mRNA

   for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad

   Sci U S A 100, 2718-2723.

Geiss, G. K., Bumgarner, R. E., An, M. C., Agy, M. B., van 't Wout, A. B.,

   Hammersmark, E., Carter, V. S., Upchurch, D., Mullins, J. I. and Katze, M. G., 2000.

   Large-scale monitoring of host cell gene expression during HIV-1 infection using

   cDNA microarrays. Virology 266, 8-16.

Giladi, H., Ketzinel-Gilad, M., Rivkin, L., Felig, Y., Nussbaum, O. and Galun, E., 2003.

   Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther. 8,

   769-776.

Gitlin, L., Karelsky, S. and Andino, R., 2002. Short interfering RNA confers intracellular

   antiviral immunity in human cells. Nature 41 8, 43O-434.

Grishok, A., 2005. RNAi mechanisms in Caenorhabditis elegans. FEBS Lett. 579, 5932-

   5939.

Grishok, A., Sinskey, J. L. and Sharp, P. A., 2005. Transcriptional silencing of a

   transgene by RNAi in the soma ofC. elegans. Genes Dev. 19, 683-696.

Haasnoot, P. C., Cupac, D. and Berkhout, B., 2003. Inhibition of virus replication by

   RNA interference. J. Biomed. Sci. 10, 607-616.

32



He, M. L., Zheng, B. J., Chen, Y., Wong, K L., Huang, J. D., Lin, M. C., Peng, Y., Yuen,

   K. Y., Sung, J. J. and Kung, H. F., 2006. Kinetics and synergistic effects of siRNAs

   targeting structural and replicase genes of SARS-associated coronavirus. FEBS Lett.

   580, 2414-2420.

Hedrick, R. P., T. S. McDowell, W. Ahne, C. Torhy, and P. de Kinkelin, 1992. Propenies

   ofthree iridovirus-like agents associated with systemic infections of fish. Dis. Aquat.

   Organ. 13, 203-209.

Huelsmann, P. M., Rauch, P., Allers, K., John, M. J. and Metzner, K. J., 2006. Inhibition

   ofdrug-resistant HIV-1 by R[NA interference. Antiviral Res. 69, 1-8.

Hutvagner, G. and Zamore, P. D., 2002. RNAi: nature abhors a double-strand. Curr.

   Opin. Genet. Dev. 12, 225-232.

Imajoh, M., Sugiura, H. and Oshima, S., 2004. Morphological changes contribute to

   apoptotic cell death and are affected by caspase-3 and caspase-6 inhibitors during red

   sea bream iridovirus permissive replication. Virology 322, 220-230.

Inouye, K., Yamano, K., Maeno, Y., Nakajima, K., Matsuoka, M., Wada, Y. and

   Sorimachi, M., 1992. Jridovirus infection of cultured red sea bream, Paigus mal'or.

   Fish Pathol. 27, 19-27.

Isshiki, T., Nishizawa, T., Kobayashi, T., Nagano, T., Miyazaki, T., 2001. An outbreak

   ofVHSV (viral hemorrhagic septicemia virus) infection in farmed Japanese flounder

   Paralichthys olivaceus in Japan. Dis. Aquat. Org. 47, 87-99.

Jenner, R. G., Alba, M. M., Boshoff, C. and Kellam, P., 2001. Kaposi's sarcoma-

   associated herpesvirus latent and Iytic gene expression as revealed by DNA arrays. J

   Virol 75, 891-902.

Jeong, J. B., Jun, L. J., Yoo, M. H., Kim, M. S., Komisar, J. L. and Jeong, H. D., 2003.

   Characterization of the DNA nucleotide sequences in the genome of red sea bream

   iridoviruses isolated in Korea. Aquaculture 220, 1 19-133.

Jones, J. O. and Arvin, A. M., 2003. Microarray analysis ofhost cell gene transcription in

   response to varicella-zoster virus infection of human T cells and fibroblasts in vitro

   and SCIDhu skin xenografts in vivo. J Virol 77, 1268-1280.

33



Ju, Z., Wells, M. C. and Walter, R. B., 2007. DNA microarray technology in

   toxicogenomics of aquatic models: methods and applications. Comp Biochem Physiol

   C Toxicol Pharmacol 145, 5-14.

Kanda, T., Kusov, Y., Yokosuka, O. and Gauss-Muller, V., 2004. Interference of

   hepatitis A virus replication by small interfering RNAs. Biochem Biophys Res

   Commun 318, 341-345.

Kanda, T., Zhang, B., Kusov, Y., Yokosuka, O. and Gauss-Muller, V., 2005. Suppression

   of hepatitis A virus genome translation and replication by siRNAs targeting the

   internal ribosomal entry site. Biochem Biophys Res Commun 330, 1217-1223.

Karaca, G., Anobile, J., Downs, D., Burnside, J. and Schnidt, C. J., 2004. Herpesvirus of

   turkeys: microarray analysis of host gene responses to infection. Virology 318, 102-

   111.

Karpala, A. J., Doran, T. J. and Bean, A. G., 2005. Immune responses to dsRNA:

   implications for gene silencing technologies. Immunol. Cell Biol. 83, 21 1-216.

Kash, J. C., Muhlberger, E., Carter, V., Grosch, M., Perwitasari, O., Proll, S. C., Thomas,

   M. J., Weber, F., Klenk, H. D. and Katze, M. G., 2006. Global suppression ofthe host

   antiviral response by Ebola- and Marburgviruses: increased antagonism of the type I

   interferon response is associated with enhanced virulence. J Virol 80, 3009-3020.

Kawakami, H. and Nakajima, K., 2002. Cultured fish species affected by red sea bream

   iridoviral disease from 1996-2000. Fish Pathol. 37, 45-47.

Keene, K M., Foy, B. D., Sanchez-Vargas, I., Beaty, B. J., Blair, C. D. and Olson, K. E.,

   2004. RNA interference acts as a natural antiviral response to O'nyong-nyong virus

   (Alphavirus; Togaviridae) infection ofAnopheles gambiae. Proc Natl Acad Sci U S A

   1O1, 17240-17245.

Kennerdell, J. R. and Carthew, R. W., 1998. Use ofdsRNA-mediated genetic interference

   to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1O17-

   1026.

34



Khadljah, S., Neo, S. Y., Hossain, M. S., Miller, L. D., Mathavan, S. and Kwang, J.,

   2003. Identification of white spot syndrome virus latency-related genes in specific-

   pathogen-free shrimps by use of a microarray. J Virol 77, 1O162-1O167.

Kim, J. Y., Chung, S. K., Hwang, H. Y., Kim, H., Kim, J. H., Nam, J. H. and Park, S. I.,

   2007. Expression of short hairpin RNAs against the coxsackievirus B3 exerts

   potential antiviral effects in Cos-7 cells and in mice. Virus Res 125, 9-13.

Kim, V. N. and Nam, J. W., 2006. Genomics ofmicroRNA. Trends Genet. 22, 165-173.

Kimura, T., Yoshimizu, M., and Gorie, S., 1986. A new rhabdovirus isolated in Japan

   from cultured hirame (Japanese fiounder) Paralichthys olivaceus and ayu

   Plecoglossus altivelis. Dis. Aquat. Org. 1, 209-217.

Kronl<e, J., Kittler, R., Buchholz, F., Windisch, M. P., Pietschmann, T., Bartenschlager,

   R. and Frese, M., 2004. Alternative approaches for efficient inhibition of hepatitis C

   virus RNA replication by small interfering RNAs. J Virol 78, 3436-3446.

Kurita, J., Nakajima, K., Hirono, I. and Aoki, T., 2002. Complete genome sequencing of

   red sea bream JridoviTus (RSIV). Fisheries Science (SuLpLpl. Ill) 68, 1 1 13-1 1 15.

Kurobe, T., Yasuike, M., Kimura, T., Hirono, I. and Aoki, T., 2005. Expression profiling

   of immune-related genes from Japanese flounder Paralichthys olivaceus kidney cells

   using cDNA microarrays. Dev. Comp. Immunol. 29, 515-523.

Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saib,

   A. and Voinnet, O., 2005. A cellular microRNA mediates antiviral defense in human

   cells. Science 308, 557-560.

Lee, N. S., Dohjima, T., Bauer, G., Li, H,, Li, M. J., Ehsani, A., Salvaterra, P. and Rossi,

   J., 2002. Expression of small interfering RNAs targeted against HIV-1 rev transcripts

   in human cells. Nat Biotechnol 20, 500-505.

Lee, N. S. and Rossi, J. J., 2004. Control of HIV-1 replication by RNA interference.

   Virus Res. 102, 53-58.

Leong, W. F., Tan, H. C., Ooi, E. E., Koh, D. R. and Chow, V. T., 2005. Microarray and

   real-time RT-PCR analyses ofdifferential hunian gene expression patterns induced by

35



   severe acute respiratory syndrome (SARS) coronavirus infection of Vero cells.

   Microbes Infect 7, 248-259.

Lettieri, T., 2006. Recent applibations of DNA microarray technology to toxicology and

   ecotoxicology. Environ. Health Perspect. 1 l4, 4-9.

Li, H. W. and Ding, S. W., 2005. Antiviral silencing in animals. FEBS Lett. 579, 5965-

   5973.

Liu, W. J., ChaRg, Y. S., Wang, C. H., Kou, G. H. and Lo, C. F., 2005. Microarray and

   RT-PCR screening for white spot syndrome virus immediate-early genes in

   cycloheximide-treated shrimp. Virology 334, 327-341.

Loy, A. and Bodrossy, L., 2006. Highly parallel microbial diagnostics using

   oligonucleotide microarrays. Clin. Chim. Acta 363, 106-1 19.

Lua, D. T., Yasuike, M., Hirono, I. and Aoki, T., 2005. Transcription program ofred sea

   bream iridovirus as revealed by DNA microarrays. J. Virol. 79, 15151-15164.

Mahardika, K., Zafran, Yamamoto, A. and Miyazaki, T., 2004. Susceptibility ofjuvenile

   humpback grouper Cromileptes altivelis to grouper sleepy disease iridovirus

   (GSDIV). Dis. Aquat. Org. 59, 1-9.

Marks, H., Vorst, O., van Houwelingen, A. M., van Hulten, M. C. and Vlak, J. M., 2005.

   Gene-expression profiling of White spot syndrome virus in vivo. J Gen Virol 86,

   2081-2100.

Martinez-Guzman, D., Rickabaugh, T., Wu, T. T., Brown, H., Cole, S., Song, M. J.,

   Tong, L. and Sun, R., 2003. Transcription program of murine gammaherpesvirus 68.

   J. Virol. 77, 10488-10503.

McCaffrey, A. P., Nakai, H., Pandey, K., Huang, Z., Salazar, F. H., Xu, H., Wieland, S.

   F., Marion, P. L. and Kay, M. A., 2003. Inhibition of hepatitis B virus in mice by

   RNA interference. Nat Biotechnol 21, 639-644.

McCown, M., Diamond, M. S. and Pekosz, A., 2003. The utility of siRNA transcripts

   produced by RNA polymerase i in down regulating viral gene expression and

   replication ofnegative- and positive-strand RNA viruses. Virology 313, 514-524.

36



McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J. and Sharp, P. A., 2002. Gene

   silencing using micro-RNA designed hairpins. RNA 8, 842-850.

Mjska, E. A., 2005. How microRNAs control cell division, differentiation and death.

   Curr. Opin. Genet. Dev. 15, 563-568.

Miyazaki, T,, Fujiwara, J., Kobara, K., Matsumoto, N., Abe, M., Nagano, T., 1989.

   Histopathology associated with two viral diseases of larval and juvenile fishes:

   epidermal necrosis of the Japanese flounder Paralichthys olivaceus and epithelial

   necrosis ofblack sea bream Acanthopagrus schlegeli. J. Aquat. Anim. Health 1, 85-

   93.

Morgan, R. W., Sofer, L., Anderson, A. S., Bernberg, E. L., Cui, J. and Burnside, J.,

   2001. Induction of host gene expression following infection of chicken embryo

   fibroblasts with oncogenic Marek's disease virus. J Virol 75, 533-539.

Morrissey, D. V., Lockridge, J. A., Shaw, L., Blanchard, K., Jensen, K., Breen, W.,

   Hartsough, K., Machemer, L., Radka, S,, Jadhav, V,, Vaish, N., Zinnen, S., Vargeese,

   C., Bowman, K., Shaffer, C. S., Jeffs, L. B., Judge, A., MacLachlan, I. and Polisky,

   B., 2005. Potent and persistent in vivo anti-HBV activity of chemically modified

   siRNAs. Nat. Biotechnol. 23, 1002-1007.

Mossman, K. L., Macgregor, P. F., Rozmus, J. J., Goryachev, A. B., Edwards, A. M. and

   Smiley, J. R., 2001. Herpes simplex virus triggers and then disarms a host antiviral

   response. J Virol 75, 750-758.

Muroga, K., 2001. Viral and bacterial diseases of marine fish and shellfish in Japanese

   hatcheries. Aquaculture 202, 23-44.

Nair, V. and Zavolan, M., 2006. Virus-encoded microRNAs: novel regulators of gene

   expression. Trends Microbiol 14, 169-175.

Nakajima, K., Maeno, Y., Honda, A., Yokoyama, K., Tooriyama, K, Manabe, S., 1999.

   Effectiveness of a vaccine against red sea bream iridoviral disease in a field trial test.

   Dis. Aquat. Org. 36, 73-75.

Nakajima, K., Maeno, Y., Kurita, J., Inui, Y., 1997. Vaccination against red sea bream

   iridoviral disease in red sea bream. Fish. Pathol. 32, 205-209.

37



Nakajima, K. and Sorimachi, M., 1994. Biological and physio-chemical properties ofthe

   iridovirus isolated from cultured red sea bream, Pagrus maior. Fish Path. 29 (1), 29-

   33.

Nakajima, K., Y. Maeno, M. Fukudome, Y. Fukuda, S. Tanaka, and M. Sorimachi, 1995.

   Immunofluorescence test for the rapid diagnosis ofred sea bream iridovirus infection

   using monoclonal antibody. Fish Path. 3O (2), 1 15-1 19.

Nakamura, H., Lu, M., Gwack, Y., Souvlis, J., Zeichner, S. L. and Jung, J. U., 2003.

   Global changes in Kaposi's sarcoma-associated virus gene expression patterns

   following expression of a tetracycline-pinducible Rta transactivator. J Virol 77, 4205-

   4220.

Napoli, C., Lemieux, C. and Jorgensen, R., 1990. Introduction of a Chimeric Chalcone

   Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous

   Genes in trans. Plant Cell 2, 279-289.

Ngo, H., Tschudi, C., Gull, K. and Ullu, E., 1998. Double-stranded RNA induces mRNA

   degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95, 14687-14692.

Nguyen, H. D., Mekuchi, T., Imura, K., Nakai, T., Nishizawa, T., Muroga, K., 1994.

   Occurrence of viral nervous necrosis (VNN) in hatchery-reared juvenile Japanese

   flounder ParalichthJvs olivacezas. Fisheries Sci. 60, 551-554.

Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J., Lee, S. K.,

   Collman, R. G., Lieberman, J., Shankar, P. and Sharp, P. A., 2002. siRNA-directed

   inhibition ofHIV-1 infection. Nat. Med. 8, 681-686.

O'Brien, L., 2007. Inhibition of multiple strains of Venezuelan equine encephalitis virus

   by a pool of four short interfering RNAs. Antiviral Res. 75, 20-29.

Oshima, S., Hata, J., Hirasawa, N., Ohtaka, T., Hirono, I., Aoki, T. and Yamashita, S.,

   1998. Rapid diagnosis of red sea bream iridovirus infection using the polymerase

   chain reaction. Dis. Aquat. Organ. 32, 87-90.

Oshima, S., Hata, J., Segawa, C., Hirasawa, N. and Yamashita, S., 1996. A method for

   direct DNA amplification of uncharacterized DNA viruses and for development of a

38



   viral polymerase chain reaction assay: application to the red sea bream iridovirus.

   Anal. Biochem. 242, 15-19.

Otsuka, M., Aizaki, H., Kato, N., Suzuki, T., Miyamura, T., Omata, M. and Seki, N.,

   2003. Differential cellular gene expression induced by hepatitis B and C viruses.

   Biochem Biophys Res Commun 300, 443-447.

Pan, X., Zhang, B., San Francisco, M. and Cobb, G. P., 2007, Characterizing viral

   microRNAs and its application on identifying new microRNAs in viruses. J. Cell.

   Physiol. 211, 1O-18.

Pasquini, G., Barba, M., Hadidi, A., Faggioli, F., Negri, R., Sobol, I., Tiberini, A.,

   Caglayan, K., Mazyad, H., Anfoka, G., Ghanim, M., Zeidan, M. and Czosnek, H.,

   2007. 01igonucleotide microarray-based detection and genotyping ofPlum pox virus.

   J. Virol. Methods.

Paulose-Murphy, M., Ha, N. K., Xiang, C., Chen, Y., Gillim, L., Yarchoan, R., Meltzer,

   P., Bittner, M., Trent, J. and Zeichner, S., 2001. Transcription program of human

   herpesvirus 8 (kaposi's sarcoma-associated herpesvirus). J Virol 75, 4843-4853.

Phipps, K. M., Martinez, A., Lu, J., Heinz, B. A. and Zhao, G., 2004. Small interfering

   RNA molecules as potential anti-human rhinovirus agents: in vitro potency,

   specificity, and mechanism. Antiviral Res 61, 49-55.

Pietiainen, V., Hutmen, P. and Hyypia, T., 2000. Effects of echovirus 1 infection on

   cellular gene expression. Virology 276, 243-250.

Robalino, J., Bartlett, T., Shepard, E., Prior, S., Jaramillo, G., Scura, E., Chapman, R. W.,

   Gross, P. S., Browdy, C. L. and Warr, G. W., 2005. Double-stranded RNA induces

   sequence-specific antiviral silencing in addition to nonspecific immunity in a marine

   shrimp: convergence of RNA interference and innate immunity in the invertebrate

   antiviral response? J Virol 79, 13561-13571.

Robalino, J., Bartlett, T. C., Chapman, R. W., Gross, P. S., Browdy, C. L. and Warr, G.

   W., 2007. Double-stranded RNA and antiviral immunity in marine shrimp: inducible

   host mechanisms and evidence for the evolution of viral counter-responses. Dev.

   Comp. Immunol. 31, 539-547.

39



Romano, N. and Macino, G., 1992. Quelling: transient inactivation of gene expression in

   Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6,

   3343-3353.

Sanchez-Vargas, I., Travanty, E. A., Keene, K. M., Franz, A. W,, Beaty, B. J., Blair, C.

   D. and Olson, K. E., 2004. RNA interference, arthropod-borne viruses, and

   mosquitoes. Virus Res 102, 65-74.

Sarnow, P., Jopling, C. L., Norman, K. L., Schutz, S. and Wehner, K. A., 2006.

   MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nat Rev

   Microbiol 4, 651--659.

Schena, M., Shalon, D., Davis, R. W. and Brown, P. O., 1995. Quantitative monitoring of

   gene expression patterns with a complementary DNA microarray. Science 270, 467-

   470.

Schott, D. H., Cureton, D. K., Whelan, S. P. and Hunter, C. P., 2005. An antiviral role for

   the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S

   A 102, 18420-18424.

Schutze, N., 2004. siRNA technology. Mol. Cell Endocrinol. 213, 1 15-1 19.

