Provided by Lancaster E-Prints

Metadata, citation and similar papers at core.ac.uk

A Green Family: Generating Publish/Subscribe Middleware

Configurations

Bencomo N., Sivaharan T., and Blair G
Lancaster University, Computing Department., InfoLab21,
Lancaster, UK, LA1 4WA

{nelly, t.sivaharan, gordon}@comp.lancs.ac.uk

ABSTRACT

We are investigating how to combine modelling, meta-modelling,
and reflection to systematically generate middleware
configurations that can be targeted at different application
domains and deployment environments. We have developed a set
of meta-models that captures the fundamental concepts and forms
the basis for systematic generation of extensible “middleware
families” that can be instantiated differently depending on
different requirements. GREEN [[5]] is one of the families of
middleware developed at Lancaster University. GREEN is a
configurable and reconfigurable publish-subscribe middleware to
support pervasive computing applications. In this article we
investigate, how we can systematically generate valid GREEN
configurations based upon requirements and constraint
specifications; thus eliminating the heavy burden on the
application programmer while guaranteeing that the ultimately
configured middleware will offer the required functionality.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Software Architecture; D.2.11
[Software Engineering]: Design; D.4.7 [Operating Systems]:
Organization and Design — Distributed Systems, Hierarchical
design.

General Terms: Design

Keywords: Family Generation, Model-Driven Development,
Meta-models, Publish/Subscribe, Reflective Architectures.

1. INTRODUCTION

Adaptability is one important criterion for middleware platforms.
In order for middleware platforms to be adaptive, their services
and properties need to support a wide variety of application
domains, deployment environments, and QoS properties. At
Lancaster University, our middleware research group has been
investigating how to combine the notions of components [9]
(language-independent units of dynamic deployment), component
frameworks CF (collections of components that address a specific
area of concern and accept additional plug-in components) [9],
and middleware families (collections of component frameworks
that are tailored to specific application domains and deployment
environments). We apply our approach [1][2] to generate both

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

RM '05, November 28- December 2, 2005 Grenoble, France Copyright
2005 ACM 1-59593-270-4/05/11... $5.00.

deployment time and runtime re-configuration. Reflection [7] is
applied to discover the current structure and behaviour of the
component configurations, and to allow selected changes at run-
time for dynamic adaptation. The end result is a flexible
middleware platform that can be straightforwardly specialized to
a wide range of domains including multimedia, embedded
systems [3], and mobile computing [4].

New challenges have emerged from the experience of working
with  highly configurable middleware platforms. Being
responsible for middleware composition and integration adds
considerable complexity to the load on the application developer.
Application developers have to deal with a large number of
complex variability decisions when planning middleware
configurations to suit the requirements. These include decisions
such as what kinds of components are required and how these
components must be configured together. The high flexibility
offered increasingly makes it error-prone when application
programmers manually create the required configurations. Such
ad hoc approaches do not offer formal foundations for verification
that the ultimately configured middleware will offer the required
functionality.

We advocate the use of Model-Driven Software Development
(MDSD) techniques to overcome the issues mentioned above.
MDSD is a new paradigm that encompasses domain analysis,
meta-modelling and model-driven code generation. We are
shifting from the development of single middleware systems to
family of middleware systems based on the meta-models and
models designed. We have already specified a kernel UML meta-
model that embraces the set of fundamental concepts of the
component model. All middleware family members regardless of
their domain shares this minimum set of concepts. On top of this,
we propose a set of extensions (caplets and reflective extensions)
that captures the extensibility of the approach [2]. In this article
we investigate how our approach can be used in the specification
and automatic generation of GREEN family configurations [5].
GREEN is a highly configurable and reconfigurable publish-
subscribe middleware platform developed at Lancaster to support
pervasive computing applications.

2. THE GREEN FAMILY': a Publish-

Subscribe Middleware Platform

GREEN (Generic & Re-configurable EVEnt Notification service)
is a highly configurable and reconfigurable publish-subscribe
middleware [5] to support pervasive computing applications. Such
applications must embrace both heterogeneous networks and
heterogeneous devices: from embedded devices in wireless ad-
hoc networks to high-power computers in the Internet. GREEN
offers a flexible middleware which is highly configurable and re-
configurable to meet the application requirements and constrains
of the heterogeneous and changing environments. GREEN


https://core.ac.uk/display/70289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

follows the well established approach to the development of
reflective middleware [10] it uses the marriage of OpenCOM
components [7], reflection [8] and component frameworks (CFs)
to yield a configurable, reconfigurable and evolvable publish-
subscribe middleware architecture. In particular, GREEN is
configurable to operate over heterogeneous network types (e.g.
MANET and WAN) and supports pluggable publish-subscribe
interaction types (i.e. topic based, content based, context,
composite events). Further, the underlying event routing
mechanisms are reconfigurable to support selected interaction
type for different network types. In addition, the distributed event
routing and event filtering is underpinned by pluggable
distributed event broker overlays; we create overlays of event
brokers to suit contrasting network types. The high configurability
and flexibility of GREEN gives a good example of the new
challenges that arise when planning the appropriate middleware.
Developers face the responsibility of middleware composition and
configuration to meet the specific application and environment
requirements, which in itself add considerable complexity. The
system integrity can be easily compromised if application
developers fail to configure the middleware without expertise and
understanding of the middleware itself.

