
28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 1/12

A Direct Mapping of Relational Data to RDF

W3C Recommendation 27 September 2012

This version:

http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
Latest version:

http://www.w3.org/TR/rdb-direct-mapping/
Previous version:

http://www.w3.org/TR/2012/PR-rdb-direct-mapping-20120814/
Editors:

Marcelo Arenas, Pontificia Universidad Católica de Chile <marenas@ing.puc.cl>
Alexandre Bertails, W3C <bertails@w3.org>
Eric Prud'hommeaux, W3C <eric@w3.org>
Juan Sequeda, University of Texas at Austin <jsequeda@cs.utexas.edu>

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

Copyright © 2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

The need to share data with collaborators motivates custodians and users of relational databases (RDB) to expose relational data on the Web
of Data. This document defines a direct mapping from relational data to RDF. This definition provides extension points for refinements within

and outside of this document.

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A

list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at

http://www.w3.org/TR/.

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is
endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another
document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This
enhances the functionality and interoperability of the Web.

This document was published by the RDB2RDF Working Group. Comments on this document should be sent to public-rdb2rdf-
comments@w3.org, a mailing list with a public archive. The following related documents have been made available:

A wiki page with additional information for users and implementers of R2RML,
a color-coded diff of all changes since the previous draft,
the implementation report used by the director to transition to W3C Recommendation.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent
disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who
has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with
section 6 of the W3C Patent Policy.

Table of Contents

1 Introduction
2 Direct Mapping Description (Informative)
2.1 Direct Mapping Example
2.2 Foreign keys referencing candidate keys
2.3 Multi-column primary keys
2.4 Empty (non-existent) primary keys
2.5 Referencing tables with empty primary keys
3 Direct Graph Definition
4 References

Appendices

A Direct Mapping Algebra (Informative)
A.1 Notations
A.2 Relational Data Model
A.2.1 RDB Abstract Data Type
A.2.2 RDB accessor functions
A.3 RDF Data Model

http://www.w3.org/
http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/2012/PR-rdb-direct-mapping-20120814/
mailto:marenas@ing.puc.cl
mailto:bertails@w3.org
mailto:eric@w3.org
mailto:jsequeda@cs.utexas.edu
http://www.w3.org/2001/sw/rdb2rdf/errata.html
http://www.w3.org/2003/03/Translations/byTechnology?technology=rdb-direct-mapping
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/TR/
http://www.w3.org/2004/02/Process-20040205/tr.html#RecsW3C
http://www.w3.org/2001/sw/rdb2rdf/
mailto:public-rdb2rdf-comments@w3.org
http://lists.w3.org/Archives/Public/public-rdb2rdf-comments/
http://www.w3.org/2001/sw/wiki/RDB2RDF
http://www.w3.org/TR/rdb-direct-mapping/PR-to-REC
http://www.w3.org/TR/2012/NOTE-rdb2rdf-implementations-20120814/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/43889/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 2/12

CREATE TABLE "Addresses" (

 "ID" INT, PRIMARY KEY("ID"),

 "city" CHAR(10),

 "state" CHAR(2)

)

CREATE TABLE "People" (

 "ID" INT, PRIMARY KEY("ID"),

 "fname" CHAR(10),
 "addr" INT,

 FOREIGN KEY("addr") REFERENCES "Addresses"("ID")

)

INSERT INTO "Addresses" ("ID", "city", "state") VALUES (18, 'Cambridge', 'MA')

INSERT INTO "People" ("ID", "fname", "addr") VALUES (7, 'Bob', 18)

INSERT INTO "People" ("ID", "fname", "addr") VALUES (8, 'Sue', NULL)

@base <http://foo.example/DB/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<People/ID=7> rdf:type <People> .
<People/ID=7> <People#ID> 7 .
<People/ID=7> <People#fname> "Bob" .
<People/ID=7> <People#addr> 18 .
<People/ID=7> <People#ref-addr> <Addresses/ID=18> .
<People/ID=8> rdf:type <People> .