Schyth, B. D., Lorenzen, N. and Pedersen, F. S., 2006. Antiviral activiry of small

   interfering RNAs: specificity testing using heterologous virus reveals interferon-

   related effects overlooked by conventional mismatch controls. Virology 349, 134-

   141.

Sellheyer, K. and Belbin, T. J., 2004. DNA microarrays: from structural genomics to

   functional genomics. The applications of gene chips in dermatology and

   dermatopathology. J. Am. Acad. Dermatol. 51, 681-692; quiz 693-686.

Sim, A. C., Luhur, A., Tan, T. M., Chow, V. T. and Poh, C. L., 2005. RNA interference

   against enterovirus 71 infection. Virology 341, 72-79.

Sledz, C. A. and Williams, B. R., 2005. RNA interference in biology and disease. Blood

   106, 787-794.

Sorimachi, M. a. H., T., 1985. Characteristics and pathogenicity of a virus isolated from

   yellowtail fingerlings showing ascites, Fish. Pathol. 19, 23 1-238.

40



Stingley, S. W., Ramirez, J. J., Aguilar, S. A., Simmen, K., Sandri-Goldin, R. M., Ghazal,

   P. and Wagner, E. K., 2000. Global analysis of herpes simplex virus type l

   transcription using an oligonucleotide-based DNA microarray. J Virol 74, 9916-9927.

Storch, G. A., 2000. Diagnostic virology. Clin. Infect. Dis. 31, 739-751.

Stram, Y. and Kuzntzova, L., 2006. Inhibition of viruses by RNA interference. Virus

   Genes 32, 299-306.

Sudthongkong, C., Miyata, M. and Miyazaki, T., 2002. Viral DNA sequences of genes

   encoding the ATPase and the major capsid protein of tropical iridovirus isolates

   which are pathogenic to fishes in Japan, South China Sea and Southeast Asian

   countries. Arch. Virol. 147, 2089-2109.

Sullivan, C. S. and Ganem, D., 2005. MicroRNAs and viral infection. Mol. Cell 20, 3-7.

Takano, R., Nishizawa, T., Arimoto, M., and Muroga, K., 2000. Isolation of viral

   haemorrhagic septicaemia virus (VHSV) from wild Japanese flounder, Paralickthys

   olivaceus. Bull. Eur. Assoc. Fish Pathol. 20.

Tan, F. L. and Yin, J. Q., 2004. RNAi, a new therapeutic strategy against viral infection.

   Cell Res. 14, 460-466.

Tang, G., 2005. siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci. 30,

   106-114.

Taylor, L. A., Carthy, C. M., Yang, D., Saad, K., Wong, D., Schreiner, G., Stanton, L. W.

   and McManus, B. M., 2000. Host gene regulation during coxsackievirus B3 infection

   in mice: assessment by microarrays. Circ. Res. 87, 328-334.

Tirasophon, W., Roshorrn, Y. and Panyim, S., 2005. Silencing of yellow head virus

   replication in penaeid shrimp cells by dsRNA. Biochem. Biophys. Res. Commun.

   334, 102-107.

Tompkins, S. M., Lo, C. Y., Tumpey, T. M. and Epstein, S. L., 2004. Protection against

   lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. U

   S A 101, 8682--8686.

Triboulet, R., Mari, B., Lin, Y. L., Chable-Bessia, C., Bermasser, Y., Lebrigand, K.,

   Cardinaud, B., Maurin, T., Barbry, P., Baillat, V., Reynes, J., Corbeau, P., Jeang, K.

41



   T. and Benkirane, M., 2007. Suppression of microRNA-silencing pathway by HIV-1

   during virus replication. Science 315, 1579-1582.

Tsai, J. M., Wang, H. C., Leu, J. H., Hsiao, H. H., Wang, A. H., Kou, G. H. and Lo, C. F.,

   2004. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp

   white spot syndrome virus. J Virol 78, 11360-11370.

Uprichard, S. L., Boyd, B., Althage, A. and Chisari, F. V., 2005. Clearance ofhepatitis B

   virus from the liver oftransgenic mice by short hairpin RNAs. Proc Natl Acad Sci U

   S A 102, 773-778.

van 't Wout, A. B., Lehrman, G. K., Mikheeva, S. A., O'Keeffe, G. C., Katze, M. G.,

   Bumgarner, R. E., Geiss, G. K. and Mullins, J. I., 2003. Cellular gene expression

   upon human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines. J Virol

   77, 1392-1402.

van der Krol, A. R., Mur, L. A., Beld, M, Mol, J. N. and Stuitje, A. R., 1990. Flavonoid

   genes in petunia: addition of a limited number of gene copies may lead to a

   suppression of gene expression. Plant Cell 2, 291-299.

van Hal, N. L., Vorst, O., van Houwelingen, A. M., Kok, E. J., Peijnenburg, A., Aharoni,

   A., van Tunen, A. J. and Keijer, J., 2000. The application of DNA microarrays in

   gene expression analysis. J. Biotechnol. 78, 271-280.

van Rij, R. P. and Andino, R., 2006. The silent treatment: RNAi as a defense against

   virus infection in mammals. Trends Biotechnol. 24, 186-193.

Wada, S., et al., 1986. Histopathological findings of tiger puffer, Takifugu rubri es,

   artificially infected with "Kuchijiro-sho". Fish Pathol. 21, 1O1-104.

Wang, C. S., Shih, H. H., Ku, C. C. and Chen, S. N., 2003. Studies on epizootic

   iridovirus infection among red sea bream, Pagrus major (Temminck & Schlegel),

   cultured in Taiwan. J. Fish Dis. 26, 127-133.

Wang, D., Coscoy, L., Zylberberg, M., Avila, P. C., Boushey, H. A., Ganem, D. and

   DeRisi, J. L., 2002. Microarray-based detection and genotyping of viral pathogens.

   Proc Natl Acad Sci U S A 99, 15687-15692.

42



Wang, X. H., Aliyari, R., Li, W. X., Li, H. W., Kim, K., Carthew, R., Atkinson, P. and

   Ding, S. W., 2006. RNA interference directs innate immunity against viruses in adult

   Drosophila. Science 312, 452-454.

Wang, Z., Ren, L., Zhao, X, Hung, T., Meng, A., Wang, J. and Chen, Y. G., 2004.

   Inhibition of severe acute respiratory syndrome virus replication by small interfering

   RNAs in mammalian cells. J. Virol. 78, 7523•-7527.

Williams, T., 1996. The iridoviruses. Adv. Virus Res. 46, 345-412.

Wolf, K., 1988. Fish Viruses and Fish Viral Diseases. Cornell Univ. Press, Ithaca.

Worby, C. A., Simonson-Leff, N. and Dixon, J. E., 2001. RNA interference of gene

   expression (RNAi) in cultured Drosophila cells. Sci STKE 2001, PLI .

Wu, C. J., Huang, H. W., Liu, C. Y., Hong, C. F. and Chan, Y. L., 2005. Inhibition of

   SARS-CoV replication by siRNA. Antiviral Res. 65, 45-48.

Xie, J., Lu, L., Deng, M., Weng, S., Zhu, J., Wu, Y., Gan, L., Chan, S. M. and He, J.,

   2005. Inhibition of reporter gene and Iridovirus-tiger frog virus in fish cell by RNA

   interference. Virology 338, 43-52.

Yamagishi, J., Isobe, R., Takebuchi, T. and Bando, H., 2003. DNA microarrays of

   baculovirus genomes: differential expression of viral genes in two susceptible .insect

   cell lines. Arch. Virol. 148, 587-597.

Yasuike, M., Kondo, H., Hirono, I. and Aoki, T., 2007. Difference in Japanese flounder,

   Paralichthys olivaceus gene expression profile following hirame rhabdovirus

   (HIRRV) G and N protein DNA vaccination. Fish Shellfish Immunol 23, 53 1-54l .

Yodmuang, S., Tirasophon, W., Roshorm, Y., Chinnirunvong, W. and Panyim, S., 2006.

   YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents

   mortality. Biochem Biophys Res Commun 341, 351-356.

Yokota, T., Sakamoto, N., Enomoto, N., Tanabe, Y., Miyagishi, M., Maekawa, S., Yi, L.,

   Kurosaki, M., Taira, K., Watanabe, M. and Mizusawa, H., 2003. Inhibition of

   intracellular hepatitis C virus replication by synthetic and vector•-derived small

   interfering RNAs. EMBO Rep 4, 602-608.

43



Yoshikoshi, K., Inoue, K., 1990. Viral nervous necrosis in hatchery-reared larvae and

   juveniles ofparrotfish, Oplegnathus fasciatus (Temminck and Schegel). J. Fish. Dis.

   13, 69-77.

Yuan, J., Cheung, P. K., Zhang, H. M., Chau, D. and Yang, D., 2005. Inhibition of

   coxsackievirus B3 replication by small interfering RNAs requires perfect sequence

   match in the central region ofthe viral positive strand. J Virol 79, 2151-2159.

Zhang, W., Yang, H., Kong, X., Mohapatra, S., San Juan-Vergara, H., Hellermann, G.,

   Behera, S., Singam, R., Lockey, R. F. and Mohapatra, S. S., 2005. Inhibition of

   respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the

   viral NS1 gene. Nat Med 11, 56-62.

Zhao, P., Qin, Z. L., Ke, J. S., Lu, Y., Liu, M., Pan, W., Zhao, L. J., Cao, J. and Qi, Z. T.,

   2005. Small interfering RNA inhibits SARS-CoV nucleocapsid gene expression in

   cultured cells and mouse muscles. FEBS Lett. 579, 2404-241O.

Zheng, Z. M., Tang, S. and Tao, M., 2005. Development of resistance to RNAi in

   mammalian cells. Ann. N.Y. Acad. Sci. 1058, 105-118.

Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T, and Shenk, T., 1998. Cellular gene

   expression altered by human cytomegalovirus: global monitoring with

   oligonucleotide arrays. Proc Natl Acad Sci U S A 95, 14470-14475.

44



CHAPTER 2

THE PATHOGENESIS OF RED SEABREAM tR/DOVtRUS (RStV)

 INFECTION AS REVEALED BY VIRAL DNA MICROARRAYS
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Abstract

   Red seabream iridovirus (RSIV) disease is a serious disease of many marine fish

species in Japan and elsewhere. To better understand the molecular pathogenic

mechanism, we examined the transcriptional profile of RSIV in infected fish using a

DNA microarray. Expression ofRSIV open reading frames (ORFs) was first detected at

about 5 days post-infection (d.p.i.), and accounted for about 450/o oftotal ORFs. Almost

all the ORFs (970/o-990/o) were expressed at their maximum levels during 7-9 d.p.i. The

expression levels and the number of expressed ORFs started to decrease at 1O d.p.i. These

results suggest that pathogenesis ofRSIV infection began at around day 5, and continued

with high levels of viral multiplication until viral clearance by host antiviral defenses

starting from around 10 d.p.i. A comparison of viral gene expression pattems in the

spleen and kidney over the course of the infection clearly provides a better understanding

of the viral pathogenesis in different host cell types, and further suggests that RSIV

preferentially targets the spleen. The spleen may thus be a susceptible organ for diagnosis

of iridoviral disease.

Keyvvords: DNA microarrays, RT-PCR, iridoviruses, RSIV, pathogenesis.
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2.1 Introduction

   Systemic iridoviral infections have caused high mortality in cultured freshwater and

marine fish species in many parts ofthe world (Chao et al., 2004; Iwamoto et al., 2002;

Qin et al., 2003). Outbreaks ofthese diseases have been reported in Australia, France,

Germany, Finland, Denmark, United State, Taiwan, Southeast Asia and Japan (Huang et

al., 2004). In Japan, an iridoviral disease has been recorded in at least 31 marine fish

species (Kawakami and Nakajima, 2002), The iridoviral pathogen was first isolated from

red seabream (Pagrus maJ'or) in 1992 and named red seabream iridovirus (RSIV), and

thus the disease was called as red seabream iridoviral disease (RSIVD) (Inouye et al.,

1992). RSIV-infected fish showed disease symptoms from 5 days of infection, and

mortality commenced at day 6 and increased up to 900/o at day 9 (Oshima et al., 1998).

The infected fishes displayed enlarged cells in spleen, kidney, liver and gills (Inouye et

al., 1992). A similar disease has recently been documented in some other Asian countries

(Chao et al., 2002; Chou et al., 1998; Do et al., 2004; Jeong et al., 2003; Mahardika et

al., 2004; Wang et al., 2003). Due to the devastating effects of this pathogen to marine

aquaculture, various rapid and sensitive diagnostic methods, as well as some control

strategies have been developed for RSIV (Caipang et al., 2004; Caipang et al., 2003;

Caipang et al., 2006; Jeong et al., 2004; Kurita et al., 1998; Nakajima, 1995; Oshima et

al., 1998; Oshima et al., 1996). However, liule is known about the pathogenic

mechanism and the most susceptible organ to iridoviral infection in molecular detail.

Gene expression is a molecular indicator for the annotation of mechanisms underlying

normal cellular processes as well as the molecular basis for disease (Clewley, 2004).

Therefore, studies of RSIV gene expression patterns are necessary and usefu1 for

understanding of the viral molecular pathogenic mechanism, and hence importance of

DNA microarray technology, a powerfu1 tool of examining gene expression.

   The uses of DNA microarray technology in molecular virology have been reviewed

(Clewley, 2004; Cummings and Relman, 2000; Hanington et al., 2000; Ye et al., 2001).

Its potential benefits are able to accelerate the annotation ofvarious aspects ofboth sides

of complex virus-host interactions in molecular detail. Viral gene-derived DNA
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microarrays provide a better understanding of the viral DNA replication and gene

expression strategies; identify virulence-associated genes and their roles involved in viral

pathogenesis; and provide possible clues for the pathogenesis of the virus. Moreover, the

DNA microarrays derived from highly conserved sequence regions within viral families

have been currently utilized as promising diagnostic tools (Pasquini et al., 2007; Wang

et al., 2002). On the other hand, host gene-derived DNA microarrays provide a better

understanding of host response at the level of gene expression and provide a molecular

description of the events that follow the viral infection, as well as explain differences in

pathogenesis between related strains ofthe same virus or family (Cummings and Relman,

2000; Kash et al., 2006).

   This technology is well suited for genome-wide transcription studies, and is

especially usefu1 for detemiining the complex transcriptional program of large DNA

viruses (Chambers et al., 1999; DeFilippis et al., 2003). It has been successfu11y used to

explore viral gene expression patterns of mammalian and aquatic viruses at different

replication stages of viral life cycle or under different conditions both in cell culture

systems (Ahn et al., 2002; Chambers et al., 1999; Ebrahimi et al., 2003; Lua et al.,

2005; Paulose-Murphy et al., 2001) and experimental animal models (Liu et al., 2005;

Marks et al., 2005; Martinez-Guzman et al., 2003; Rochford et al., 2001; Tsai et al.,

2004). It has also been used to explore the variability in transcriptional activity for every

gene between closely related pathogen strains or between different targeted cellslorgans

of viruses (Cummings and Relman, 2000). By usting a DNA microarray of baculovirus

genomes (Ac-BmNPV chip), differential gene expression of autographa californica

multiple nucleopolyhedrovirus (AcMNPV) involving in the viral life cycle were revealed

between two susceptible insect cell lines, implying the different expression of these virai

genes accounts for the differences in viral replication between different targeted-cells

(Yamagishi et al., 2003).

   We used RSIV as a model to explore the iridoviral transcriptional profiles during the

course of an infection both in cell culture and fish model studies by using viral DNA

microarrays. Our previous studies in a cell culture system (Lua et al., 2005) provided a

better understanding of the RSIV DNA replication and gene regulation strategies.
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However, another interest was to focus on the molecular pathogenic mechanisms of the

virus. To this end, we examined transcriptional profiles of RSIV in infected spleen and

investigated differences in viral gene expression between spleen and kidney over the

time-course of an in vivo infection in a fish model. We have shown here, for the first time,

in vivo genome-wide transcription program of an iridovirus by using DNA microarray

                                                        'technology. The present study provided a greater understanding of the molecular

pathogenic mechanisms and explored, at the molecular level, a susceptible organ, for

RSIV infection, and hence possible clues for early viral screening. Such studies will be of

enormous contribution to the thorough of knowledge of RSIV infection and control of

iridoviral diseases.

22 Materialsandmethods
2. 2. 1 Cetl culture and virus stock

   Grunt fin (GF) cells (Clem et al., 1961) were maintained at 250C in minimum

essential medium (MEM) (Invitrogen, USA) supplemented with 1OO/o fetal bovine serum

(JRH Biosciences, Lenexa, KS, USA), 100 IU/ml of penicillin, and 100 ptglml

streptomycin for virus propagation. RSIV stock was prepared in GF cells as previously

described (Lua et al., 2005). The virus titer was determined using the 500/o tissue culture

infective dose (TCIDso) standard method (Reed and Muench, 1938).

2.2.2 In vivo virus infection andtime-coursesampling

   Red seabream juveniles were experimentally injected with 150 pl of the RSIV

inoculum (5.0 X 105 TCIDselml) and held in tanks supplied with running seawater at

250C. Control fish were injected with the same volume of phosphate buffered saline.

Thirty fish were sacrificed immediately after the RSIV infection and were referred to as O

day post-infection (d.p.i.) fish. Alive fish showed lethargic, severe anemia, petechiae of

gills was selected for sampling. Five fish were randomly sampled from the experimental

population on each of 2, 3, 5, 7, 9, 10, and 14 d.p.i. The spleens and kidneys were

removed from these fish and stored in RNAIater (Ambion, USA) according to the

manufacturer's protocol.
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2.2.3 Monitoring ofRSIVtranscri tionalprofiles during in vivo infection

   To examine changing RSIV gene expression levels in infected organs, total RNA was

isolated from RSIV-infected spleens at times up to 14 d.p.i. and reverse transcribed to

cDNA. cDNA target samples derived from time-course RNA samples were hybridized

against cDNA control samples derived from O d.p.i. RNA samples on viral DNA

microarray chips.

2.2.4 Monitoring of dbjferentially RSIV transcriptional profites in viral-infected

      spleen and kidney

   To investigate whether RSIV genes were differentially expressed in different

targeted-organs and to further explore a susceptible organ for RSIV infection, total RNA

was extracted from both RSIV-infected spleens and kidneys at times up to 14 d.p.i. and

reverse transcribed to cDNA. At each indicated time point, cDNA target samples derived

from the spleens were hybridized against cDNA control samples derived from the

kidneys on viral DNA microarray chips.

2. 2. 5 RNA preparation and labeled cDNA target construction

   Total RNA was extracted from the collected spleens and kidneys with TRIzol

(Invitrogen, USA) and subjected to DNase I treatment (Promega, USA) according to the

manufacturers' protocols. For each time-course target sample and control sample, cDNAs

were generated from 50 ptg total RNA using an RSIV antisense-strand specific primer

mixture. The cDNAs were first labeled with aminoallyl-dUTP using a LabelStarTMArray

Kit (Qiagen, USA) and purified with a QIAquick PCR Purification Kit (Qiagen, USA)

following the manufacturer's recommendations. The target and control aminoallyl-

cDNAs were then coupled with Cy5- and Cy3- monofunctional dyes (Amersham

Biosciences, UK), respectively, and purified with MinEluteTM Spin columns (Qiagen,

USA) according to the manufacturer's instructions.
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2.2.6 ConstructionofRSIVDNAmicroarraychi andmieroarrayhybridization

   The DNA microarray chips containing almost putative RSIV ORFs (92 ORFs) and

control genes used in this study were prepared exactly as described by Lua et al. (2005).

