
REAL-TIME ANALYSIS OF CORRELATIONS BETWEEN ON-BODY SENSOR NODES (WITH TOPOLOGICAL MAP
ARCHITECTURES)

M Berchtold

TecO, University of Karlsruhe

Karlsruhe, Germany

K Van Laerhoven

University of Lancaster

Lancaster, United Kingdom

ABSTRACT

The topology of a body sensor network has, until recently,
often been overlooked; either because the layout of the network is
deemed to be sufficiently static (”we always know well enough
where sensors are”), we always know exactly where the nodes are
or because the location of the sensor is not inherently required
(”as long as the node stays where it is, we do not need its location,
just its data”). We argue in this paper that, especially as the
sensor nodes become more numerous and densely interconnected,
an analysis on the correlations between the data streams can be
valuable for a variety of purposes. Two systems illustrate how
a mapping of the network’s sensor data to a topology of the
sensor nodes’ correlations can be applied to reveal more about the
physical structure of body sensor networks.

INTRODUCTION

Large sensor networks are still a novelty, and often specifi-
cally engineered with addressable nodes that communicate their
identity, purpose, and location throughout the network. Some
nodes have built-in positioning systems as their applications
specifically need exact locations (e.g., the Relate approach from
Hazas et al., [3]), other nodes are carefully placed so that they
stay arranged conform a pre-designed model. Here, we limit our
investigation to a technique that estimates how close a sensor
node is to another in the network by deducing this from how the
sensed information from both nodes correlates (as previously
demonstrated by Holmquist et al. [4]).

This method has not only merits for estimating spatial topologies
of networks, it could also be used to search for nodes that transmit
corrupted sensor data, or for tracking and dealing with changes
in the topology. Related work includes the location detection of
body-worn devices by Kunze et al. [7], where the location of an
object on the body (such as glasses on the head, in a pocket, or
in the hands) is detected by looking at the signals from built-in
motion sensors during intervals where the user is walking.

COLLECTION OF DATA AND CORRELATION

The data used in this paper is taken from Van Laerhoven
and Gellersen [8], where 40 accelerometers that are loosely
strapped to the subject’s legs, form a distributed sensing network
that is shown to be accurate enough to detect a basic range of
motion-related activities such as sitting down, running, or riding
a bicycle. The objective is now to get an estimation of spatial
arrangement of these sensors by mere analysis of their data, and
without any prior knowledge of the sensor’s location. This is not
just an imaginary scenario, as this problem is closely related to
that in vast wireless networks where nodes cannot be assigned
unique IDs: sensor data could in that case be a complementary

technique to verify where the packet of data came from.

The input data is provided by 20 sensor nodes attached to
trousers (fig.1), each equipped with a 2-dimensional accelerome-
ter sensor. It is data collected during different physical activities,
such as standing, walking and climbing stairs [8]. To pre-process
the data a sliding window of the size T is used. This data is

Figure 1: Distribution of sensor nodes on the trousers

stored in matrices (equation 1), one per sensor node Sk, with
two row vectors (xl and yl) representing the dimensions of the
accelerometer (1st state of figure 2).

Sk =

(

~xT
k

~yT
k

)

=

(

xk0, xk1, · · · , xkT

yk0, yk1, · · · , ykT

)

(1)

A correlation calculation (equation 2) is performed upon the 20
matrices of the framed input data. Each sensor node Sl’s correla-
tion (equation 3) towards a reference sensor node Sk is stored in a
40-dimensonal vector (2nd state of figure 2). The reference node
selection Sk is shifting over the whole set of sensor nodes, which
results in a cycle of 20 vectors after which the first sensor node S1

is the reference again. These vectors will then become input for
the KSOM as shown in figure 2.