A.4 Denotational semantics
B Direct Mapping as Rules (Informative)
B.1 Generating Row Type Triples
B.1.1 Table has a primary key
B.1.2 Table does not have a primary key
B.2 Generating Literal Triples
B.2.1 Table has a primary key
B.2.2 Table does not have a primary key
B.3 Generating Reference Triples
B.3.1 Table r1 has a primary key and table r2 has a primary key
B.3.2 Table r1 has a primary key and table r2 does not have a primary key
B.3.3 Table r1 does not have primary key and table r2 has a primary key
B.3.4 Table r1 does not have primary key and table r2 does not have a primary key

1 Introduction

Relational databases proliferate both because of their efficiency and their precise definitions, allowing for tools like SQL [SQLFN] to manipulate
and examine the contents predictably and efficiently. Resource Description Framework (RDF) [RDF-concepts] is a data format based on a web-
scalable architecture for identification and interpretation of terms. This document defines a mapping from relational representation to an RDF
representation.

Strategies for mapping relational data to RDF abound. The direct mapping defines a simple transformation, providing a basis for defining and

comparing more intricate transformations. It can also be used to materialize RDF graphs or define virtual graphs, which can be queried by
SPARQL or traversed by an RDF graph API. This document includes an informal and a formal description of the transformation.

This specification has a companion, the R2RML mapping language [R2RML], that allows the creation of customized mapping from relational
data to RDF. R2RML defines a relaxed variant of the Direct Mapping intended as a default mapping for further customization.

2 Direct Mapping Description (Informative)

The direct mapping defines an RDF Graph [RDF-concepts] representation of the data in a relational database. The direct mapping takes as
input a relational database (data and schema), and generates an RDF graph that is called the direct graph. The algorithms in this document

compose a graph of relative IRIs which must be resolved against a base IRI [RFC3987] to form an RDF graph.

Foreign keys in relational databases establish a reference from any row in a table to exactly one row in a (potentially different) table. The direct
graph conveys these references, as well as each value in the row.

2.1 Direct Mapping Example

The concepts in direct mapping can be introduced with an example RDF graph produced by a relational database. Following is SQL (DDL) to
create a simple example with two tables with single-column primary keys and one foreign key reference between them:

HTML tables will be used in this document to convey SQL tables. The primary key of these tables will be marked with the PK class to convey an
SQL primary key such as ID in CREATE TABLE "Addresses" ("ID" INT, ... PRIMARY KEY("ID")). Foreign keys will be illustrated with a
notation like "→ Address(ID)" to convey an SQL foreign key such as CREATE TABLE "People" (... "addr" INT, FOREIGN KEY("addr")
REFERENCES "Addresses"("ID")).

Given a base IRI http://foo.example/DB/, the direct mapping of this database produces a direct graph:

People

PK → Address(ID)

ID fname addr

7 Bob 18

8 Sue NULL

Addresses

PK

ID city state

18 Cambridge MA

http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/#dfn-duplicate-row-preservation
http://www.w3.org/TR/2012/REC-r2rml-20120927/#default-mappings
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-rdf-graph

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 3/12

<People/ID=8> <People#ID> 8 .
<People/ID=8> <People#fname> "Sue" .

<Addresses/ID=18> rdf:type <Addresses> .
<Addresses/ID=18> <Addresses#ID> 18 .
<Addresses/ID=18> <Addresses#city> "Cambridge" .
<Addresses/ID=18> <Addresses#state> "MA" .

CREATE TABLE "Addresses" (

 "ID" INT,

 "city" CHAR(10),

 "state" CHAR(2),

 PRIMARY KEY("ID")

)

CREATE TABLE "Department" (

 "ID" INT,

 "name" CHAR(10),

 "city" CHAR(10),

 "manager" INT,

 PRIMARY KEY("ID"),

 UNIQUE ("name", "city")

)

CREATE TABLE "People" (

 "ID" INT,

 "fname" CHAR(10),

 "addr" INT,

 "deptName" CHAR(10),

 "deptCity" CHAR(10),

 PRIMARY KEY("ID"),

 FOREIGN KEY("addr") REFERENCES "Addresses"("ID"),

 FOREIGN KEY("deptName", "deptCity") REFERENCES "Department"("name", "city")

)

ALTER TABLE "Department" ADD FOREIGN KEY("manager") REFERENCES "People"("ID")

@base <http://foo.example/DB/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<People/ID=7> rdf:type <People> .
<People/ID=7> <People#ID> 7 .
<People/ID=7> <People#fname> "Bob" .
<People/ID=7> <People#addr> 18 .
<People/ID=7> <People#ref-addr> <Addresses/ID=18> .
<People/ID=7> <People#deptName> "accounting" .
<People/ID=7> <People#deptCity> "Cambridge" .
<People/ID=7> <People#ref-deptName;deptCity> <Department/ID=23> .
<People/ID=8> rdf:type <People> .
<People/ID=8> <People#ID> 8 .
<People/ID=8> <People#fname> "Sue" .