Briefly, RSIV ORFs fragments (approximately 300 to 1500 bp in length) were amplified

by PCR using viral genome as a template and specific primer sets. All PCR products

showing a single band of the appropriate size by gel electrophoresis were purified, and

reconstituted in TE buffer at a final concentration of about 500 pglml for construction of

microarray chip. Piscine P-actin genes from Japanese flounder and red seabream were

included as internal controls to normalize the microarray data. In addition, distilled water

was also used as a negative control. Each targeted probe was spotted in duplicate at

different parts of the chips to assess the consistency of hybridization and facilitate

comparison during the analysis. At each indicated time point, the Cy51Cy3-dUTP labeled

cDNAs were combined and hybridized to the microarray chips for 16-18h at 42oC. The

chips were rinsed several times and finally dried following the DNA microarray method

(Bowtell and Sambrook, 2002.) as modified by Lua et al. (Lua et al., 2005).

2.2.7 Statisticaldataanalysis

   The microarray chips were scanned using a GenePix 4000B array scanner and images

were analyzed by GenePix Pro 4.0 array analysis software (Axon Instruments, Inc., USA).

The Cy5 and Cy3 signal intensities were normalized to equilibrate them with the signal

intensity ofa spotted housekeeping gene (the P-actin gene) that was set to 1.

   The median signal intensity, which was subtracted from the background signal, was

used as an appropriate measure of absolute viral gene expression in infected spleens.

Only genes exhibiting signal intensities at least two-fold greater than the signal intensities

ofthe reference samples collected at O d.p.i. were used for statistical analysis.

   The ratio of medians and the cut-off method were used as appropriate differential

measure of viral gene expression between spleen and kidney. Genes with median ratios

from 2.0 were considered as up-regulated; genes with median ratios less than O.5 were
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considered as down-regulated, and genes with median ratios ranging between O.5 and 2.0

were considered as unchanged (Byon et al., 2005; Kurobe et al., 2005).

   The significance of differences between target samples and reference (control)

samples was determined with a paired t-test on replicated spots for each gene. p values of

less than O.05 were considered significant. The microarray data was also imported into

the cluster program 3.0 in conjunction with an average linkage hierarchical clustering

algorithm using Euclidian distance as the similarity metric. The cluster analysis allowed

grouping of RSIV ORITs with similar expression patterns, and presenting expression

levels of each ORF based on color-coded. After clustering, the results were visualized in

a tree structure by using a tree view program (Eisen et al., 1998) .

2.2.8 Reverse Transcri tion (RT)-PCR

   A two-step RT-PCR assay, in which cDNA is first synthesized and then used in PCR,

was used to determine expression of several RSIV ORFs for confirrning the microarray

data. Twenty pl of cDNA was synthesized from 5 pg total RNA derived from spleens and

kidneys by using M-MLV Reverse Transcriptase (Invitrogen, USA) according to the

manufacturer's protocols. RT-PCR was carried out in a 30 pl reaction volume containing

1 pl cDNA using Taq polymerase. The same specific primers for each RSIV ORF used in

the amplification of microarray probes were also employed here. The levels of B-actin

mRNA, which are assumed to be constant over most experimental conditions and used as

an internal control for microarray norrnalization, were also monitored by using a similar

procedure. Cycling parameters consisted of an initial denaturation at 950C for 2 min,

followed by 23 - 27 cycles of denaturation at 950C for 30 sec, annealing at 550C for 30

sec and elongation at 720C for 1 min, and a final elongation step at 720C for 5 min. PCR

cycles were optimized to determine differences in expression of RSIV transcripts

between spleen and kidney at different stages ofthe infection. A 23 cycle PCR was used

to deterrnine differences in expression at the high level spread stage of the infection (7-9

d.p.i.) while a 27 cycle PCR was performed to show differences in expression at the early

stage (5 d.p.i.) and late stage (1O-14 d.p,i.) of the infection.
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2.2.9 Determination ofinfectious viral eoncentration in spleen andkidney (TCJD50

      assay)

   RSIV was obtained from spleens and kidneys that were collected from RSIV-infected

red seabream during 7 - 9 d.p.i., and was propagated in GF cells as previously described

(Lua et al., 2005). TCIDso assay was used to determine the infectious viral concentration

ofRSIV stocks derived from spleens and kidneys. The cells were daily observed for CPE

indicative of viral replication and virus titer was calculated following the TCIDso

standard method (Reed and Muench, 1938).

2.3 Results

2. 3. 1 In vivo RSIV transcrip tion program

   The microarray analysis showed that no viral transcripts were detected in infected

spleens at 2 and 3 d.p.i. (data not shown), but viral transcripts showed significant changes

in expression from 5 d.p.i. onwards. At 5 d.p.i., 44 viral ORFs were significantly

expressed, accounting for about 44.60/o (p < O.05) of total RSIV ORFs. Almost all (about

970/o to about 99e/o, p < O.OOI) of viral ORFs were significantly expressed during the

period 7-9 d.p.i. (Table 1). As shown by the cluster analysis (Fig. 1), the expression

levels of viral ORFs were at their maximal levels during this period, showing high levels

of viral multiplication. However, the numbers and the expression levels of expressed

ORFs started to decrease at 10 d.p.i. The expression of only 250/o (p < O.05) of the ORFs

was detected at 14 d.p.i. (Table 1 & Fig, 1).

2.3.2 DifferentiatRSIVgene expressionproLfites in viral-infectedspteen andkidney

   A comparison of RSIV gene expression profiles between viral-infected spleen and

kidney at various time points following an in vivo infection, as determined by the RSIV

DNA microarray analysis, were detailed in Table 2 and summarized in Table 3, No viral

transcripts were detected in either spleens or kidneys at 2 and 3 d.p.i. (data not shown),

but viral transcripts were detected starting at 5 d.p.i. (Table 2 & Fig. 2). As shown in

detail in Table 2 or summarized in Table 3, all viral genes were expressed at higher levels

or no differences in expression in the spleens when compared with those in the kidneys
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throughout the infection. In particular, all viral genes were expressed at higher Ievels in

the spleens during the period 7-9 d.p.i. At day 7 after infection, about 600/o of expressed

genes showed more than tenfol-d difference in expression between spleens and kidneys

(Fig. 2).

2.3.3 Reverse transcri tion (RT) -I'CR analysis

   Seven RSIV ORFs were selected for confirming the microarray results by RT-PCR

(Fig. 3). Theses ORFs included IE transcript 097R that is associated with trans-activation

factors, E transcripts 092R, 324R, 407R and 618R that have been predicted to be

involved in viral DNA replication mechanisms, and L transcripts MCP (Major capsid

protein) and 291L that have been predicted to encode structural proteins ofthe virus. The

B-actin transcript was used as an internal control.

   As expected, no viral band was observed at day 2 or day 3 of the infection.

Differences in expression of these ORFs between spleens and kidneys during the

spreading stage of the virus (7-9 d.p.i.) were detected after both 23 and 27 PCR cycles

(Fig. 3A & 3B), while the differences at the early stage (5 d.p.i.) and late stage (10-14

d.p.i.) ofthe infection were detected after 27 PCR cycles (Fig. 3B). The expression levels

ofthe selected ORFs were all higher in the spleen than in the kidney. In addition, the 6-

actin transcript levels, as determined by RT-PCR, were similar between samples,

confirming that the B-actin gene can be used to normalize the viral gene expression

results across the microarrays.
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Table 1. Microarray analysis ofRSIV transcription program in vivo
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Table 1. Continued

No. ORF [PutativeFunction
Accession

No.
SigmalIintensityValue" CalibratedExpressionRatiob Kimetic

classC5d.p.i.7d.p.i.9d.p.i.10d.p.i.14d.p.i. 5d.p.i.7d.p.i.9d.p.i.10d.p.i.-4d.p.i.

264S1751696610gSO.289,jS3.7S1.06O.17
O.3111.006.721.66O.20

PuLativcphuspliaLblsc

Hypothetiealpretein

Hypotheticalprotein

Prolferatingcellnuclearantigen

Putativetmornecrosisfactorreceptorassociatedfactor

D5farnilyNlPase

A-AT71S37

]ut)O78615

A-tU98835

299593930399S2101'

7075a7120'

4243g9108
3a8277

215
HypQtheticalprotein

IIypvthcticalprotciii

H}rpotheticalprotein

U.21O,47'o.2ooo3o.sg1O,17O.23

A;]IF.yrinrepeqtrcon.!4,i!)itzg.prgtein

R]NG-f]rzgerclomain-eontainingpratein

1244''

O.32

O.21OS1
O.112.664.081.27O.2S'

05311.106.332.2g

63
6A

65
66
67
68
69
70
71
72
73
74
75
76
77
7R
79
80
81

82
63
g4
gs
86
87
88
89
90
91

92

O]ili430L

ORFn5gL
O]scF463R

ORF4S7L
O]llF488R

ORIF493R
OKFSUZR
oIvr:so6R

ORF51-SL
OR[F522L
OIit[F534L

ORF535R
ORF543R
o]iaissoR

Our5S4R
ORF562"R
OR[F569R
ORF57SR
ORF586L
OIll)-b5YL

O]stFS91R

CiRF596L
ORIF6OOL
ORF606R
ORF617L
O]i[E618R
()]i(E7628L

OIU7e32L
C)RF635L
ORF641L

Hypotheticalprotein

Hin5otheticalprotein"

Hypotheticaj.p.rotept.,...Hypothodcalpretcin

rFrypathp.tinnlprfitein

Hypothetiealprotein

Hypotheticalprotein

AAS18O67

AAW1909

A-AW19O6

.gLALrr71g9g

.ma98801

74g'2o2''2'dsg'6o

241

470191
439

O.45

O.417.S63,g31.SOO.41ttttt

O.101.161.21O.64O.12
193117Oza2tt

1,311.a4O,33
e.114.422,70O.76

Hypotheticalprotein

Hypothetscalprotem

HypvlhetivulpzvL:in

delOr{TA--specfieribenuÅëlease

Hypotheticalprotein

Hypotheticalpretein

Hypotheticalprotein

Hypotheticalpretein

Hypotheticalprotein

IIyputhcticalpretcin

Hyp"thetiralpmteim

7a5

10323861222
463385209'S6S2'l3

171573674i396'

g51199g30222
31112g,

S17167
363125
1441

O.86O.g5O.36
V.6VU.60

O.IB1.621,49a.69
O,092.221,g4O.39

O.52O,69O,22'

O.10O.731,14029
o.4so.goo,22
O.25O.32

LELEEEEEE

283'

92396
2SS
137

22419057821027110
27741411203362122'

13921431201•70g
141IS38

O.243.531.731.79O.22
O.Z97.672.e6O,e3O.2S
O.153.972.EE1.23
O.152.851.27a.26Putativeankvrinrepeatpratein 576149

ExpressedOR.Fs(Ofo) 44.6S98,9++96.7+k.79.3+t2Sk

a Signal intensity value is the background-subtracted median value
b The calibrated expression ratio is the ratio of the expression ofthe RSIV ORF in viral-infected cells compared to the B-actin control gene

C Abbreviation: IE, Immediate--Early; E, Early; L, Late; ND, Not Detected (adapted by Lua et al. 2005)

*(p < O.05); **(p < O.OO1)
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Fig. 1: Hierarchical cluster analysis of RSIV transcription program in vivo. calibrated
expression ratios for each ORF were categorized by an average linkage hierarchica1 clustering program.
Each rovv represents the expression profile of a single ORF, and each co1umn indicates time points after
infection. The normalized expression levels across al1 the time points are colorÅëoded. Green boxes indicate
expression ratios lower than the mean. Red boxes indicate expression ratios greater than the mean. Black
boxes indicate an intermediate level of expression and gray boxes indicate missing or not detected. The
magnitude of up-regulation tfom the mean is shown by differing intensities of red, with deep red showing

lower expression and bright red showing the highest levels of expression.
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Table 2. Comparison ofRSIV gene expression profiles between spleen and kidney

Accession Foldchange
INo ORF FutativeFunetion

No. 5d.p.i.7 d.p.i.9d.p.i. IOd.p.i. 14d.p.L

1 P.li.iFO16L Hypothetiealproteip...........-. .?.i[ 2,2 e.,5.. u
•2 ORFO18RHypotheticalproteipw.m..... 15.2 3,e 1.5 1.8

I3 ORF029RHypotheticalprotein g,s 3.9 1.4

l4 ORFe33RCytesineDNAme.thyltransferase AAW1S61 12 7,g 3,4 1.7i•

ls ORF.P.3.7RHypotheticalprgteip... 3.1 3,E Sl 2.1. 1,9

6 ORIF042RHypotheticalpretop 4.3 4,5 6,6 2.4 2.5

,7 ORF049RIsiING-finger-containingE3ubiquitinligase AAT1876 11,6 3,5 2,3 3.5

s OR[F054RPutative]ptAguanylytrap.sfgr?.se A-AL9878g 1.4 g.s 3.5 2.2 2.2

.9 OR[F063RLargestsubunitofDNA-dependentRNApolymerase BAA82753 4.7 2.5

IIO

JI

ORF077R.

ORIF092R

Pu.tativeDNA-bindingRr9!Fil.l..

.Putatiye.repticationfactor

Mrv1873
AAS18131

4.5

3.7

9.1

15.7

2.9

3.8

2.0

2.0 3.0

.12 ORF097RHypotheticalprotein 5,9 13.1 3.8 2.6'

'13 O]{E..1O1B Hypotheti:.alp;otg.i......... S6 25.4 2.6 2.3 4.1

•14 OR[Fle6RHrny.p..D.theticalprotein 6.2 24.7 3,3 1,8 2.6

l15 OR[F11IRHypotheticalprotgin. 4,9 3o.g 4.6 2,6 3.7

.16 OR[F122RHyp.etheticajprotein 3,2 14.3 3.3 2.0 2.9

'17 OR[E..l.?8R ;.l.mp....oth.etiFalprotF.i........-......nv.. lg,3ttt 4.3 2,3 3.4

ilg ORF135LHypotheticalprotein 3.0 le.6 3,2 2,3 3.3

l19 0RIF140RCytosineDNAmethyltransferase. AAM1861 8.1 2.7 1.3i

2e ORF145RHypotheticalprotein 13.7 3.3

;21 ORIF151RH.ypothetical.prgte.ml..........nv......"
'

10.8 3.2 1,6

l22 O]XF156R[[hioloxidereductase AAP33193 112 3.S 1.7•

,23 ORF161LUYI)Otheticalprotein 14.g 3.1 1.6

'24 ORF162RHypotheticalprotein 10.1 3.2 1.5

25 ORF171B.Hypothetiealmplein.. IS.2 3.3 1.6

26 ORF179LHypothetiealprotein O.8 S.7 2.5 12

27 ORF180RHypotheticalp[otein 16,8 4,8 1,9

28 ORF186RHypotheticalprotein 15,4 3,4 1.7.

29 OI(F197L.
-

g.yp.othgts.'ealprgtFin....

ttt

19.7 4.0 2,4i 3,6

i30 ORF19gRHypotheticalprotein 6.7 3.1 1,3

i31 ORF224LR[NApolymerasebetasubunit. AAT184g 7.6 3.S

32 ORF226RHypotheticalprotein 2,9 2.9 2.7 1.5

,33 ORF237LIprgestsubunitefPNA.-dgpendent.l.31rl.-...ApolymeraF.{... ABO18418 12.1 2.3 l5

134 ORF239RLargestsubunitofDNA-dependentRNApolymerase BAA82753 7,4 3,4 2,2

.35 OR[F256RDNArepairproteptB.AD2. BAA82754 18 9.7 3.6 2.0

i36 ORF26gLRibanucleotidereduetasesmallsubimit BAA82755 11.7 3.5 1.7

37 ORF291Lttin.t. L4rniniIiJ.typg,gp.id,erT;iq.l.growthfacto;;li.k..Fdomai;? AtL[[71838 4.5ttt.tttt.t ..2.?.. 4.6 2.4 3.3

.38 OR[F317LDNApolymerase 070736 1.4 12.2 3.5 1.S

i39 OR[F321RDNApolymerase ,IU3Oe7366 2,1 13.9 2,2 1,O 1,5

'40 ORF324RDNApolymerase ABOD7366 15.6 23.7 2.6 1,5 3,5

,41 OR[F333Ltttt Hy.R..otheticadprotein.
tt

3.1 17,O 3,3 1.6

'42 ORF342LHypotheticalprotein 18,2 2,8 2.0 18

.43 OBF.349LS.erine/thr,egninep;,,o,teinIFinasecatalyticdemaip IL4P.1828 4.4 16,4 3,7 1.g 2.1

I44 OR[F351RHypetheticalprotein 6.5 2.9
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Table 2. Continued

Accession Foldchange
.Ne ORF FutativeFurtction

No. 5d.p.i. 7 dp.i.9d.p.i. IO d.p.i.14 d.p,i.