COR(~xk, ~xl) =

∑T

t=0
(xkt − xkµ)(xlt − xlµ)

∑T

t=0
(xkt − xkµ)2

∑T

t=0
(xlt − xlµ)2

=
〈(~xk − ~xkµ), (~xl − ~xlµ)〉

‖(~xk − ~xkµ)‖2 ‖(~xl − ~xlµ)‖2
(2)

CORR(Sk, Sl) = (COR(~xk, ~xl), COR(~yk, ~yl)) (3)

If the nodes’ raw sensor data would be used as input for the
KSOM, a lot of overwriting would occur in the map, since the
different activities (standing, walking and climbing stairs) activate
same regions across sensor nodes and annihilate the previous
topology. To use the raw data anyway, each activity would need
its own map. Another big issue is the lack of calibration for

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


GNG

Clustering
KSOM + k−Means

S
1

x      y

S
20

x      y
20 20

11

Incoming
Sensor Values

KSOM
CORR(S ,S )i

CORR(S ,S  )i 20

1

i=1,..,20

Sensor Values after Correlation
Calculation

x          y

x          y

Figure 2: State flow diagram of each state of the data processing
chain.

accelerometers. Even though some sensor nodes have nearly
the same position on the trousers, they can produce a different
output due to inaccuracy of the measurements. Since in the
correlation calculation only similar output signals at the same
time determine the outcome of the calculation, the calibration
errors are eliminated. The correlation values are in the interval
[−1, 1], whereas +1 indicates total correlation, −1 if the slopes
of the two waves are converse to each other and 0 if there is no
correlation between the respective waves. The x and y values in
the input vector of the KSOM are always alternately correlated
independently (equation 3), which guarantees a better result even
if the sensors are not exactly oriented towards each other. In this
manner it would be best to have three dimensional sensor nodes.

INDEPENDENT COMPONENT ANALYSIS (ICA)

Our real objective can be characterised as a visualisation
one: once all the incoming data signals have been correlated
with each other (see the second state in figure 2), we are left
with a 40 dimensional vector per sensor node that represents
similarities between the signals’ behaviours. Reducing this to a 2-
or 3-dimensional space without losing too much of the structure
in the correlation space is our core objective, to give an adequate
representation of proximity between our sensor nodes: those that
are strapped to the same limb segment should be in the vicinity
of each other in the visualisation as well, or those that are on
different legs should be further away from each other.

Obviously, we are interested in algorithms that perform this
mapping from correlation space to a lower dimensional visualisa-
tion in real time, as the sensor data streams in. To have something
to compare against, however, we will first show some results with
a well-known off-line algorithm that obtains an ideal mapping
by going over our data in multiple passes, called Independent
Component Analysis (ICA). Readers interested in the inner
workings of this algorithm are encouraged to use Oja’s work as a
starting point [5].

The correlation of the incoming sensor data delivers twenty
(one per sensor node) 40-dimensional vectors that are then each
plotted in three dimensional space using ICA. Figure 2 shows two
typical instances of these plots, where the nodes are connected
to reflect the physical arrangement in the experiment. The left
plot shows the typical organisation during activities of movement
(such as walking), whereas the right plot shows what happens
if one of the user’s legs remains immobile (and no correlation
can be witnessed); The lower two plots show the real incoming
acceleration data (over a history of 500 samples) for the first
sensor node.

Figure 3: Independent Component Analysis (l) with much move-
ment and (r) with nearly no movement

KOHONEN SELF-ORGANIZING MAP (KSOM)

The KSOM [6] is a topological map with a firm grid, in
this case two dimensional. Every neuron in the map has an
associated codebook vector that has the same dimension as the
input vectors. As a new input vector is presented to the map,
its distance to each neuron’s codebook vector is calculated. The
neuron with the smallest distance is the ”winner” neuron. Every
neuron in the grid has a relation to its neighbours, according
to this relation the input data is distributed over the map, in
manner of moving the codebook vectors towards the input vector
correlative to the neuron’s distance towards the ”winner” neuron.