3. THE APPROACH: A SUMMARY

In outline, different configurations are generated from the models
and meta-models specified. The particular domain and the
specific required functionality will shape the primary
configuration. The ultimate concrete configurations are
determined by three dimensions of variability we have identified:

(i) deployment environment, (ii) QoS, and (iii) degree of

(re)configurability.

As the context is about the P/S paradigm, the configurations of
components are related to modelling elements associated with the
GREEN architecture. This architecture comprises the interaction
CF and the Event Broker Overlays CF and their different plug-ins,
see Figure 1. Variability associated with the deployment
environment dimension is categorised in terms of network types
(e.9. MANET, WAN) and device types (e.g. PDA, PC).
According the P/S interaction type required, the Interaction CF is
configured by plugging different interaction types (topic-based,
content-based, and context-based). Finally, the Overlays CF are
configured to provide different overlays plug-ins depending on
the interaction and network type determined before. The overlay
plug-in configured for a particular interaction type heavily
influences 1) the suitability of the interaction type to the network
environment, 2) scalability, and 3) fault tolerance properties of
the system. Consequently, the configurations of the plug-ins of
both, Interaction and Overlays CF described above, have to be
done in light of configurations requirements and general QoS like
fault tolerance and throughput. These conditions are taken into
account when gluing together the appropriate components to
obtain the optimal configurations that meet the requirements.

The partial results shown in this article make us think that we are
on the right path to reach our goal. However, further work has to
be done in terms of the implementation and formal evaluation of
the systematic generation of GREEN family members we have
proposed.

Interaction Type API plyg-ins

&

/Sub Interaction CF

Event models & Subscriptiorﬁh«xguages plug-ins
|

Event Filter enging plug-ins
Monitor plug-ins

Multiple dependencies
) =
Eyent Broker Overlay CF

Qxerlay plug-ins

—
| CEE s

)
|

Plug-ins

\GREEN Top Level CF_ Control plug -ins Forward plug-ins

State plugAns

Figure 1. The GREEN Architecture

Acknowledgments: This research is part-financed by the RUNES
project. Project supported by research funding from the European
Commission's 6th framework Programme under contract number
IST-004536.

4. REFERENCES

[1] Bencomo N., and Gordon B. Preening: Reflection of Models in the
Mirror, The Doctoral Symposium, MODELS 2005, Jamaica,
October, 2005

[2] Bencomo, N., Blair, G.S., Coulson, G., Batista, T., Towards a Meta-
Modelling Approach to Configurable Middleware, Proc. 2nd
Workshop on Reflection, AOP and Meta-Data for Software
Evolution, at ECOOP, 2005

[3] Costa, P., Coulson, G., Mascolo, C., Picco, G.P., Zachariadis, S.: The
RUNES Middleware: A Reconfigurable Component-based Approach
to Networked Embedded Systems, PIMRCO05,(2005)

[4] Grace P., Blair G. Samuel S.: ReMMoC: A Reflective Middleware to
Support Mobile Client Interoperability, Proc in International
Symposium on Distributed Objects and Applications (2003)

[5] Sivaharan, T., Blair, G.S., Coulson, G., GREEN: A Configurable and
Re-Configurable Publish-Subscribe Middleware for Pervasive
Computing, to appear Proc. DOA’05, Cyprus, 2005.

[6] Smith B.: Reflection and Semantics in a Procedural Language, PhD
thesis, MIT Laboratory of Computer Science, 1982

[7] Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J.,
OpenCOM v2: A Component Model for Building Systems Software,
Proceedings of IASTED, SEA'04, 2004

[8] Kon, F., Costa, F., Blair, G.S., Campbell, R., The Case for Reflective
Middleware: Building Middleware that is Flexible, Reconfigurable,
and yet simple to Use, CACM, Vol. 45, No. 6, pp 33-38, 2002.

[9] Szyperski, C.,Component Software: Beyond Object-Oriented
Programming. Addison Wesley, 1998

[10] Reflective Middleware Group at Lancaster:
http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/ind
ex.php