45 ORF353RH.ype!l}gticalRIgtein 2,9 8,5 2.8, 1.9 2.6

/45 ORF37.3mLH.yp...o!l.ie4calprotein 3,3 10.5 3.8 1.9• 3.1

4..1. 9R.Fsu.b...l.?.g.B. Hmhypnvg..l...;..t/..g....al.......p..rgt.g.i... 2..1... 25.0ttt 4.3 1,5

4g o]iaF3goR. l4//pr.capsidprotein BAC66968 4.01 24.6•tttttt 3,6 1,8 2.7
t-tttt

49 ORF385RCatalyt.ig.4omptt.-..uofcti.-likephosphatas.e MP1821 12.2 3.0 15
so ORF390RHypotheticalprotein 3.7 3,5

51 ORF394RHypotheticalprotein 2.8 3.6

52 ORF396RTransmembraneaminoacidtransporter M"1g16 5.3 3.5 15

53 ORF401RHypotheticalprotein 1.8i 11,3 2.8 15

l54 ORF407RAT[Pase ABO07367 3.8' 16.4 3,1 1.7 3.0

,55 O]MF412LA[[[Pase MO16492 1,41 14.8' 3,1. 1,8 1.8

55 ORF413RAEPase ABO07367 18 18,1 3.1' 1,4 2.1

57 ORF420LHypotheticalp.rotein 9.9 4.8i 1.8

•sg OIllF423L RIN'G-fingerdornain-containingproteinttt M"19O6 6.2 2.6 1.4

59 OR[F424RPutativeani[yrinrepeatprotein AAL988O1 15,2 4.2 1,5

'60 ORF426RHypotheticalprotein 4,5 41.0 4S' 25 4.0

l61 OR[F430LPut.al4vg.phg.E.phatase.. A-AM1g37 1,7 23,9 3.5 1,7 2.0

62 ORF458LHypotheticalprotein 2.1 9.3 34 2,3 3.3

I53 ORF463RHypQg.heti.c"ajp;ot.e.i.-."..M.""..M 5.5 4.0

.64 ORF487LProlferatingcellnuclearantigen NP078615 O,8, 12A 2,7• 1.8

65 ORIF488RPutativetmornecrosisfaetorreceptorassociatedfactor AAL9g835 4,4 3.0

66 OR[F493RD5family1>TI[Pase MS18g67 8.8 3.6 15

l67 OR]F502RHyp"othegcalprotein. 5.2 3,2

68 OR]F506RHypotheticalprotein 3.7 3,1

l69 ORF515LHyR.othetieal.protein... so 3.0

I70 ORF534L
asy;1!.l.rg.peqt-cg.n!tll.iajg'"''prQsein

Mrv19O9 3,7 3.9, te
ttfitttttt

i71 OR[F535RHypotheticaj..pr.oteig. 6.5, 25.8' 2.4. 2.0 3.1

i72 ORF5434.IllIN- {.}r.lll.}gm,.F;..E.l.glp.tt.nvi.gg.I.1!4i{.ii4g,protein...... Mrv19e6 5D
ttttt

115ttrvtttt 3.4. 2.2 3.3

73 OR[F55aRHypothet/calp.;.g.!.g.ip.nv.- 49 21.5 3.5. 2,4 4.3

'74 ORF554RHypotheticalprotein 1.6 19.0 2.6. 1.4 1.9

75 ORF562RHypotheticaiprotein 2,8• 14.7 2.7 2.1 2.6

i76 ORF569RHypotheticalprotein 12 5.5 2.7

l77 ORF575RHypotheticalpretein O.8 16.5 4,2 1,6

l78 ORF586LHypetheticalprotein 10,9i 3,1•

79 OR[F591RHyr)otheticalprotein 3.9 2,1

lse OR[F596LdsRNA-specficribonuclease AAT1898 O.9• 6,3 3.2.t 1.3

81 OR[F600LHypotheticalpretein 4.8 2.7• 1.1

ig2 OICF606RHypotheticalprotein 6.8i 3.8 1,2

83 ORF617LHypothenicalprotein 9.7 2.6

i84 ORF618RHypotheticalprotein 4.6

l85 O]llF62gL Hypotheticalprotein 1.4 17.3 3.7 2.0 2.2

86 ORF632LHypQtheticalprotein 1.8 18.4 3.6 1,7 2.1

'87 ORF635LHypQthenicalprotein 1.3 19.0 3.8/ 1.7 1.7

i88 OR[F64IL Putativeanlcyrinrepeatprotein ma98801 16.1 4.0 1,7 1,6
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Pvtattve en)tvrin reneet pretein
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Fig. 2: Hierarchicat ctuster analysis of differentiaily RSIV gene expression between
spleen and kidney. Expression ratios for each ORF were categorized by an average linkage hierarchical

clustering program. Each row represents the expression level ofa single ORF in the spleen when compared
to that in the kidney, and each column indicates time points after infection. The normalized ercpression
levels across all the time points are color-coded. Red boxes indicate up-regulation in expression (median
ratios from 2.0). Black boxes indicate no change in expression (median ratios during O.5 - 2.0), and gray
boxes indicate missing or not detected. The magnitude ofup-regulation is shown by differing intensities of

red, with deep red showing lower expression and bright red showing the highest levels of expression.
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Table 3. Summary ofmicroarray analysis ofdifferential RSIV gene expression between

           spleen and kidney over the time-course of an in vivo infection

Spotted genes 92

Days post infection 5d.p.i. 7d.p.i. 9 d.p.i 10 d.p.i. 14 d.p.i.

Expressed genes 46 88 87 72 44

No. of genes expressed at higher levels in spleen

O/o of genes expressed at higher levels in spleen

 28

60.9

 88

1OO

 87

1OO

 27

37.5

 36

81.8

No. ofgenes expressed at similar levels

O/e of genes exnressed at similar levels

 18

39.1

o

o

o

o

 45

62.5

  8

18.2

 A (23 cycles)

 2dpft 3dp.i. 5dp.i. 7dp.i. 9dpi. 10dpi. 14dp.L

SK SKSKSKSKSKSK IE gene
                                ORF 097R
        '                                  E gene

                                ORF 618R
                                  L gene

Eil:ISII=RIIX Sl Z:IS:=SllS 6-actin

 B (27 cycles)

 2dpi. 3dp.L 5dp.L 7dp.i, 9dp.L 10dp.i. 14dp.L

SK SKSKSKSKSKSK

Fig. 3: RT-PCR ana!ysis of RSIV transcripts in spleen (S) and kidney (K) of RSIV-
infected red seabream. cDNAs were synthesized from 5 pg total RNA taken from the same samples
used for the microarray experiments. One pl of cDNA was used for 30 pl RT-PCR reaction with cycling
conditions as follows: an initial denaturation at 950C for 2 min, followed by 23 and 27 cycles of
denaturation of95eC for 30 sec, annealing at 550C for 30 sec and elongation at 720C for 1 min, and a final

elongation step at 720C for 5 min. A 23 cycle PCR (Fig. 3A) was used to determine differences in
expression of RSIV transcripts between spleen and kidney at the high level spread stage of the infection
while a 27 cycle PCR (Fig. 3B) was performed to show expression differences at the early and Iate stages

ofthe infection. 6-actin transcript was used as an internal control.

2.3.4 Determination ofthe infectious virat concentration in the spteen and kidney

   RSIV titers were measured to determine the infectious viral concentration in infected

spleens and kidneys. The virus titer of the spleen-derived RSIV stock (RSIVs), as

determined by TCIDso assay, was higher than that of the kidney-derived RSIV stock

(RSIVK) (Table 4).
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Table 4. Determination ofthe infectious viral concentration in the spleen and kidney

Value ofvirus titer

Stock Source of stock Virus titer (TCIDsolml)

RSIVK

RSIVs

Kidney

Spleen

          1o5

2.1 Å} O.34 x lo6

2.4 Discussion

   DNA microarray technology has been successfully used to explore viral gene

expression patterns of mammalian and piscine viruses under different conditions in both

cell culture systems and animal models (Lua et al., 2005; Ye et al., 2001). In our previous

study (Lua et al., 2005), RSIV DNA microarrays were used for rapid analysis of the

RSIV gene transcriptional profile over the time•-course of an in vitro infection in a cell

culture system and for grouping genes into temporal kinetic classes, providing a global

picture of transcription and kinetics of RSIV genes during the replication cycle. In the

present study, the same RSIV DNA microarray was used to characterize the viral gene

expression profiles over the time-course of an in vivo infection in a fish model, providing

a better understanding of the pathogenic mechanisms of RSIV infection at the

transcription level. In addition, a comparison of the RSIV gene expression patterns was

perforrned between viral-infected spleens and kidneys to detect the differential viral gene

expression between different targeted organs of RSIV infection, resulting in the better

understanding of the viral pathogenesis, and to further confirm a susceptible organ to

RSIV infection at the molecular level. This study describes the first use of DNA

microarrays to explore gene expression patterns of a fish marine-pathogenic virus in

aquaculture.

   Spleen and kidney were used in this study because they are potential t4rget sites of

RSIV during infection. High viral loads were observed in both the spleen and kidney by

using real-time PCR (Caipang et al., 2003). Enlarged cells, which are reported as

indicators of piscine iridovirus infections, were also found in the spleen and kidney in

fish infected with RSIV, TGIV, SGIV and grouper sleepy disease iridovirus (GSDIV)

(Chao et al., 2004; Gibson-Kueh et al., 2003; Inouye et al., 1992; Mahardika et al., 2004;
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Qin et al., 2002). In addition, the spleen is suggested to be the target organ for RSIV

diagnosis (Manual of Diagnosis Tests for Aquatic Animals - 2003;
htt ://www.oie.intles lnormes/fmanuallA eO032.htm).

   The time-course experiments have allowed us to monitor the expression ofeach RSIV

ORF through an in vivo infection. The timing of viral transcripts that we observed

(beginning at 5 d.p.i. and peaking at 7-9 d.p.i.) is similar to what has been observed in

previous studies (Nakajima, 1995; Oshima et al., 1998). In an immunoassay of RSIV-

infected red seabream (Nakajima, 1995), the virus was not detected in the spleen at 1 or 3

d.p.i., was moderately detected at 5 d.p.i. and was strongly detected at 7 d.p.i. Using a

PCR assay, PCR products corresponding to a portion of the ribonucleotide reductase

small subunit gene were not amplified from RSIV-infected red seabream at 1 and 2 d.p.i.

but were amplified starting at 5 d.p.i. (Oshima et al., 1998). Similar results were observed

in Taiwan grouper iridovirus (TGIV) infection, which is caused by a piscine iridovirus

classified into the same group with RSIV (Chao et al., 2002). Particles of this virus were

detected in some internal organs of groupers at 4-5 days after intramuscular infection

(Chao et al., 2002). In Singapore grouper iridovirus (SGIV) infection, viral antigens were

detected in virus-infected fish blood at 3 d.p.i. by using a Western blot analysis (Qin et al.,

2002). Taken together, our results suggest that the pathogenic mechanism of RSIV is

similar to that found in other piscine iridoviruses, such as TGIV and SGIV. Although

viral particles were detected at slightly different times in the above studies by using

either traditional viral teclmiques, such as immunoassay, or molecular techniques, such as

PCR, western blot assays or even the DNA microarray technology, piscine iridoviruses

seem to begin to spread at around 4-5 d.p.i. in infected fish.

   Different viral genes reached peak expression levels at different time points. Almost

all Immediately-Early (IE) genes, including ORFs 049R, 097R, 333L, 342L, 396R, 535R,

591R, and 635L, peaked early at 5 d.p.i. and continued to increase throughout the course

ofthe infection (Table 1 & Fig. 1). Similarly, most Early (E) genes, which are thought to

be involved in DNA replication, including ORFs 033R (Cytosine DNA

methyltransferase); 092R (Putative replication factor); 237L and 239R (Largest submit of

DNA-dependent RNA polymerase); 268L (Ribonucleotide reductase small submit); 317L,
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321R and 324R (DNA polymerase); 407R, 412L and 413R (ATPase); 424R and 641L

(Putative ankyrin repeat protein), as well as 433L (Putative phosphatase), peaked in

expression at 5 to 10 d.p.i., indicating preparation for viral DNA replication. Other E

genes (Table 1) peaked at later time points (7 to 10 d.p.i.). In general, Late (L) genes,

which are thought to encode structural proteins and DNA packaging proteins peaked at

later times post-infection (7 to l4 d.p.i.). However, some other L genes, such as ORFs

037R, 042R, 106R, 11IR, 197L, 291L, 374R, MCP, 426R, 458L, 543R, 550R, and 554R

(Table 1), although expressed early, also peaked later or continued to express throughout

the infection. Our results have shown that IE genes and genes involved in viral DNA

replication reached peak levels of expression first, followed by genes encoding structural

and packaging proteins. The in vivo temporal kinetic expression of RSIV genes found

here are consistent with the in vitro findings reported in our previous studies (Lua et al.,

2005). Taken together, as revealed by viral DNA microarrays in both in vitro and in vivo

studies, the transcriptional profiles of RSIV occur into a temporal kinetic manner,

following a common feature ofthe family Iridoviridae in particular, and a classical virus

gene expression cascade ofDNA viruses in general.

   Our finding that the in vivo expression profiles ofRSIV gradually declined in both the

numbers and the expression levels after 10 d.p.i. (Table 1 & Fig. 1) indicates that the

virus was being gradually cleared by host antiviral immune defenses. Similarly, Caipang

et al. (2003) showed with real-time PCR that RSIV was cleared from both the vaccinated

and unvaccinated red seabream after viral challenge, and Chao et al. (2004) showed with

histological, ultrastructural and in situ hybridization that the number of basophilic

enlarged cells (virus-containing cells) gradually decreased from 7 d.p.i. in TGIV-infected

groupers. Chao et al. attributed the viral clearance to either an improved host defense or

to depletion of susceptible cell types (Chao et al., 2004).

   Differences in viral gene expression between different targeted-organs or cell types

enhance a better understanding of pathogenesis of the virus (Cummings and Relman,

2000; Yamagishi et al., 2e03). A comparison of expression profiles of known ORFs in

AcMNPV between two viral-infected cell types clearly provided information on the

replication and pathogenesis ofthe virus in a variety ofhost cell types (Yamagishi et al.,
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2003). Similarly, differential viral gene expression patterns in different targeted organs of

RSIV infection in fish further confirmed the viral pathogenesis. The finding that all RSIV

ORFs were expressed at either higher levels or similar levels in spleens when compared

with those in kidneys throughout the infection indicates that RSIV appears to

preferentially target the spleen. The higher expression of all viral ORFs in the spleens

from 7 to 9 d.p.i., together with over tenfold higher of about 600/o ORFs at day 7 after

infection (Table 2 and Fig. 2)) strongly suggest that the spleen is a susceptible organ for

detection of RSIV disease. Interestingly, IE genes (ORFs 049R, 097R, 333L, 353R,

535R) all expressed early and continued with higher expression levels in the spleens

when compared to those in the kidneys over the time-course of the infection. In addition,

the MCP and some genes that function in nucleotide metabolism or DNA replication

(ORFs 092R, 128R, 324R, 407R, 412L, 413R, 562R) also peaked early and expression

levels remained higher in the spleens than those in the kidneys (Table 2). The higher

virus titer of RSIVs (Table 4) indicated that the infectious viral concentration in the

RSIV-infected spleens was higher than that in the RSIV-infected kidneys. These results

are in line with previous studies demonstrating that the spleen is a most susceptible organ

for RSIV infection (Caipang et al., 2003; Inouye et al., 1992; Wang et al., 2003) as well

as other iridoviral infections in fish (Chao et al., 2004; Huang et al., 2004). The spleen

also appears to be where TGIV begins replicating (Chao et al., 2004), and thus has. been

suggested to be used for early screening ofTGIV. Our results support this conclusion.

   The RT-PCR data (Fig. 3) confirmed the microarray results, showing the higher

expression of selected ORFs in infected spleens when compared to those in infected

kidneys. Differences in expression ofviral ORFs between spleens and kidneys at the high

spread stage of the infection could be observed with only 23 PCR cycles (Fig. 3A). On

the other hand, differences in expression at the early and late stages of the infection were

not detectable after 23 cycles but they were detectable after 27 cycles (Fig. 3B). iimiong

the selected ORFs, the MCP gene was found to be expressed at higher levels in the spleen

than in the kidney over the time-course ofinfection. MCP gene contains highly conserved

domains and codes for the major structural component of viral particles (Schnitzler and

Darai, 1993; Tidona et al., 1998; Williams, 1994; Williams, 1996). The MCP gene has

been used to detect and measure RSIV as well as other iridoviruses (Caipang et al., 2003;
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Kurita et al., 2002; Tidona et al., 1998). Thus, our results further confirm the hypothesis

that the spleen is the target organ for RSIV infection. Also seen in RT-PCR analysis, IE

genes were also observed early and were expressed throughout the virus infection, and

followed by the expression of E and L genes. Therefore, RT-PCR results confirmed the

microarray data and further confirmed that the transcriptional profiles of RSIV follow a

temporal kinetic cascade.

   In conclusion, the present study provides the first global analysis of RSIV gene

expression patterns in a fish model. Our results show that the pathogenesis of RSIV

spread from 5 d.p.i. and continued with high levels of viral multiplication until viral

clearance by host antiviral defenses starting from around 10 d.p.i. A comparison of viral

gene expression patterns between infected spleens and kidneys provides a better

understanding of the viral pathogenesis, and further confirms, at the molecular level, that

the spleen is a susceptible organ of RSIV infection. This study is the continued analysis

of RSIV gene expression pattems in vivo to complete transcriptional profiles of RSIV

both in cell culture and fish model systems. Such studies would enhance our

understanding of the molecular pathogenic mechanisms of RSIV infection and further

provide a possible clue for selection of the most susceptible organ for detection of

iridoviral diseases iR fish.
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CHAPTER3

INHIBITION OF RED SEABREAM IRIDOVIRUS (RSIV) REPLICATION

BY VIRAL GENE-SPECIFIC siRNAs IN A CELL CULTURE SYSTEM
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Abstract

   Small interfering RNAs (siRNAs), mediators of a process of sequence-specific gene

silencing called RNA interference, have been shown to have activity against a wide range

ofviruses and are considered to be potential antiviral tools. Here we describe an antiviral

activity of a siRNA that targets the major capsid protein (MCP) gene of red seabream

iridovirus (RSIV), a marine fish-pathogenic virus, in a cell culture system. Inhibition of

RSIV replication was demonstrated by reduced MCP expression level and reduced RSIV

titer. MCP-targeted siRNA (siR-MCP) dose-dependently inhibited the expression of

MCP gene in cells that either transiently expressed or stably expressed the MCP gene. At

84 and 96 hours after viral infection, siR-MCP reduced the expression ofMCP gene by

55.20/o and 97.10/o, respectively. Transfection with siR-MCP reduced the production of

RSIV panicles in supematants of samples infected with RSIV, while the corresponding

mismatched siR-MCP (MsiR-MCP) and nsRNA controls did not exhibit this effect.

These results show that MCP-targeted siRNA can effectively and specifically inhibit the

expression of the target gene and hinder RSIV replication during an in vitro infection,

providing a potential approach for the control ofviral diseases in aquaculture.

Keyvvords: RNA interference (RNAi); small interfering RNA (siRNA); major

        capsid protein; MCP; red seabream iridovirus; RSIV
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3.1 Introduction

   RNA interference (RNAi), mediated by small molecules of double-stranded

(ds)RNAs, is a natural biological mechanism for silencing genes that is widely conserved

in diverse organisms ranging from plants to man, and is shown to have activity against a

wide range of viruses and thus is promising a new antiviral therapy (Andino, 2003;

Coburn and Cullen, 2002; O'Brien, 2007). It is a process of sequeRce-specific gene

silencing in the cytoplasm of eukaryotic cell, in which small interfering RNAs (siRNAs)

of21-23 nucleotides (nt) are associated with a multiprotein complex known as the RNA-

induced silencing complex containing siRNA (siRISC) to target homologous mRNA for

degradation based on complementary base pairing. siRNAs can be processed in cells

from longer double-stranded RNAs produced by viral infection, by transposons or can

also be chemically introduced into cells from the outside (Agami, 2002; Carmichael,

2002). Therefore, introduction of 21-23 nt siRNA duplexes specific for viruses into cells

could lead to viral mRNA degradation and inhibition ofviral gene expression and viral

replication. Recent studies have proven that siRNAs can inhibit replication ofmany kinds

ofviruses at several stages of infection in various cells (Ferreira et al., 2007; Haasnoot

et al., 2003). sjRNAs can be employed to suppress the expression of viral genes in plant

cells (Yelina et al., 2002), insect cells (Adelman et al., 2002; Caplen et al., 2002),

mammalian cells (Capodici et al., 2002; Novina et al., 2002; Surabhi and Gaynor, 2002),

as well as aquatic animal cells (Tirasophon et al., 2005; Xie et al., 2005).