Since the correlation calculation produces a 40-dimensional
vector, the codebook vectors need to have the same dimension.
Because of visualization reasons all values have been converted to
unsigned integer (math.not.:127(x + 1)). This high dimensional-
ity slows down the performance of the KSOM (3rd state of figure
2) training and testing in a major way. Because of visualization,
performance and mapping reasons a 25 × 20 map was chosen.
Lower dimensionality would prevent a distinct mapping of the
input vectors upon the map.

For training of the KSOM different kinds of parameter ar-
rangements and distribution functions have been tested. The used
distribution functions are a gaussian distribution and a distribution
where the euclidian distance between the neurons in the grid
determines the influence of the input vector on the codebook
vectors. The gaussian distribution was the successful one, since
the euclidian one produced only partly trained maps with totally
uninfluenced regions or maps where every neuron had nearly the
same codebook vector. To prevent the KSOM from over training,
a linear decreasing learning rate was chosen. A set of 60000
training vectors with correlation grouped per 20 was used to train
the map. In figure 6 on the left side a successfully trained KSOM
is shown. The trained KSOM was used afterwards to generate
a test diagram (figure 4), where the activations of neurons were
counted for each sensor node as reference one.

K-MEANS CLUSTERING

The k-means clustering algorithm [1] establishes k clusters
upon a set of vectors. The algorithm starts with k cluster centers,
each represented via a predefined vector. For each vector of the
input set, it is decided to which cluster centere it has the smallest
distance. This cluster centers’ vector is then moved towards the



Figure 4: Test results for activations of neurons corresponding to
sensor nodes. Test results for activations of neurons correspond-
ing to sensor nodes. The left plot shows the number of times each
neuron in the map has won, per sensor node (represented by dif-
ferently coloured blocks). The right plot shows the top view of the
same plot, connecting the winner neurons conform figures 1 and
3.

input vector by a small fraction, which is shown in equation 4.

~x
t+1

i = ~x
t
i + α(~yinput − ~x

t
i), i ∈ {1, ..., k} (4)

In our case, the 20-means clustering (one cluster per reference
sensor node) is placed upon the KSOM (4th lower state of figure
2), by using the mostly over all winner neuron’s codebook vector,
of each sensor nodes’ test set, as initial cluster center. All neuron’s
codebook vectors are then presented to the k-means algorithm to
update the cluster centers. The cluster to which the respective
neuron belongs to is visualized through different background
colors, as in figure 5 can be seen.

Figure 5: KSOM with k-Means Clusters

For each vector of a test set it is now decided to which cluster the
corresponding winner neuron belongs to.

GROWING NEURAL GAS (GNG)

The GNG network is similar to the KSOM in manner of
neurons, codebook vectors and neighbourhood relations. The
differences are despite of these essential, since there is a growing
number of neurons and a dynamic neighbour relationship (con-
nections between the neurons). The GNG algorithm starts with

two neurons and a connection between them. Step by step the
amount of neurons is increased until the input data is satisfiably
covered. GNG learns the input data similar to the KSOM via
moving codebook vectors towards the input vector, but only for
the two nearest neurons. For further informations on the GNG
network the notes of Fritzke [2] give a precise description of its
algorithm.

With a trained KSOMs’ test output a two dimensional data
stream is gained, since the ”winner” neuron has a two dimen-
sional position in the KSOM grid. This data stream is used to
train a GNG network (4th state of figure 2) with two dimensional
codebook vectors. Since the codebook vectors are two dimen-
sional the GNG network is easily visualizable. Through training
connections are made between neurons and deleted if redundant,
which leads to a web (right side of fig.6) that represents the
correlation of the sensor nodes. The increasing number of neurons

Figure 6: (l) KSOM in a final trained state (r) GNG network
trained with pre-trained KSOM winner output

in the network is limited to 20, so every node in the GNG network
represents one sensor node. The connections in the web form the
correlations of correlated sensor nodes on the trousers.

EVALUATION

Depicted in figure 7, preliminary visual comparison of the
plots from the off-line ICA-based algorithm with those from
the proposed on-line algorithm shows many similarities: The
proximity between nodes on lower and upper legs is present in
both, and the two approaches also share the same outlier nodes
(see for example S10, S11, and S20). The plots in figure 7 are
representative for most sections of the used data where sufficient
motion occurred to extract the correlations among sensor nodes
(note that slight motion during standing would be adequate).