   Efficient inhibition has been demonstrated for DNA viruses both in cell culture

systems and experimental animal models. These include hepatitis B virus (HBV) (Giladi

et al., 2003; Morrissey et al., 2005; Wu et al., 2007), herpes simplex virus l (HSV-l)

(Bhuyan et al., 2004), herpes simplex virus 2 (HSV-2) (Palliser et al., 2006), human

papillomavirus type 18 (HPV-18) (Hall and Alexander, 2003), human cytomegalovirus

(HCMV) (Wiebusch et al., 2004), human herpes virus 6B (HHV-6B) (Yoon et al., 2004),

JC virus (JCV) (Orba et al., 2004), murine herpesvirus 68 (MHV-68) (Jia and Sun, 2003),

anatid herpes virus 1 (AHV-1) (Mallanna et al., 2006), vaccinia virus (Dave et al., 2006),

and tiger frog iridovirus (TFV) (Xie et al., 2005). II]he results ofthese studies suggest the

possibility of using siRNAs as an antiviral tool against DNA viruses.
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   Red seabream iridovirus (RSIV), a fish-pathogenic virus, causes a systemic infectious

iridoviral disease known as red seabream iridoviral disease (RSIVD) in cultured marine

fish in some parts of the world (Do et al., 2004; Inouye et al., 1992; Kawakami and

Nakajima, 2002; Wang et al., 2003). Therefore, it is necessary to develop novel

therapeutic approaches that effectively inhibit RSIV replication. RSIV is a double-

stranded DNA virus with the genome encoding a major capsid protein (MCP) gene and

92 other putative open reading frames (ORFs) (Kurita et al., 2002). The MCP gene

accounts for about 450/o ofthe total protein ofthe virus and is needed for the cleavage and

packaging of viral DNA to form viable virions (Williams, 1996). This gene has been

selected to analyze the phylogenetic relationships ofiridoviruses (Go et al., 2006; Imajoh

et al., 2007; Lu et al., 2005) and has been confirmed to be the most suitable gene for

detection arid measurement ofRSIV infection in previous studies (Caipang et al., 2003;

Dang Thi et al., 2007), and in this study (chapter 2).

   In the present study, we have utilized the MCP gene ofRSIV as a target for siRNAs

in order to determine whether viral gene-specific siRNAs can be used as an antiviral tool

against aquatic iridoviral infections. MCP-specific siRNA was tested for the inhibition of

RSIV replication in a cell culture system. siRNA is a sequence-specific gene silencing

mechanism, and inhibits the target gene in a dose-dependent manner (Colbere-Garapin et

al., 2005; Elbashir et al., 2001; Huelsmann et al., 2006; Zheng et al., 2005). Therefore,

siRNA was initially assessed for inhibitory effects on the MCP gene silencing in cells

either transiently or stably expressing the MCP gene by using a plasmid expressing the

target gene, and it was then tested for its inhibitory effect on RSIV replication in terms of

MCP gene expression during viral infection and in terms ofreduction in viral production.

Our data provide evidence that siRNA can be used to selectively block viral gene

expression and hence viral replication in fish cell lines.
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3.2 Materialsandmethods

3. 2. 1 Cell eutture and virus

   Grunt Fin (GF) cells (Clem et al., 1961) and Hirame Natural Embryo (HINAE) cells

(Kasai and Yoshimizu, 2001) were maintained following Lua et al. (Lua et al., 2005). GF

cells were used for propagation of virus stock while HINAE cells were used for

transfection experiments.

   RSIV was obtained from a spleen homogenate of RSIV-infected red seabream, and

was propagated in GF cells following Lua et al. (2005). The virus titer was determined

using the 500/o tissue culture infective dose (TCIDso) method (Reed and Muench, 1938),

and the virus stock was stored in 1 ml aliquots at -800C until use.

3. 2. 2 Des ign and synth es is ofsiRNAs

   Three (3) duplex siRNAs were chemically synthesized for use in this study (Table 1).

Among them, a siRNA (referred to as siR-MCP) targeting the MCP gene of RSIV was

designed using the siRNA target finder programme of Ambion
(!tl!!p!!((wyEy,alub!gu,s2gu!Itt11 b ml t tfinder).TwoothersiRNAs(referredtoasMsiR-

MCP and nsRNA) were designed for use as controls of siRNA sequence specificity.

MsiR-MCP was the corresponding mismatched siRNA of siR-MCP and was designed in

accordance with previously published rules (Schyth et al., 2006). nsRNA was identical to

the sequence ofa siRNA (Sil) specific forMCP ofTFV (Xie et al., 2005).

            Table 1. siRNA sequences (sense strand) used in this study

siRNA name Target sequence (5' - 3') Position in gene Source

siR-MCP AACAGACUGGCCAUGCUAAUU164 -182 RSIV

MsiR-MCP AGCAGACUGACUACGCUAGUU
nsRNA CGCCUGGUUGGUACUCAAGUU237-255 TFV

a The corresponding mismatched siRNA of siR-MCP. Mismatched nucleotides are bold and underlined.
b The identical sequence ofsiRNA (Si1) targeting MCP oftiger frog iridovirus (TFV) (Xie et al., 2005)
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3.2.3 Construction ofMCP-expressingplasmid ipCMTV-MCP) andselection ofstably

     MCP-expressing HINAE transformant

  The fu11 length of MCP was amplified from the RSIV genome with primers

containing EcoRI and l\bal sites (Table 2) by PCR. The PCR products were purified, and

cloned into EcoRI and Xbal sites of pCI-neo mammalian expression vector (Promega,

USA) (Fig. IA). The MCP-expressing plasmid (pCMV-MCP) was extracted and purified

using a NucleoSpin plasmid quickpure kit (Macherey-Nagel, USA) according to the

manufacturer's protocol.

                  Table 2. Primers used in this study

Primer name Primer sequence PCR product
 size (bp)

pCMV-MCP-F

pCMV-MCP-R

5'-ATGAATTCATGTCTGCGATCTCAGGTGC-3'

5'-GCTCTAGATTACAGGATAGGGAAGCCTG-3'

Full length

MCP (L)-F

MCP (L)-R

5'-CCCTATCAAAACAGACTGGC-3'

5'-TCATTGTACGGCAGAGACAC-3'

429

MCP (S) -F

MCP(S)-R

5'-CTGCGTGTTAAGATCCCCTCCA-3'

5'•-GACACCGACACCTCCTCAACTA-3'

100

P-actin (L) - F

P-actin (L) - R

5'-TTTCCCTCCATTGTTGGTCG-3'

5'-GCGACTCTCAGCTCGTTGTA-3'

200

B-actin (S) - F

P-actin (S) - R

5'-TGATGAAGCCCAGAGCAAGA-3'

5'-CTCCATGTCATCCCAGTTGGT-3'

1OO

Restriction enzyme sequences are bold and underlined

  To generate cells stably expressing the MCP gene, HINAE cells were transfected

with pCMV-MCP and cultured with selective medium (Leibovitz's L-15 medium

supplemented with geneticin) (Gibco-BRL, USA) following the manufacturer's protocol.

The presence of a selectable marker, the neomycin phosphotransferase gene, allowed

selecting HINAE transformants that harbored pCMV-MCP under selective conditions.

Normal HINAE cells were sensitive while stably MCP-expressing HINAE transforrnants
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were stable with geneticin. One month post-transfection, the transformants were checked

for the expression ofthe MCP gene (Fig. IB) and used to assess the inhibitory effect of

siR-MCP on the MCP gene in the case ofstable expression.

         A l'I lme. ."IM I.I IIIIIII' lig'.I'.1'`;' 'i ""' "',"eh?• .,. .,,,,.

                           CMVProriiX/liXr "pt<

                                               "' 'N EcoR1

Ampr

pCMV-MCP

Xba1
. Neomycin

               B
                    H[NAE Normal
                  transformant                                  H[NAE
                    l IX ll !lll-1- Mcp

                mp P- actin
Fig. 1. Expression of MCP gene in HINAE transformants. (A) construction of pCMV-MCP.

The full-length of the MCP gene was amplified from the RSIV genome by using specific primers

containing EcoRI and Xbal enzyme sequences and then cloned into pCI-neo expression vector. (B)

Expression of MCP gene in HINAE transformants determined by RT-PCR. pCMV-MCP was transfected

into HINAE cells and transfected cells were cultured under selective medium to select HINAE

transformants. About one month post-transfection, tota1 RNA was extracted from the transformants and

reverse transcribed to cDNA for RT-PCR.
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3.2.4 TransfeetionofplasmidDNAandsiRNA

   HINAE cells were seeded into 24-well or 96-well cell culture plates for about 24

hours (900/o-95e/o confluent monolayer) using L-15 medium containing 150/o of fetal

bovine serum (FBS) (JRH Biosciences, USA) without phenol red or antibiotics prior to

transfection. Cells were transfected following the manufacturer's protocol with

lipofectarnine 2000 (Invitrogen, USA). Opti-MEM I Reduced Serum Medium (Invitrogen,

USA) was used to dilute lipofectamine 2000, plasmid DNA and siRNAs.

3.2.5 Determination of dose-dependent inhibitory effect ofsiR-MCP on MCP gene

      expression by using MCP-expressingptasmid ipCMV-MCP)

   In the case oftransient expression (Fig. 2A), normal HINAE cells were co-transfected

with pCMV-MCP and siR-MCP at final concentrations of30 nM, 60 nM and 120 nM.

Cells transfected with only pCMV-MCP were used as a positive control while un-

transfected cells were used as a negative control. Six hours after transfection, the

transfection complexes were replaced by fresh L-15 medium containing 150/o FBS

without phenol red or antibiotics. At 2 days post-transfection (d.p.t.), total RNA was

extracted from both transfected and un-transfected cells with TRIzol (Invitrogen, USA)

according to the manufacturer's protocol for reverse-transcription (RT)-PCR and real-

time PCR analysis.

   In the case of stable expression (Fig. 2B), HINAE transformants that stably expressed

the MCP gene were transfected with siR-MCP at final concentrations of 30 nM, 60 nM

and 120 nM and total RNA was extracted from both siR-MCP-transfected and un-

transfected HINAE transformants with TRIzol (Invitrogen, USA) at 1, 2 and 3 d.p.t. for

RT-PCR and real-time PCR analysis.

3.2.6 Assessment of inhibitoiy effect of siR-MCP on RSIV reptication in terms of

      MCP gene expression

   HINAE cells were transfected with siR-MCP (120'nM) or un-transfected for 6 hours

prior to infection with RSIV at a multiplicity of infection (m.o.i) of 3 (Fig. 2C). After
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allowing 90 min for absorption, unattached viruses were removed and infected cells were

continuously cultured with L-15 medium supplemented with 150/o FBS, 100 IUIml of

penicillin and 100 pglml of streptomycin. At intervals up to 96 hours post-infection

(h.p.i.), total RNA was isolated from both siR-MCP-transfected and un-transfected

(control) samples with TRIzol (Invitrogen, USA) and subjected to DNase I treatment

(Promega, USA) according to the manufacturer's protocol for RT-PCR and real-time

PCR analysis.

3.2. 7 Assessment ofreduction in viralproduction by siR-MCP
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Fig. 2. Experimental scheme of siRNA-mediated RNAi Transient
expression ofMCP gene by using MCP-expressing plasmid; (B) Stable expression ofMCP gene by using

MCP-expressing plasmid; (C) Expression ofMCP gene under siRNA transfection and RSIV infection; and

(D) Sampling for TCIDso assay. (d.p.t.) days post-transfection; (h.p.t.) hours post-transfection; and (h.p.i.)

hours post-infection.
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   HINAE cells transfected with siR-MCP (120 nM) and un-transfected cells were

incubated for 6 hours prior to infection with RSIV at a m.o.i. of 5 (Fig. 2D). After

allowing 90 min for absorption, unattached viruses were removed and infected cells were

continuously cultured with L-15 medium supplemented with 150/o FBS, 100 IUIml of

penicillin and 100 pglml of streptomycin. Viral supernatants were collected from

transfected and un-transfected (control) samples at 72, 96, and 120 h.p.i. The

supernatants were diluted from 10-i to 10-iO and used to infect HINAE cells with 8

repetitions per dilution to perforrn the TCIDso assay. Virus titers were calculated

following the standard method (Reed and Muench, 1938).

3.2.8 Assessmentoftarget-specii7eityofsiR-MCP

   To examine the specificity of siR-MCP, HINAE cells were transfected with either

MsiR-MCP control or nsRNA control for 6 hours prior to infection with RSIV.

Supernatants were collected at 72, 96 and 120 h.p.i. and assayed for virus titers by using

the TCIDso assay in the same way as for the target siR-MCP (section 2.7).

3.2.9 Reverse-transcri tion (RT)-PCR

   Twenty microlitres (20 ptl) of cDNA was synthesized from 5 pg ofthe purified total

RNA using M-MLV reverse transcriptase (Invitrogen, USA) according to the

manufacturer's protocol. One microliter (1 pl) of cDNA was used for RT-PCR in a

volume of 30 pl. Cycling parameters consisted of an initial denaturation at 95oC for 2

min, followed by 23-27 cycles ofdenaturation at 95oC for 30 sec, annealing at 55oC for

30 sec and elongation at 72oC for 1 min, and a final elongation step at 72oC for 5 min.

The primers used for RT-PCR are shown in Table 2.

3.2.10 euantitative real-time PCR

   Standard curves for quantification in real-time PCR were prepared following Caipang

et al. (2003) using purified PCR products of a 429-bp fragment of the target gene (MCP

gene) and a 200-bp fragment of an endogenous reference (6-actin gene) as standard

templates. Approximately 100-bp fragments of the MCP and B-actin genes in unlmown
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samples were amplified by nested primers (Table 2). The calculation of threshold cycle

(CT) and deterrnination of copy number of the target gene were performed using the

software ofthe 7300 real-time PCR system (Applied Biosystems).

   For the real-time PCR assay, each cDNA was synthesized in a 20 pl reaction mixture

containing 5 pg oftotal RNA as described in the RT-PCR section, and was then brought

up to a final volume of200 pl with sterilized water. Three microlitres of diluted cDNA

was amplified in a 20 pl real-time PCR reaction volume containing 1O pl ofSYBR green

PCR master mix (Applied Biosystems) and primers at final concentrations of O.5 pM.

The real-time PCR reaction was performed in 7300 real-time PCR system (Applied

Biosystems) according to the manufacturer's protocol. Following a denaturation step at

950C for 1O min, 40 cycles of amplification were performed at 950C for 15 sec and 600C

for 1 min. A dissociation stage was also added to detect non-specific products and to

optimize primer concentrations. Each sample was run in quadruplicate.

3.2.11 Data analysis

   Data provided by the 7300 real-time PCR system were normalized according to the

comparative threshold cycle (2'AACT) method (Livak and Schmittgen, 2001). Using the 2-

AACT method, a convenient and accurate method to analyze relative changes in gene

expression between a treatment group and an untreated control from real-time,

quantitative PCR experiments, the data were presented as the Fold Change (FC = 2'A"CT)

in target gene expression (MCP gene) normalized to an endogenous reference gene (B-

actin gene) and relative to the positive control. Finally, inhibition percentages were

calculated as follows:

   Inhibition (O/o) = {1 - (2-AACT oftested sample12'AACT ofcontrol sample)}* 1OO

                                                                '
   All statistical analyses comparing samples un-transfected and transfected with

siRNAs were performed by a paired t-test.
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3.3 Results and discussion

3.3.1 Dose-dependent inhibitory effect of siR-MCP on MCP

HINAE cetls transiently expressing the MCP gene
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Fig. 3. Dose-dependent inhibitory effect of siR-MCP on the MCP gene in the case of

translent expresslon. (A) RT-PCR analysis ofMCP gene expression. HINAE ceils were un-transfected

or co-transfected with pCMV-MCP and siR-MCP at different concentrations. Total RNA was extracted at 2

d.p.t. for RT-PCR. (+) pCMV-MCP transfection, and (-) un-transfected samples. (B) Real-time PCR and 2-

AACT analysis ofrelative expression level of the MCP gene. cDNAs were synthesized from 2 d.p.t. RNAs in

the same way as for RT-PCR, but were brought up to a final volume of 200 pl with sterile water. Mean

values (bars) ofthree independent experiments plus stand deviation (S.D.) are shown. Fold change (FC = 2'

""CT); (30 nM; 60 nM; and 120 nM) siR-MCP concentration; C(+) positive control; (+)p > O.05; ("")p <

O.O1 when compared to the control.

   Two days after co-transfection of HINAE cells with pCMV-MCP and different

concentrations of siR-MCP, MCP gene expression was effectively reduced by siR-MCP

at a final concentration of 120 nM as determined by RT-PCR (Fig. 3A). The real-time

PCR data analyzed by the 2'A"CTmethod indicated that expression of the MCP gene were

reduced by 3.850/o (FC == O.9615 Å} O.044,p > O.05), 45.950/o (FC = O.5415 Å} O.06,p <

O.Ol) and 79.550/o (FC = O.2045 Å} O.028,p < O.Ol) in cells transfected with siR-MCP at

85



30 nM, 60 nM and 120 nM, respectively (Fig. 3B). Thus, siR-MCP dose-dependently

inhibits MCP gene expression and is highly effective at a final concentration of 120 nM.

3.3.2 Dose-dependent inhibitory effect of siR-MCP on

HINAE celts stably expressing the MCP gene
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Fig. 4. Dose-dependent inhibitory effect of siR-MCP on the MCP gene in the case of

stable expression. (A) RT-PCR analysis of MCP gene expression. HINAE transformants that stably

expressed MCP gene were not transfected or transfected with siR-MCP at final concentrations of30 nM, 60

nM and 120 nM. Total RNA was extracted at 1, 2 and 3 d.p.t. and reverse transcribed to cDNA for RT-PCR.

(+) un-transfected transformants. (B) Real-time PCR and 2'""CT analysis of relative expression level of

MCP gene. cDNAs were synthesized from total RNAs in the same way as for RT-PCR, but were brought

up to a final volume of200 pt1 with sterilized water. Mean values (bars) ofthree independent experiments

plus S.D. are shown. Fold change (FC = 2-""CT); (+)p > O.05; (')p s O.05; ("")p < O.O1 when compared to

the control
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   siRNAs were also documented silencing of stably expressed target genes (Cao et al.,

2004; Takada et al., 2005). Accordingly, we tested the inhibition ability of siR-MCP in

HINAE transformants that stably express MCP gene. As shown by RT-PCR, MCP gene

expression was not different between un-transfected HINAE transformants and siR-

MCP-transfected HINAE transformants at day 1 after transfection at any of the siR-MCP

concentrations tested. However, a decline in the silencing of MCP gene was observed at

day 2 and day 3 after transfection with 120 nM siR-MCP (Fig. 4A). At 120 nM siR-MCP,

as determined by real-time PCR and the 2-AACT analysis, the decrease after 1 day was only

8.840/o (FC = O.9116 Å} O.14, p > O.05), but after 2 and 3 days, the decreases were

significant (50.740/o (FC = O.4926 Å} O.182,p < O.Ol) and 39.690/o (FC = O.6031 Å} O.057,p

< O.05), respectively) (Fig. 4B). These results confirm that siR-MCP dose-dependently

suppresses the expression of MCP gene and effectively suppresses expression at a final

concentration of 120 nM. As a result, siR-MCP was used at a cencentration of 120 nM in

the following experiments.

3.3.3 InhibitionofRSIVreptieationbysiR-MCP

   The inhibitory effect of siR-MCP (120 nM) was assessed on RSIV replication in

terms of MCP gene expression in HINAE cells over the time-course of viral infection.

siR-MCP effectively reduced RSIV replication with time, as shown by RT - PCR (Fig.

5A). The real-time PCR data analyzied by the 2'AACT method indicated that the

suppression was reduced by 13.040/o (FC = O.8696 Å} O.161, p > O.05), 55.160/o (FC =

O.4484 Å} O.113,p < O.Ol) and 97.140/o (FC = O.0286 Å} O.142,p < O.OOI) at 72, 84 and 96

h.p.i. in siR-MCP-transfected samples, respectively (Fig. 5B). These results show that

siR-MCP inhibits RSIV replication by silencing the expression of the MCP gene.

3.3.4 ReductioninproductionofRSIVpartictesbysiR-MCP

   Major capsid proteins are involved in the assembly of viral particles (Tan and Yin,

2004; Williams, 1996), and a reduction in the MCP expression levels correlates with a

reduction in production of infectious new particles (Radhakrishnan et al., 2004; Xie et al.,

2005). Therefore, siR-MCP-transfected cells were infected with RSIV and cell
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supernatants were collected at 72,

particles.

96 and 120 h.p.i. to determine the production of viral
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Fig. 5. Suppression of RSIV replication in temis of MCP gene expression by siR-MCP

(120 nM). (A) RT-PCR analysis of MCP gene expression. HINAE cells were not transfected or

transfected with 120 nM siR-MCP for 6 hours prior to infection with RSIV (m.o.i. of 3). Total RNA was

extracted at 48, 60, 72, 84 and 96 h.p.i and reverse transcribed to cDNA for RT-PCR. (C) RSIV infection;

(siR-MCP) siR-MCP transfection and RSIV infection. (B) Real--time PCR and 2-""CT analysis of relative

expression level ofMCP gene. cDNAs were synthesized from time-course RNA samples in the same as for

RT-PCR, but were brought up to a final volume of200 pl with sterilized water. Mean values (bars) ofthree

independent experiments plus S.D. are shown. Fold change (FC = 2-itaCT); (+)p > O.05; ("")p < O.O1; (*"')

p < O.OO 1 when compared to the control.
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Fig. 6. Reduction in viral production by siRNAs (120 nM) at different time-intervals after

RSIV infection (m.o.i. of 5). siRNA-transfected cells were infected with RSIV at 6 h.p.t. Supernatants

were collected at 72, 96 and 120 h.p.i. and assayed for virus titration. The data show the average titers of

two independent experiments at three time intervals in logioTCIDso plus S.D.

   In TCIDso assays, the average titers of culture medium of siR-MCP-transfected

samples were about 23.7-fold, 86.6-fold and 48.7-fold lower than those of the un-

transfected controls at 72, 96 and 120 h.p.i., respectively (Fig. 6). siR-MCP treatment

clearly showed a dramatic effect on MCP mRNA (Fig. 5A and 5B) but not very clearly

on the production ofvirus particles (Fig. 6). This result may be influenced by differences

in amounts ofvirus inoculums. The siR-MCP-transfected cells were infected with RSIV

at m.o.i of 3 in case of assessment of viral replication, whereas the transfected cells were

infected with the virus at m.o.i of 5 in case of assessment of production of virus particles.

Because viruses replicate naturally in infected cells, therefore, high doses of virus may

enhance fast production of virus particles, interfere in the inhibitory effect of the siR-

MCP, resulting in difficulty in the detection of changes under the siRNA treatment.
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However, this hypothesis needs to be confirrned further. Taken together, although a

dramatic effect on the production of vir'us particles under the siRNA treatment could not

be seen, a reduction in virus particles was determined in siR-MCP-transfected samples

when compared to un-transfected samples (Fig. 6), clearly indicating that siR-MCP has

anti-RSIV activity.

   As also shown in Fig 6, titers in control samples transfected with MsiR-MCP were

decreased only about 1.8-fold, 3.7-fold and 2.1-fold at 72, 96 and 120 h.p.i., respectively

and titers in control samples transfected with nsRNA were similar, and decreased 1 .8-fold

and 2.4-fold, respectively. These results indicate that siR-MCP specifically targets RSIV.

3.4 Generaldiscussionandconclusion

   Viral infection is a severe public health problem with significant personal, social, and

economical consequences. More effective approaches are needed to prevent and treat

viral infection. The exploitations of the RNAi pathway that RNAi is a sequence-specific

gene silencing process through the action of siRNAs and can be induced in cultured cells

by introducing synthetic siRNAs pave a new way for the use of RNAi as antiviral

approaches. This potential use has been comprehensively discussed in numerous reviews

(Andino, 2003; Tan and Yin, 2004; van Rij and Andino, 2006; Wang et al., 2006).

Highly effective inhibition of virus replication by RNAi has been achieved both in vitro

and in vivo. In comparison with other conventional drugs, the inhibition of viral

replication by siRNA molecules has some advantages. The most advantage is that

siRNAs are much easier and more flexible to select target sites because target mRNA and

siRNA are sequence-specific and complementary (Tan and Yin, 2004). siRNAs can

suppress viral replication at several stages of infection, including the very early stages,

when viruses are most vulnerable. More importantly, virus infection not only be

prevented by re-treatment or co-treatment with siRNAs (reviewed by Andino, 2003), but

also be prevented in cells already infected with viruses (Orba et al., 2004).

   Although assembly ofviral particles varies with different virus families, many capsid

proteins are involved in the formation ofvirus particles. Genes code for proteins needed
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for the cleavage and packaging of virus particles are commonly selected as targets for

silencing in siRNA studies of DNA viruses. For instance, siRNAs targeting UL-6 gene, a

structural gene, were applied to AHV-1 (Mallanna et al., 2006), while siRNAs targeting

MCP gene were applied to TFV (Xie et al., 2005). Taken this fact, the MCP gene of

RSIV was targeted for siRNAs in this study, and eur data demonstrated that siRNA

specific for MCP gene efficiently inhibited RSIV replication in terms of MCP gene

expression, and hindered viral production in a cell culture system, and further indicated

that the MCP gene is essential for life cycles ofRSIV.

   Several kinds of controls, such as non-specific siRNAs and mismatched or scrambled

siRNAs, have been used to measure the target specificity in antiviral siRNAs. Non-

specific siRNA controls have been used against housekeeping genes such as

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Kapadia et al., 2003) and

reporter genes such as green fluorescent protein (GFP). However, these controls do not

fu11y demonstrate the specificity of the siRNAs used in these studies because their

sequences are so different from those of the siRNAs (Schyth et al., 2006). Therefore,

mismatched or scrambled siRNA controls that differ from the active siRNA by about 1-4

nucleotides have frequently been used (Kapadia et al., 2003; Schyth et al., 2006; Xie et

al., 2005). The controls used in the present study were MsiR-MCP, a mismatched siRNA

of siR-MCP and nsRNA, an identical sequence of Sil specific for MCP of TFV (Xie et

al., 2005), an iridovirus belonging to different genus from that ofRSIV. Neither control

showed any complementariry to any regions of the whole RSIV genome sequence. Our

finding of no differences in virus titers between siRNA control-transfected and un-

transfected samples indicates that the siRNA controls have no antiviral activity. These

results show that siR-MCP participates in sequence-specific gene silencing of siR-MCP

and confirm that it has antiviral activity.

   Taken together, our data demonstrate that siR-MCP efficiently and specifically

inhibited RSIV replication in terms of MCP gene expression and hindered viral

production in a cell culture system. These results suggest that siRNA methodology can be

used to induce gene silencing in fish cell lines, such as HINAE cells. The success of

siRNA in vitro has led to growing interest in in vivo applications of siRNA, leading to a
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revolution in the control of aquatic viruses. Delivering siRNA in vivo to fishlanimal

tissues is complicated and challenging and involves using physical, chemical or

biological approaches (Xie et al., 2006). Because the main goal of in vivo delivery is to

have active and stable siRNAs in the target cells, efficient delivery system of siRNA

molecules is the most challenging issue. Although delivery strategies for siRNAs toward

treatment of aquatic viruses have not been reported yet, siRNAs have been successfu11y

delivered to animal models in organ systems such as liver, spleen, kidney, lung and

pancreas, and even in central nervous system (Kumar et al., 2007; Luo et al., 2005).

Various delivery methods have been used, including hydrodynamic delivery (Behlke,

2006), viral vector-mediated delivery (Barton and Medzhitov, 2002; Morris and Rossi,

2006; Tiscornia et al., 2003), and lipid, antibodies, ligands and peptides-based delivery

(Behlke, 2006; Leung and Whittaker, 2005; Takeshita et al., 2005). Thus, although

further studies for in vivo siRNA delivery are needed, we have shown here, for the first

time, the potential use of siRNAs as an antiviral tool against marine fish-pathogenic

iridoviruses in in vitro. On the other hand, siRNAs will enable new experimental

approaches to analyzing both viral and cellular gene functions in iridovirus-infected cells.

Such studies could provide basic information for control of infectious viral diseases in

aquatlc systems.
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                 CHAPTER4

   ENGINEERED VIRUS-ENCODED pre-microRNA (pre-miRNA)

INDUCES SEQUENCE-SPECIFIC ANTIVIRAL RESPONSE IN ADDITION

TO NON-SPECIFIC IMMUNITY IN A FISH CELL LINE: CONVERGENCE

 OF RNAi-RELATED PATHWAYS AND IFN-RELATED PATHWAYS IN

              ANTIVIRAL RESPONSE
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                                Abstract

    '
   Transfection with synthesized virus-specific small interfering RNAs (siRNAs)

efficiently inhibits viral replication in viral-infected fish cell lines, implying the

involvement of RNA interference (RNAi)-related pathways in the antiviral responses of

fish cells. Here, we demonstrate that plasmid expressing virus-encoded pre-microRNAs

(pre-miRNAs) can also inhibit viral replication through these pathways. By incorporating

sequences encoding miRNAs specific to major capsid protein (MCP) gene of red

seabream iridovirus (RSIV) and a miRNA specific to hirame rhabdovirus (HIRRV)

genome into a murine miR-155 pre-miRNA backbone, we were able to intracellularly

express viral pre-miRNAs (miR-MCPs and miR-HIRRIV) in a fish ceil line. The miR-

MCPs and miR-HIRRV, delivered as pre--miRNA precursors in transfected cells,

inhibited viral replication when these cells were infected with the target virus. AIthough

this may suggest specific interference, inhibitory effect on viral replication was also

observed in cells transfected with a plasmid expressing pre-miRNA targeting P-

galactosidase gene (miR-LacZ) that served as a specificity control. Expression of pre-

miRNAs was found to activate interferon (IFN)-related pathways, correlating with

upregulation of the antiviral IFN-induced Mx protein. The anti-viral effects of viral-

miRNAs observed here were partly the result of the antiviral miRNA-related pathways

and partly the result of the antiviral IFN-related pathways. We propose that engineered

virus-encoded pre-miRNA can engage not only RNAi-related pathways but also IFN-

related pathways to induce potent antiviral responses in fish cells.

KejJM,ords: RNAi; Interferon; IFN; siRNA; miRNA; Major capsid protein; MCP; RSIV;

                                 HIRRV
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4.1 Introduction

   Small RNA molecules engage in sequence-specific interactions that inhibit gene

expression by RNA silencing. This process fu1fils fundamental regulatory roles as well as

antiviral functions, through the actions of smail interfering RNAs (siRNAs) and

microRNAs (miRNAs) involved in RNA interference (RNAi) pathways. The small RNA

molecules are incorporated into an RNA-induced silencing complex (RISC) and serve as

guides for silencing their corresponding target mRNAs based on complementary base-

pairing (Yeung et al., 2005). siRNAs, which are derived by processing oflong double-

stranded RNAs are often of exogenous origin, degrade mRNAs bearing fu11y

complementary sequences, and are currently being extensively evaluated as potential

antiviral tools. In contrast, miRNAs, which are endogenously encoded and derived by

processing of long hairpin RNA precursors, can either cleave mRNAs bearing fu11y

complementary sequences or inhibit translation of mRNAs bearing partially

complementary sequences (Kusenda et al., 2006; Zeng et al., 2003). A single miRNA

can target numerous mRNAs, often in combination with other miRNAs, thus miRNAs

operate highly complex regulatory networks (Kim and Nam, 2006; Nair and Zavolan,

2006). It is believed that miRNAs are essential regulators of various processes, such as

cellular differentiation, proliferation, development, cell death and pathogen-host

interaction (Ambros, 2004; Miska, 2005; Nair and Zavolan, 2006). However, recent

reviews on the role ofmiRNAs concluded that miRNA machinery can also be exploited

for defense against viruses (Browne et al., 2005; Kloosterman and Plasterk, 2006).

   Although miRNAs can function as siRNAs (Doench et al., 2003; Zeng et al., 2003),

virus-encoded siRNAs have been studied for use in antiviral strategies prior to virus-

encoded miRNAs. The antiviral potential of viral-gene specific siRNAs has been

comprehensively discussed in numerous reviews (Dave and Pomerantz, 2003; Pushparaj

and Melendez, 2006; Sanchez-Vargas et al., 2004; Stram and Kuzntzova, 2006; Tan and

Yin, 2004). While the antiviral potential ofviral-gene specific miRNAs has been reported

for several viruses, including human immunodeficiency virus type 1 (HIV-1) (Boden et

al., 2003; Omoto et al., 2004), simian virus 40 (SV 40) (Sullivan et al., 2005), hepatitis

C virus (HCV) (Zhang et al., 2005), and primate foamy virus type l (PFV-1) (Lecellier
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et al., 2005). These studies have invoived the introduction of plasmid-based expression

systems capable of producing endogenous hairpin miRNA precursors targeting viral-

specific genes into cells.

   The use of plasmid-based expression systems is an easy aRd inexpensive way to

generate miRNAs. However, one major drawback is that the expression of long RNA in

some cases has been shown to trigger sequence-nonspecific interferon responses in the

cells, thereby leading to a global inhibition ofmRNA translation and limiting how usefu1

they are (Dykxhoorn et al., 2003; Samuel, 2001). Due to its antiviral nature, a cellular

interferon respoRse should be given special concern in studies of miRNAs targeting

viruses, where reduced viral replication in RNAi-transfected cells is often taken as

indicative ofsuccessfu1 specific interference (Bhuyan et al., 20041 Kapadia et al., 2003).

   We recently synthesized a siRNA specific to the major capsid protein (MCP) gene of

red seabream iridovirus (RSIV) and introduced it into HINAE cells (Dang et al., 2008).

The results demonstrated that RNAi-related pathways are involved in antiviral defenses

and could be evoked by introduction of small RNA molecules into fish cell lines. Herein,

we describe another potential approach for delivering small RNAs, using an expression

system of pre-microRNAs (pre-miRNAs), and investigate whether engineered viral-

encoded miRNAs can exert antiviral activities through antiviral miRNA-related pathways

in a cell culture system. Two marine fish-pathogen viruses, including RSIV and HIRRV

(hirame rhabdovirus), were used as models in our miRNA studies. By incorporating

sequences encoding miRNAs specific to the MCP gene of RSIV (miR-MCPs) and a

miRNA specific to HIRRV genome (miR-HIRRV) into a murine miR-155 pre-miRNA

backbone under control of Pol II promoter, we were able to intracellularly express miR-

MCPs and miR-HIRRV in cells transfected with plasmids capable of expressing pre-

miRNAs (pcDNA-miRs). The anti-RSIV activity ofmiR-MCPs was initially assessed by

measuring MCP gene silencing by employing transient transfection of a plasmid

expressing the target gene (pCMV-MCP). We then investigated the inhibitory effect of

the miR-MCPs on RSIV replication following challenge with RSIV. The inhibitory effect

of miR-HIRRV on HIRRV replication was demonstrated by reduced expression level of

the viral glycoprotein (G) gene and reduced HIRRV titers in plasmid-transfected cells
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over the time-course of HIRRV infection. Our results demonstrate the utility of

expressing viral-encoded miRNAs through a miR-155 precursor stem-loop structure, and

suggest that viral-encoded miRNAs are able to trigger antiviral miRNA-related pathways

in fish cells. However, further analyses revealed that the expression ofpre-miRNAs also

activated IFN-related pathways correlating with upregulation ofthe antiviral IFN-induced

Mx protein, resulting in non-specific antiviral effects. Our findings proposed that

engineered virus-encoded pre-miRNAs not only trigger the antiviral miRNA-related

pathways but also activate the antiviral IFN-related pathways to mount immunity to a

viral pathogen in fish cells.

4.2 Materialsandmethods

4. 2. 1 Cell culture and vir us

   Grunt Fin (GF) cells (Clem et al., 1961) and Hirame Natural Embryo (HINAE) cells

(Kasai and Yoshimizu, 2001) were maintained following Lua et al. (Lua et al., 2005). GF

cells were used for propagation of RSIV stock, while HINAE cells were used for

propagation of HIRRV stock, as well as for plasmid transfection and virus infection

experiments. The virus titers was deterrnined using the 500/o tissue culture infective dose

(TCIDso) method (Reed and Muench, 1938).

4.2.2 Construetion ofptasmid expressing virus-encodedpre-miRNA ipcDNA-miR)

      andptasmid expressing the MCP gene ipCMV-MCP)

   Three (3) pairs of oligonucleotides encoding MCP-specific miRNAs of RSIV

(referred as miR-MCP-1, miR-MCP-2 and miR-MCP-3), and a pair of oligonucleotides

corresponding to HIRRV genome (referred as miR-HIRRV) (Table 1) were designed

using the RNAi Designer (www.invitrogen.com!rnai). Each oligonucleotide pair ("top

strand" and "bottom strand" oligos) was annealed and ligated into the pcDNA 6.2-

GWIEmGFP-miR vector (Block-iT'M PIo II miR RNAi Expression Vector Kits,

Invitrogen, USA) to create plasmids (pcDNA-miR-MCPs and pcDNA-miR-HIRRV)

capable of producing virally encoded pre-miRNAs in plasmid-transfected cells. The

ligation mixture was then transformed into competent E. coli, One Shot TOPIO, cells
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following the manufacturer's protocol. A control expression plasmid (pcDNA-miR-

LacZ) that expresses pre-miRNA targeting the B-galactosidase gene (miR-LacZ) was also

generated using miR-LacZ-positive ds oligos supplied by the kit.

   The MCP-expressing plasmid (pCMV-MCP) constructed in our previous studies

(Dang et al., 2008) was used in co-transfection experiments to express the target MCP

gene.

   Piasmid DNAs were extracted from positive colonies by standard alkaline lysis

(Sambrook and Russell, 2001). All constructs were verified by DNA sequencing using

ABI Prism@ BigDye@ Terminator kit on Applied Biosystems 3130 Genetic Analyzer

(ww.a liedbios stems.co.' ).

4. 2. 3 Transfection ofi17sh cells with ptasmid DNA

   HINAE cells were seeded into 24-well or 96-well cell culture plates using L-15

medium containing i50/o of FBS without antibiotics for about 24 hrs before transfection

at a cell confiuence of approximately 85-900/o. Cells were transfected with plasmid DNA

using Lipofectamine'M 2000 and Opti-MEM I Reduced Serum Medium (Invitrogen,

USA) following the manufacturer's protocol. The transfection mixtures were removed at

6 hours pos"transfection, and transfected cells were maintained for further processing.

4.2.4 Anti-RSIVaetivityofmiR-MCPs

   miR-MCPs were initially tested for sequence-specific silencing on the target MCP

gene by employing transient transfection of a plasmid expressing MCP gene (pCMV-

MCP). HINAE cells were co-transfected with pcDNA-miRs and pCMV-MCP (Fig. IA).