Figure 7: Topological mapping of correlations using (l) ICA in a
3D space and (r) KSOM connected winner nodes

To give a more exact measure of how the proposed topological
algorithms performed on the datasets, however, we can measure



how relative distances evolve over time and compare these
distances with those obtained with the ICA method. Figure 8
shows the distance over time between two adjacent nodes (S7

and S8), while figure 9 shows the same for two nodes far away
from each other in the network (S1 and S20). This particular
section of the data set contained data while the test subject was
standing upright, walking and climbing stairs; in the middle
portion (between samples 400 and 500), the test subject stood still
which resulted in poor correlation for the left leg (also observable
in the right section of figure 3).

Figure 8: Distance of S7 and S8 over a set of 714 samples in ICA
and KSOM

Figure 9: Distance of S1 and S20 over a set of 714 samples in
ICA and KSOM

Both figures illustrate that topologies indeed get stored in the
Kohonen Self-Organising Map, albeit in less detail and in a more
course-grained fashion than in the space obtained with ICA.
It is also important to note that we used a three-dimensional
ICA-created topology while our KSOM topology was restricted
to a two-dimensional one, since a lean, real-time implementation
was one of our goals. The real advantage of the latter is therefore
preserved: it can build up a topology from the correlations as the
data gets presented to the system.

Evaluating the performance of the Growing Neural Gas and
K-Means clustering for additional visualisation is highly depen-
dent on that of the KSOM, and is left as future work. It would
for instance be possible to match up the graph model created
by the GNG to the actual model (resembling that of figure 1)
including the created edges, but we had difficulties deciding on an
appropriate method to achieve this.

CONCLUSION

Correlation data often reveals the proximity of sensor nodes
to each other because what they sense is more similar; This
can be exploited even more so in large sensor networks where
the same type of nodes have multiple sensors and are grouped
in comparatively dense configurations. This paper used a net-
work of 20 two-dimensional accelerometer nodes as a case study
where each node covers a small surface area of a person’s trousers.

We propose the use of correlation between distributed sen-
sor nodes, combined with topological mapping algorithms,
to approximate a spatial model of the sensor network. The
algorithms discussed are self-organising in nature and operate
in real-time on incoming sensor data. They can also be used
as a complementary system to any sensor analysis system for
networks of sensors that are observing a common phenomenon
(e.g., parallel to a recognition system), and are particularly suited
to body sensor networks.

The created topologies can be utilised to visually reveal de-
fect or corrupt nodes while the sensing is in progress, or the state
of the topology (or detected changes in it) could be used as an
additional input in classification systems.

References
[1] C. M. Bishop. Neural networks for pattern recognition.

Oxford University Press, 1995.

[2] B. Fritzke. A growing neural gas network learns topologies.
Advances in NIPS,7, 1995.

[3] M. Hazas, H. Gellersen, C. Kray, H. Agbota, G. Kortuem, and
A. Krohn. A relative positioning system for spatial awareness
of co-located mobile devices and users. submitted to MobiSys,
2005.

[4] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl,
and H.-W. Gellersen. Smart-its friends: A technique for
users to easily establish connections between smart artefacts.
Ubicomp,2201/2001, page 116, 2003.

[5] A. Hyvärinen and E. Oja. Independent component analysis:
Algorithms and applications. Neural Networks,13(4-5), pages
411–430, 2000.

[6] T. Kohonen. Self-organizing maps. Springer Ser. in IS,30,
1995.

[7] K. Kunze, P. Lukowicz, H. Junker, and G. Troester. Where am
i: Recognizing on-body positions of wearable sensors. LoCa,
2005.

[8] K. V. Laerhoven and H.-W. Gellersen. Spine versus por-
cupine, a study in distributed wearable activity recognition.
ISWC,8, pages 142–149, 2004.