Cells transfected with only pCMV-MCP were used as a positive control while

Lipofectamine'M 2000-transfected and HINAE cells were used as negative controls. At

each indicated time points up to 7 days post-transfection (d.p.t.), total RNA was extracted

with TRIzol@ (Invitrogen, USA) from transfected cells and reverse transcribed to cDNA

using M-MLV reverse transcriptase (Invitrogen, USA) according to manufacturer's

protocol for reverse-transcription (RT)-PCR analysis.
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Table 1. 01igonucleotide sequences encoding viral pre miRNAs

Name Strand Oligo sequence Position in

 genome

miR-MCP-1 Top

          Bottom

TGCTGTAAAGTAGTCTACTCCCATCTGTTTTGGCCACTGACTGACAGATGGGAAGACTACTTTA

CCTGTAAAGTAGTCTTCCCATCTGTCAGTCAGTGGCCAAAACAGATGGGAGTAGACTACTTTAC

68957-68977a

miR-MCP-2

miR-MCP-3

Top

Bottom

Top

Bottom

TGCTGAATTAGCATGGCCAGTCTGTTGTTTTGGCCACTGACTGACAACAGACTCCATGCTAATT

CCTGAATTAGCATGGAGTCTGTTGTCAGTCAGTGGCCAAAACAACAGACTGGCCATGCTAATTC

TGCTGATTACAGTACGGCACACACAAGTTTTGGCCACTGACTGACTTGTGTGTCGTACTGTAAT

CCTGATTACAGTACGACACACAAGTCAGTCAGTGGCCAAAACTTGTGTGTGCCGTACTGTAATC

68075-68095a

69378-69398a

miR-HIRRV Top

          Bottom

TGCTGTCTCTTTGGAGACTTTCTCGTGTTTTGGCCACTGACTGACACGAGAAACTCCAAAGAGA

CCTGTCTCTTTGGAGTTTCTCGTGTCAGTCAGTGGCCAAAACACGAGAAAGTCTCCAAAGAGAC

1821-1841b

Bold and underlined letters represent sense sequences ofengineered miRNAs derived from the target gene; (a) sequence position in RSIV genome; (b) sequence position in

HIRRV genome (NCO05093)
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   To elucidate antiviral effects of miR-MCPs on RSIV replication, the expression of

MCP gene was monitored in cells transfected with pcDNA-miRs over the time-course of

either the plasmid transfection or the virus infection. RSIV was inoculated in HINAE

cells transfected with pcDNA-miRs or un-transfected at 1, 3, 5 and 7 d.p.t. (Figs. IB and

IC). After allowing 2 hrs for absorption, unattached viruses were removed and infected

cells were continuously cultured with L-15 medium supplemented with 150/o FBS, 100

IU/ml ofpenicillin and 1OO pglml of streptomycin. At indicated time points after plasmid

transfection and virus infection total RNA was isolated from cells with TRIzol@
                          '
(Invitrogen, USA), subjected to DNase I treatment (Promega, USA), and used to

synthesize cDNA for RT-PCR analysis.

4.2.5 Anti-HIRRVactivityofmiR-HIRRV

   HINAE cells were infected with HIRRV at 1 day after transfection with pcDNA-

miRs (Fig. ID). Viral-infected cell debris and cell-free supernatants were collected up to

7 d.p.t. for further processing.

   To assess inhibitory effect of miR-HIRRV on HIRRV replication in terms of gene

silencing, the expression of G gene, an antigen of HIRRV, was monitored in cell debris

and cell-free supernatants of cells transfected with pcDNA-miRs and infected with

HIRRV by RT-PCR assay. At indicated time points, total RNA was extracted from

plasmid-transfected and virus-infected cells and reverse transcribed to cDNA for RT-

PCR analysis.

   To assess inhibitory effect of miR-HIRRV on HIRRV replication in terms of

production of viral particles, monolayer of HINAE cells seeded in 96-well plates was

inoculated with serial 1O-fold dilutions ofcell-free supernataRt samples, and HIRRV titer

values were measured according to TCIDso method (Reed and Muench, 1938).

4. 2. 6 Exp ression of Mx in HINAE cetts transfected with p cDLNA -miRs

                        '   cDNAs derived from plasmid-transfected samples and control samples at indicated

time points were further used to determine the expression level of Mx gene. We used
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previously published primers designed for the Japanese fiounder Mx (JFMx) protein

cDNA (Ooi et al., 2006) to amplify the Mx transcripts by RT-PCR assay.

   (A) pcMV-McP & pcDNA-miR
       Co-transfection Sampling for RT-PCR

       HINAEcell 1 3 5 7d.p.t.   (B)
      gCrDanNs?e-cMtiio'lil Rsivinfection samplingferRT-•pcR

          V-l/.-IL-SL--- !/-
      HINAE cell Wh                                 7d•p•t- 2d.p.i.

   (C) pcDNA-miR
      Transfection RSIV Infection Sampling for RT-PCR

          vf/ v-/-v
      HINAE Cell K.,,g 3ikEk;'.,. 3 5 7d'P't'

   (D)gCrDanNsee-cMtiio':i HiRRvinfection SaMPAinndgTfOcriRDT,,'PCR

          Vf! y"!-      HiNAECeiiN-ebbti..-",.,sigigk$e:L. 3 4 5 6 7d•p•t•

Fig.1. Experimental scheme ofmiRNA studies; (A) MCP gene silencing by miR-MCPs; (B) Anti-

RSIV activity ofmiR-MCPs in virai-infected cells over the time-course oftransfection with pcDNA-miRs;

(C) Anti-RSIV activity of miR-MCPs in cells over the time-course of plasmid transfection and virus

infection; (D) Anti-HIRRV activity of miR-HIRRV; (d.p.t.) days post-transfection; (d.p.i.) days post-

infection.

4. 2. 7 Reverse- transcrip tion (R T) - PCR

   One microliter (1 pl) of cDNA that was synthesized from indicated RNA samples

was used for RT-PCR in a volume of 30 pl to amplify RSIV-MCP, HIRRV-G and Mx

transcripts. The P-actin transcript was used as an internal control. Thermocycler

conditions consisted of an initial denaturation at 950C for 2 min, followed by 20-30

cycles of 950C for 30 sec, 550C for 30 sec and 720C for 1 min, and a final extension at

720C for 5 min. The primer sequences and the size ofPCR products were shown in Table

2.
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  The PCR products were electrophoresed and visualized in a l.OO/o agarose gel stained

with ethidium bromide under UV light. MCP expression values were measured using

ImageJ software (Abramoff et al., 2004) and normalized to the respective B-actin

expression values. Experiments were done in duplicate.

                      Table 2. Primers used for RT-PCR

Primer name Primer sequence PCR product size (bp)

RSIV-MCP-F

RSIV-MCP-R

5'-CCCTATCAAAACAGACTGGC-3'
5'-TCATTGTACGGCAGAGACAC-3'

429

HIRRV-G-F

HIRRV-G-R

5'-TGCCTACCCTGCTGTCATCAG-3'
5'-TCCATGGTTTTCCACAGAAGG-3'

550

JFMx-F

JFMx-R

5'-GCTCTCTGGGTGTGGAGAAG-3'
5'-ACCAGGCTGATGGTTTCTTG-3'

465

B-actin-F

B-actin-R

5'-ACTACCTCATGAAGATCCTG-3'
5'-TTGCTGATCCACATCTGCTG-3'

510

4.3 Results

4.3.1 TransfectionofpcDNA-miRsinHINAEceUs

  When pcDNA-miRs were transfected into HINAE cells, they allowed co-cistronic

expression of pre-miRNAs with EmGFP gene in cells under the control of the Pol II

human CMV promoter. The co-cistronic expression of the pre-miRNAs was monitored

microscopically under a fiuorescence microscope (data not shown) and the predicted

structures of the engineered pre-miRNAs incorporated into the murine miR-155

backbone are shown in Fig. 2.

4.3.2 Anti-HIRRVaetivityofmiR-HIRRV

  Transfection with pcDNA-miR-HIRRV reduced the expression of G gene in both cell

debris and cell-free supernatants of viral-infected cells as compared to the positive

control that were only iRfected with the virus at each indicated tirne points (Fig. 3A).
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  (A) Ggene expression (B)
   in cell debris
   3 4 S 6 7dpt       miR.MRRV           10z== ma

G gene expression
ln supematant

-==:mu11Sl= :mev

P-actin gene expression

 in cell debris

3 4 S 6 7dpkMmiR-IIMRV= ==-mu

aE8ba
56t
.F. 4
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-ea

32
o

HllUIV

miR-HIRRV
rniR-lacZ

  Days post-transfection

Fig. 3. Anti-HIRRV activity of miR-HIRRV (A) RT-PCR analysis ofG gene expression in cells

transfected with pcDNA-miR-HIRRV and infected with HIRRV; (B) Reduction of HIRRV titers in cell-

free supematants of cells transfected with pcDNA-miR-HIRRV and infected with HIRRV; (d.p.t.) days

post-transfection.
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   As measured by the TCIDso method, fewer HIRRV particles were detected in cell-

free supernatants of cells transfected with pcDNA-miR-HIRRV expressing miR-HIRRV

(Fig. 3B), corroborating the fact that miR-HIRRV efficiently inhibited the replication of

HIRRV in transfected cells following challenge with the virus. These results seemed to

indicate that the engineered viral-encoded miRNAs worked in a highly specific manner to

trigger only the antiviral potency of miRNA-related pathways.

4.3.3 Anti-RSIV activity ofmiR-MCPs

   wnen cells were co-transfected with pcDNA-miRs and pCMV-MCP, miR-MCPs

were able to significantly silence the expression of the MCP gene when compared to the

control samples that were only transfected with pCMV-MCP at 3, 5 and 7 d.p.t. Although

all three miR-MCPs exhibited the reduction of the target gene expression levels, miR-

LacZ seemed able to slightly reduce the expression ofMCP gene (Figs. 4A and 4B).

            MCP gene expression fractin gene expression
         (A) -Pait['iR.Mc?.it pcivrv-Mcp -'t
                          miR-Mcp-v pcrvrv-Mc? M
           IZ = mlR-Mcp-3tpcMv-Mcp =
           m.iR.1...zpcuv"lc? S X iZ lIXI l1

MpCMV-MCP               1.lpofectnmSne

(B)

 100

S 8o

g 6o

g 4o

9 2o

  o

I
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f

],ljsii

ff-.

li

I

   S =1   1l=1
- miR-MCP-1/pCMV-MCP
- miR-M CP-21pCM V-MCP
- miR-M CP-31p CMV-M CP
- miR-LacZlp CMV-M CP
- pCM V-MCP

kT..

                       1 3 5                              Dayspost-trarigfection

Fig. 4. MCP gene silencing by miR-MCPs in cells co-transfected with pcDNA-miRs and

pCMV-MCP; (A) agarose gel electrophoresis with RT-PCR products; (B) the expression level ofMCP

is calculated relative to the P-actin expression Ievel. Data represent the mean of two independent

experiments Å} SD.
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   In the case of transfection with pcRNA-miRs and infection with RSIV, miR-MCPs

inhibited RSIV replication, resulting in reduction of the expression level ofMCP gene in

infected cells. But a similar pattern of antiviral activity was observed with miR-LacZ in

cells transfected with pcDNA-miR-lacZ (Fig. 5A and 5B).

   Taken together, these unexpected results let us to hypothesize that the antiviral effect

observed here were not solely due to the antiviral potency of RNAi-induced miRNAs.

Transfection with plasmids capable of expressing pre-miRNAs could trigger not only the

antiviral potency of RNAi, but also activate other cellular mechanisms that interfere in

antiviral responses in HINAE cells.

(A) MCPgeneexpression

    t 2 S4 S (-)

(B)

-v
t
Z
.:

E
ft

:
g
ua

5
E

100.0

80.0

60.0

40.0

20.0

 o.o

s
T

3

             P-actin gene expresslon

3d.p.tv2d.ps.s Si"l Siilii)

S d.p.tJ 2 dpJ• M
7d.p.cV2d.pJ. X IZ
              - miR-MCP-1
              - miR-MCP-2
               miR-MCP-3
              1 miR-lacZ        T-

  MCP gene expression

si-isvxin

                -t/
    4t;'' ,

       57  Dayspost-transfection

           P-actin gene expression
          1 2 34 S (-)Sd.p.IJ4d.pJ.M
7dp.V6ptS t ==Z =Z

Fig. 5. Anti-RSIV activity of miR-MCPs; (A) over the time-course of plasmid transfection. Top

panel: agarose gel electrophoresis with RT-PCR products. Bottom panel: the expression level of MCP is

calculated relative to the P-actin expression level. Data represent the mean of two independent experiments

Å}SD. (B) over the time-course of plasmid transfection and RSIV infection; (1) miR-MCP-1

transfectionfRSIV infection; (2) miR-MCP-2 transfectionlRSIV infection; (3) miR-MCP-3

transfectionlRSIV infection; (4) miR-LacZ transfection/RSIV infection; (5) RSIV infection; (-) HINAE

cells without any treatment; (d.p.t.) days post-transfection; (d.p.i.) days post-infection.
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4.3.4 IFNactivationbytheexpressionofpre-miRNAs

   Based on earlier studies, Mx protein is a molecular maker of type I IFN (ctIS)

production in fish (Nygaard et al., 2000; Pakingking et al., 2004) and have antiviral

activity against a wide spectrum of viruses (Ooi et al., 2006). These were confirmed in

our applied setup where stimulation of HINAE cells with dsRNA molecules poly (I:C)

significantly induced the expression of Mx gene, and poly (I:C)-stimulated cells slightly

reduced the expression of MCP gene following challenge with RSIV (Fig. 6). To

examine whether transfection ofHINAE cells with plasmids expressing pre-miRNAs had

any effect on antiviral IFN activity, the expression of Mx gene was investigated in cells

co-transfected with pcDNA-miRs and pCMV-MCP (Fig. 7A), and in cells transfected

with pcDNA-miRs and infected with either RSIV (Fig. 7B) or HIRRV (Fig. 7C), as well

as in cells only transfected with pcDNA-miRs (Fig. 7D).

                             ix
                            -Mxgg#e
                            NIN Mew gepa
                            M twts-+xetii}

Fig. 6. Effect of IFN stimulation on RSIV replication. HINAE cells seeded onto 24-well plates

were stimulated with 50 pglml poly (I:C) to induce IFN production. Induced cells and un-induced cells

were infected with RSIV at 6 hrs after stimulation. After allowing 2 hrs for absorption, unattached viruses

were removed and infected cells were continuously cultured with fresh growth medium containing 50

pglml poly (I:C) and further maintained for 72 hrs. The expression of Mx and MCP genes was monitored

by RT-PCR. (1) HINAE cells with stimulation of poly (I:C) and infection of RSIV; (2) HINAE cells

without stimulation but infection ofRSIV.

   As deterrnined by RT-PCR in Fig. 7A, HINAE cells co-transfected with pcDNA-

miRs and pCMV-MCP showed higher expression levels of Mx than the background

expression level observed in cells transfected with pCMV-MCP or Lipofectamine'M 2000

at each of the indicated time points of the transfection. The umegulation of Mx gene was

also observed in plasmid-transfected and viral-infected cells when compared to the

controls that were only infected with viruses (Figs. 7B and 7C). More importantly,

transfection with various pcDNA-miRs differentially induced the expression of Mx gene

(Fig. 7D). These results indicated that the expression of pre-miRNAs was responsible for
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the upregulation of Mx gene, and further suggest that each pre-miRNA exhibited its own

level of expression in the cells, resulting in different expression levels of Mx gene.
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Fig. 7. Induction of the IFN pathway in cells transfected with pcDNA-miRs; (d.p.t.) days

post-transfection; (cyc) cycles of RT-PCR; (A) expression of Mx gene in cells co-transfected with pcDNA-

miRs and pCMV-MCP; (B) expression of Mx gene in cells transfected with pcDNA-miRs and infected

with RSIV; (C) expression of Mx gene in cells transfected with pcDNA-miRs and infected with HIRRV;

(D) expression ofMx gene in cells transfected with pcDNA-miRs; (1) miR-MCP-1; (2) miR-MCP-2; (3)

miR-MCP-3; (4) miR-HIRRV; (5) miR-LacZ; (-) HINAE cells.

4.4 Discussion

   RNAi triggered by small RNA molecules, including siRNAs and miRNAs, offers a

new approach to controlling viral infections. Thus far, viral-specific RNAi has been

generated in a fish cell line by the introduction of synthetic viral gene-specific siRNA in

our previous study (Dang et al., 2008), and by using plasmids capable of intracellular
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expression of virus-encoded pre-miRNAs (pcDNA-miRs) in the present study. In the

previous study, MCP•-targeted siRNA (siR-MCP) effectively and specifically inhibited

the expression ofthe target gene and hindered RSIV replication during an in vitro virus

infection, providing a potential approach for the control of viral diseases in aquaculture.

In the present study, we describe another approach to trigger antiviral RNAi-related

pathways through the action of miRNAs. The present results showed that transfection

with miR-HIRRV silenced the expression level of G gene and reduced HIRRV particles

in infected cells (Fig. 3), and that miR-MCPs inhibited the expression of MCP gene in

cells co-transfected with pCMV-MCP (Fig. 4) as well as in cells infected with RSIV (Fig.

5). Taken together, these results suggest that engineered viral-encoded miRNAs had

antiviral activity, showing inhibitory effects on replication of the target virus. The

engineered viral-encoded pre-miRNAs seemed to work in a highly sequence-specific

manner to evoke the antiviral potential ofmiRNA-related pathways in transfected cells.

   Our finding that virus-encoded miRNAs inhibited replication of the target virus, but

miR-LacZ also had inhibitory effects on viral replication (Figs. 3 and 5) strongly supports

our hypothesis that the antiviral effect observed here was not only due to antiviral RNAi.

Long dsRNA induces a sequence-nonspecific IFN response in many mammalian cells,

leading to a global inhibition of mRNA traRslation (Dykxhoorn et al., 2003). In

vertebrates, dsRNA induce not only gene silencing but also a complex antiviral program

mediated in part by type I IFN, which plays a prominent role during the response to

viruses (Robalino et al., 2007; Smith et al., 2005). In vitro transcribed siRNAs and

hairpin RNAs on DNA vectors appear to induce the antiviral IFN-mediated Jak-Stat

pathway and global upregulation of IFN-stimulated genes (Karpala et al., 2005; Kim et

al., 2004; Schyth et al., 2006; Sledz et al., 2003). For instance, in EPC (Epithelioma

papulosum cyprinid) cells, a fish cell line, in vitTo transcribed siRNAs induced an

antiviral type I IFN response, correlating with the expression ofMx protein (Schyth et

al. , 2006). Mx protein is a well-characterized IFN-induced protein with antiviral activity,

and is considered an indicator of antiviral type I IFN expression (Ooi et al., 2006; Samuel,

2001). Thus, the present results regarding Mx gene expression show that the same

problem was observed in another fish cell line, HINAE cells. The upregulation of Mx
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gene in pcDNA-miRs-transfected cells (Fig. 7) indicates that the intracellular expression

of our engineered pre-miRNAs evoked an antiviral IFN-related response in transfected

cells. Therefore, we propose that the engineered virus-encoded pre-miRNAs not only

trigger the antiviral potency ofRNAi, but also evoke an antiviral IFN-related response in

a fish cell line. This study provides, for the first time, evidence that the expression ofpre-

miRNAs, long hairpin RNAs, induced the antiviral type I IFN-related response,

correlating with the upregulation ofthe Mx gene, in fish cells.

   Taken together, our data suggest that both miRNA-related pathways and antiviral

IFN-related pathways contributed to the observed antiviral effects of virus-encoded

miRNAs. A convergence of RNAi and innate immunity in antiviral response was also

described in shrimp injected with viral sequence-specific dsRNA by Robalino et al.,

(2005). The authors reviewed and proposed a model of antiviral immunity in shrimp by

which viral dsRNA engages both innate immune pathways and an RNAi-like mechanism

to induce potent antiviral responses (Robalino et al., 2005; Robalino et al., 2007).

Therefore, the possibility of activation of both RNAi and IFN-related pathways by pre-

miRNAs must be of great interest to the development of antiviral therapeutics for the

control of diseases because these two pathways interact functionally to mount immunity

to a viral pathogen.

   Our results also revealed that miR-LacZ had stronger inhibitory effect on RSIV

replication (Fig. 5) than on HIRRV replication (Fig. 3). In addition, miR-LacZ showed

stronger inhibitory effect on the expression of MCP gene in transfected cells following

RSIV infection than in cells co-transfected with pCMV-MCP that only expressed the

MCP gene (Fig. 4). Given that miRNA silencing pathways do not require absolute

complement of base-paring with target mRNA, we sought to identify targets of miR-

LacZ and found that ORF 424R (Putative anlcyrin repeat protein) of RSIV genome

contains sequences with partial homology to miR-LacZ sequence. While the'  sequence of

miR-LacZ is partial homology to the non-coding sequence region between the non-virion

protein gene and the RNA polymerase gene of HIRRV genome (data not shown). ORF

424R is classified as an Early (E) gene that is involved in viral DNA replication and has

positive feedback on the regulation of Late (L) genes, such as MCP gene (Lua et al.,
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2005; Williams, 1996). Taken together, our results suggest that miR-LacZ silenced the

expression of ORF 424R through its partial complementarity with the target, resulting in

signiftcant inhibition of RSIV replication. Overall, miRNAs seem to have broad-

spectrum effects beyond the selective silencing of homologous target genes when

experimentally introduced into cells.

   In conclusion, our results indicate that antiviral RNAi-related pathways can be

triggered by the introduction ofboth siRNAs and miRNAs into a fish cell culture system,

providing a new door for the future development of strategies to control viral diseases in

quaculture. However, the introduction of plasmid-based expression systems capable of

intracellularly producing pre-miRNA precursors activates both antiviral miRNA-related

pathways and antiviral IFN-related pathways, and possibly other cellular signaling

pathways in the vertebrates. Although pre-miRNAs activated an antiviral IFN-related

response as shown by upregulation of IFN-induced Mx protein, it is possible that other

cellular signaling pathways are also activated. Therefore, the results of experiments using

miRNA-related pathways should be interpreted with caution. The side effects elicited by

miRNAs should be given special concern because cellular interferon responses in some

cases cause an unintended stimulation and!or a global inhibition ofmRNA translation.

4.5 Acknowledgments

   This study was supported in part by Grants -in- Aid for Scientific Research (S) from

the Ministry ofEducation, Culture, Sports, Science and Technology ofJapan.

4.6 References

Abramoff, M. D., Magelhaes, P. J. and Ran, S. J., 2004. Image procwssing with image.

   Biophoto Int 11, 36-42.

Ambros, V., 2004. The functions of animal microRNAs. Nature 431, 350-355.

Bhuyan, P. K., Kariko, K., Capodici, J., Lubinski, J., Hook, L. M., Friedman, H. M. and

   Weissman, D., 2004. Short interfering RNA-mediated inhibition of herpes simplex

116



   virus type 1 gene expression and function during infection of human keratinocytes. J.

   Virol. 78, 10276-10281.

Boden, D., Pusch, O., Lee, F., Tucker, L. and Ramratnam, B., 2003. Human

   immunodeficiency virus type 1 escape from RNA interference. J Virol 77, 11531-

   11535.

Browrte, E. P., Li, J., Chong, M. and Littman, D. R., 2005. Virus-host interactions: new

   insights from the small RNA world. Genome Biol 6, 238.

Clem, L. W., Moewus, L. and Sigel, M. M., 1961. Studies with cells from marine fish in

   tissue culture. Proc. Soc. Exp. Biol. Med. 108, 762-766.

Dang, L. T., Kondo, H., Hirono, I. and Aoki, T., 2008. Inhibition of red seabream

   iridovirus (RSIV) replication by small interfering RNA (siRNA) in a cell culture

   system. Antiviral Res 77, 142-149.

Dave, R. S. and Pomerantz, R. J., 2003. RNA interference: on the road to an alternate

   therapeutic strategy! Rev Med Virol 13, 373-385.

Doench, J. G., Petersen, C. P. and Sharp, P. A., 2003. siRNAs can function as miRNAs.

   Genes Dev. 17, 438-442.

Dykxhoorn, D. M., Novina, C. D. and Sharp, P. A., 2003. Killing the messenger: short

   RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467.

Kapadia, S. B., Brideau-Andersen, A. and Chisari, F. V., 2003. Interference ofhepatitis C

   virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. U.S.A. 100,

   2014-2018.

Karpala, A. J., Doran, T. J. and Bean, A. G., 2005. Immune responses to dsRNA:

   implications for gene silencing technologies. Immunol. Cell Biol. 83, 21 1-216.

Kasai, H. and Yoshimizu, M., 2001. Establishment of two Japanese flounder embryo cell

   lines. Bull Fisheries Sci. Hokhaido University 52, 67-70.

Kim, D. H., Longo, M., Han, Y., Lundberg, P., Cantin, E. and Rossi, J. J., 2004.

   Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat

   Biotechnol 22, 321-325.

117



Kim, V. N. and Nam, J. W., 2006. Genomics ofmicroRNA. Trends Genet. 22, 165-173.

Kloosterman, W. P. and Plasterk, R. H., 2006. The diverse functions of microRNAs in

   animal development and disease. Dev Cell 1 1, 441-450.

Kusenda, B., Mraz, M., Mayer, J. and Pospisilova, S., 2006. MicroRNA biogenesis,

   functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc

   Czech Repub l50, 205-215.

Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saib,

   A. and Voinnet, O., 2005. A cellular microRNA mediates antiviral defense in human

   cells. Science 308, 557-560.

Lua, D. T., Yasuike, M., Hirono, I. and Aoki, T., 2005. Transcription program ofred sea

   bream iridovirus as revealed by DNA microarrays. J. Virol. 79, 15151-15164.

Miska, E. A., 2005. How microRNAs control cell division, differentiation and death.

   Curr. Opin. Genet. Dev. I5, 563-568.

Nair, V. and Zavolan, M., 2006. Virus-encoded microRNAs: novel regulators of gene

   expression. Trends Microbiol 14, 169-175.

Nygaard, R., Husgard, S., Sommer, A. I., Leong, J. A. and Robertsen, B., 2000. Induction

   of Mx protein by interferon and double-stranded RNA in salmonid cells.'Fish

   Shellfish Immunol 1O, 435-450.

Omoto, S., Ito, M., Tsutsumi, Y., Ichikawa, Y., Okuyama, H., Brisibe, E. A., Saksena, N.

   K. and Fujii, Y. R., 2004. HIV-1 nef suppression by virally encoded microRNA.

   Retrovirology 1, 44.

Ooi, E. L., Hirono, I. and Aoki, T., 2006. Functional characterisation of the Japanese

   flounder, Paralichthys olivaceus, Mx promoter. Fish Shellfish Immunol 21, 293-304.

Pakingking, R., Jr., Okinaka, Y., Mori, K., Arimoto, M., Muroga, K. and Nakai, T., 2004.

   In vivo and in vitro analysis of the resistance against viral haemorrhagic septicaemia

   virus in Japanese flounder (Paralichthys olivaceus) precedingly infected with

   aquabirnavirus. Fish Shellfish Immunol l7, 1-1 1.

118



Pushparaj, P. N. and Melendez, A. J., 2006. Short interfering RNA (siRNA) as a novel

   therapeutic. Clin. Exp. Pharmacol. Physiol. 33, 504-510.

Reed, L. J. and Muench, H., 1938. A simple method ofestimating fifty percent end points,

   Am. J. Hyg. 27, 493-497.

Robalino, J., Bartlett, T., Shepard, E., Prior, S., Jaramillo, G., Scura, E., Chapman, R. W.,

   Gross, P. S., Browdy, C. L. and Warr, G. W., 2005. Double-stranded RNA induces

   sequence-specific antiviral silencing in addition to nonspecific immunity in a marine

   shrimp: convergence of RNA interference and innate immunity in the invertebrate

   antiviral response? J Virol 79, l3561-13571.

Robalino, J., Bartlett, T. C., Chapman, R. W., Gross, P. S., Browdy, C. L. and Warr, G.

   W., 2007. Double-stranded RNA and antiviral immunity in marine shrimp: inducible

   host mechanisms and evidence for the evolution of viral counter-responses. Dev.

   Comp. Immunol. 31, 539-547.

Sambrook, L. and Russell, D. W., 2001. Molecular Cloning, a laboratory manual. 3rd ed.

   New York: Cold Spring Harbor Laboratory Press.

Samuel, C. E., 2001. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778-809,

   table of contents.

Sanchez-Vargas, I., Travanty, E. A., Keene, K. M., Franz, A. W., Beaty, B. J., Blair, C. D.

   and Olson, K. E., 2004. RNA interference, arthropod-borne viruses, and mosquitoes.

   Virus Res 102, 65-74.

Schyth, B. D., Lorenzen, N. and Pedersen, F. S., 2006. Antiviral activity of small

   interfering RNAs: specificity testing using heterologous virus reveals interferon-

   related effects overlooked by conventional mismatch controls. Virology 349, 134-141 .

Siedz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. and Williams, B. R., 2003.

   Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5, 834-

   839.

Smith, P. L., Lombardi, G. and Foster, G. R., 2005. TypeIinterferons and the imiate

   immune response--more than just antiviral cytokines. Mol. Immunol. 42, 869-877.

119



Stram, Y. and Kuzntzova, L., 2006. Inhibition of viruses by RNA interference. Virus

   Genes 32, 299-306.

Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M. and Ganem, D., 2005. SV40-

   encoded microRNAs regulate viral gene expression and reduce susceptibility to

   cytotoxic T cells. Nature 435, 682-686.

Tan, F. L. and Yin, J. Q., 2004. RNAi, a new therapeutic strategy against viral infection.

   Cell Res. 14, 460-•466.

Williams, T., 1996. The iridoviruses. Adv. Virus Res. 46, 345-412.

Yeung, M. L., Bennasser, Y., Le, S. Y. and Jeang, K. T., 2005. siRNA, miRNA and HIV:

   promises and challenges. Cell Res 15, 935-946.

Zeng, Y., Yi, R. and Cullen, B. R., 2003. MicroRNAs and small interfering RNAs can

   inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100,

   9779-9784.

Zhang, W., Yang, H., Kong, X., Mohapatra, S., San Juan-Vergara, H., Hellermann, G.,

   Behera, S., Singam, R., Lockey, R. F. and Mohapatra, S. S., 2005, Inhibition of

   respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the

   viral NS1 gene. Nat Med 11, 56-62.

120



          CHAPTER 5

GENERAL CONCLUSION AND PERSPECTIVE

121



   Viruses are minute infectious agents which are characterized by a lack ofindependent

metabolism and the inability to replicate outside living host cells. Viruses must utilize the

system of the infected host cells for survival and replication; therefore, they have evolved

many strategies to prevent infected cells from being apoptosis and to evade the innate and

adaptive immune responses oftheir hosts. They would exploit the biosynthesis machinery

of host cells to synthesize various components meanwhile inactivate the innate defense

mechanisms of the host, and even deflect the host RNA silencing machinery to their

advantages. Many viruses encode proteins that specifically against host-cell defenses, or

make tiny miRNAs a particularly efficient tool to turn off the expression of specific genes

(Qi et al., 2006). In deed, several viruses produce a persistent carrier state in the host,

rendering their control quite difficult. Thus, understanding the molecular pathogenic

mechanisms of viral infections is necessary and will be of enomious help towards the

development of antiviral approaches.

   Gene expression represents a unique way of characterizing how cells and organisms

adapt to changes in the external environment (Lettieri, 2006). Therefore, analyses ofgene

expression profiles upon viral infections can both facilitates the annotation of the

molecular pathogenic mechanisms of the virus and further provide clues for control of

diseases. The development ofhigh-quality, commercially available DNA microarrays has

allowed this technology to become a standard tool in molecular virology. With the

advantage of the analysis of thousands of genes at the same time, DNA microarrays have

been used to develop a much deeper insight into the mechanism of pathogenesis at the

molecular level.

   The involvement of biotechnology in the control of viral diseases in aquaculture

includes the development of disease-resistant stock, dietary improvements, nonspecific

immunostimulants, vaccines and currently antiviral RNAi-based approaches. Recently,

the availability of the genome sequences of a range of pathogenic viruses provides the

basis for the development ofnew antiviral therapies (DeFilippis et al., 2003). Antiviral

approaches based on RNAi take advantage of this sequence-specific gene silencing
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mechanism triggered by small dsRNA molecules, including siRNAs and miRNAs. Due

to its high specificity, the simplicity of its design, antiviral RNAi technology has

advanced rapidly, opening the possibility for new novel therapeutic procedures.

Attractive targets using RNAi are either viral genes that are essential for virus replication,

or host genes that are essential for virus entry or that play an essential role in the virus life

cycle (Leung and Whittaker, 2005). Small dsRNA molecules can now be obtained in

various ways allowing for numerous in vitro and in vivo applications. All these are

worthwhile and much research efforts have been done to test their efficiency for disease

control. The antiviral potency ofviral-gene specific siRNAs has been comprehensively

discussed in numerous reviews (Dave and Pomerantz, 2003; Pushparaj and Melendez,

2006; Qi et al., 2006; Sanchez-Vargas et al., 2004; Stram and Kuzntzova, 2006; Tan and

Yin, 2004). siRNAs can inhibit viral replication at several stages of infection, including

the very early stages, when viruses are most vulnerable (Carmichael, 2002). Due to its

sequence-specific gene silencing, viral-gene specific siRNAs are currently evaluated as

promising antiviral tools. It is also reviewed that, although miRNAs are involved in

complex regulatory networks, miRNAs can use as antiviral tools against virus infection.

However, the antiviral potency of viral-specific miRNAs has just been reported for

several viruses.

   Both DNA microarray and RNAi technologies have been widely applied in various

mammalian viruses, it is rather new in aquaculture and has just been tested in few aquatic

viruses in vitro. This study, therefore, was carried out to better understand the pathogenic

mechanisms of viral infections in fish utilizing DNA microarray technology, and to

develop alternative antiviral approaches based on RNAi technology using RSIV as a

model. The transcriptional profile ofRSIV was explored over the time-course ofthe virus

infection in infected spleen of red seabream using viral DNA microarrays containing

almost all RSIV putative ORFs. The microarray data analysis indicates that the

pathogenesis of RSIV infection appears to spread at around day 5 and continued with

high levels of viral multiplication until viral clearance by host antiviral defenses starting

from around 10 d.p.i. In addition, the findings that all viral genes were expressed at

higher or similar levels in the spleens when compared with those in the kidneys
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throughout the virus infection further confirm, at the molecular level, that the spleen is a

suitable organ for diagnosis of iridoviral infectioRs in fish.

   The antiviral potency of RNAi, triggered by siRNAs and miRNAs, was applied to

RSIV in in vitro studies prior to their further application for efficient in vivo studies. The

anti-RSIV activity of virally small RNA molecules was investigated in a cell culture

system by the introduction of a naked synthesized viral-specific siRNA and by using

plasmid-based viral-encoded pre-miRNA expression system.

   A siRNA specific to MCP gene ofRSIV (siR-MCP) was designed and tested for anti-

RSIV activity. Transfection with siR-iMCP efficiently silenced the expression of the

target gene and reduced the production of RSIV particles in supernatants of samples

infected with RSIV, while the corresponding mismatched siR-MCP (MsiR-MCP) and

nsRNA controls did not exhibit this effect. These results show that the introduction of

naked siR-MCP into a fish cell line can effectively and specifically inhibit the expression

of the target gene and hider RSIV replication during an in vitro infection, providing a

potential approach for the control ofviral diseases in aquaculture.

   Anti-RSIV activity of viral-encoded miRNAs was investigated in a fish cell line by

using plasmid-based pre-miRNA expression system. By incorporating sequences

encoding miRNAs specific to the MCP gene ofRSIV into a murine miR-155 pre-miRNA

backbone (miR-MCPs) under control ofPol II promoter, we were able to intracellularly

express miR-MCPs in cells transfected with plasmids capable of expressing pre-miRNAs

(pcDNA-miRs). miR-MCPs reduced the expression ofMCP gene, resulting in inhibition

of RSIV replication. However, expression of miR-MCPs was found to activate the

antiviral IFN-related pathways in transfected cells, correlating with the upregulation of

the antiviral IFN-induced Mx protein. The observed anti-RSIV effects of virus-encoded

miRNAs were partly the result of the antiviral miRNA-related pathways and partly the

result of the antiviral IFN-related pathways. In terrns of the potential use of miRNA-

related pathways for development of antiviral therapeutics, the possibility of activation of

RNAi and IFN-related pathways by pre-miRNAs must be of great interest to the control
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of diseases because these two pathways interact functionally to mount immur}ity to a viral

pathogen.

   Despite DNA microarray technology has been successfu11y applied in the field of

molecular virological research, its enormous poteRtial still faces several challenges. The

biggest challenge in DNA microarrays is the challenge of data handling and informatics

(Choudhuri, 2004). This is due to the large volume ofdata generated in each experiment.

In addition, differential gene expression analysis is not a stand-alone technique; results

must be confirmed through direct examination of selected genes using more sensitive

assays, such as RT-PCR, real-time PCR. A second major limitation is the high cost

associated with the technology itself. These costs render repeat measures very expensive,

and thus often only limited experimental data are available.

   Similarly, the potential for use of RNAi as antiviral tool also has severai limitations

that should be taken into account when designing RNAi-based experiments. Short

dsRNAs (21-23 bp) or siRNAs are commonly used in vertebrates because they are able to

bypass this general non-specific response and achieve gene target-specific silencing via

RNAi. However, one shortcoming of the introduction of naked siRNAs into cells is

transient or short-term effect. To get around this problem, plasmid-based expression

systems for endogenously producing pre-miRNAs have been developed (Tuschl and

Borkhardt, 2002). Although the use ofplasmid-based expression systems is an easy and

inexpensive way to generate miRNAs, the expression oflong hairpin RNA in some cases

have been shown able to trigger sequence-nonspecific interferon responses in the cells,

thereby leading to a global inhibition of mRNA translation (Dykxhoorn et al., 2003;

Samuel, 2001). Thus, caution must be exerted in the interpretation of data from

experiments using miRNA-related pathways. The side effects elicited by miRNAs are of

concern for the use of RNAi technology as antiviral approaches, where gene silencing is

often taken as indicative of successfuI specific-sequence manner.

   Overall, a better understanding ofthe molecular pathogenesis ofRSIV, as revealed by

the DNA microarrays, is enomious contribution to the thorough knowledge of RSIV

infection and control iridoviral diseases in aquaculture. Additionally, in vitro RNAi
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studies have demonstrated that RNAi-related pathways are involved in antiviral defenses

and could be evoked by introduction ofboth viral-specific siRNAs and miRNAs into fish

cells. Thus the antiviral potency of RNAi can be applied in vivo, for instance, by using

transgenic technology. The use of the trangene teclmology will generate transgenic fish

that can induce stable gene silencing, resulting in long-lasting protective potency against

viral infections. However, efficiency and stability of RNAi are influenced by many

factors, including tissue-targeted types, route of administration and delivery vehicles for

generating RNAi. Therefore, in vivo RNAi studies require carefu1 considerations,

especially for the use of delivery system for generating RNAi.
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