<Addresses/ID=18> rdf:type <Addresses> .
<Addresses/ID=18> <Addresses#ID> 18 .

In this expression, each row, e.g. (7, "Bob", 18), produces a set of triples with a common subject. The subject is an IRI formed from the
concatenation of the base IRI, table name (People), primary key column name (ID) and primary key value (7). The predicate for each column is an
IRI formed from the concatenation of the base IRI, table name and the column name. The values are RDF literals formed from the lexical form of
the column value. Each foreign key produces a triple with a predicate composed from the foreign key column names, the referenced table, and
the referenced column names. The object of these triples is the row identifier (<Addresses/ID=18>) for the referenced triple. Note that these
reference row identifiers must coincide with the subject used for the triples generated from the referenced row. The direct mapping does not
generate triples for NULL values. Note that it is not known how to relate the behavior of the obtained RDF graph with the standard SQL
semantics of the NULL values of the source RDB.

2.2 Foreign keys referencing candidate keys

More complex schemas include composite keys. In this example, the columns deptName and deptCity in the People table reference name

and city in the Department table:

Following is an instance of this schema:

Per the People table's compound foreign key to Department:

The row in People with deptName="accounting" and deptCity="Cambridge" references a row in Department with a primary key of ID=23.

The predicate for this key is formed from "deptName" and "deptCity", reflecting the order of the column names in the foreign key.
The object of the above predicate is formed from the base IRI, the table name "Department" and the primary key value "ID=23".

Note: The order of a primary key constraint's columns is determined by the DDL statement used to create it. In SQL implementations that
support the information schema, this order can be accessed through the INFORMATION_SCHEMA.KEY_COLUMN_USAGE.ORDINAL_POSITION column.

In this example, the direct mapping generates the following triples:

People

PK → Addresses(ID) → Department(name, city)

ID fname addr deptName deptCity

7 Bob 18 accounting Cambridge

8 Sue NULL NULL NULL

Addresses

PK

ID city state

18 Cambridge MA

Department

PK Unique Key → People(ID)

ID name city manager

23 accounting Cambridge 8

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 4/12

<Addresses/ID=18> <Addresses#city> "Cambridge" .
<Addresses/ID=18> <Addresses#state> "MA" .

<Department/ID=23> rdf:type <Department> .
<Department/ID=23> <Department#ID> 23 .
<Department/ID=23> <Department#name> "accounting" .
<Department/ID=23> <Department#city> "Cambridge" .
<Department/ID=23> <Department#manager> 8 .
<Department/ID=23> <Department#ref-manager> <People#ID=8> .

<People/ID=7> <People#ref-deptName;deptCity> <Department/name=accounting;city=Cambridge> .
<Department/name=accounting;city=Cambridge> rdf:type <Department> .
<Department/name=accounting;city=Cambridge> <Department#ID> 23 .
<Department/name=accounting;city=Cambridge> <Department#name> "accounting" .
<Department/name=accounting;city=Cambridge> <Department#city> "Cambridge" .

CREATE TABLE "Tweets" (

 "tweeter" INT,

 "when" TIMESTAMP,

 "text" CHAR(140),

 FOREIGN KEY("tweeter") REFERENCES "People"("ID")

)

@base <http://foo.example/DB/>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a rdf:type <Tweets> .
_:a <Tweets#tweeter> "7" .
_:a <Tweets#ref-tweeter> <People/ID=7> .
_:a <Tweets#when> "2010-08-30T01:33"̂ x̂sd:dateTime .
_:a <Tweets#text> "I really like lolcats." .

_:b rdf:type <Tweets> .
_:b <Tweets#tweeter> "7" .
_:b <Tweets#ref-tweeter> <People/ID=7> .
_:b <Tweets#when> "2010-08-30T09:01"̂ x̂sd:dateTime .
_:b <Tweets#text> "I take it back." .

CREATE TABLE "Projects" (

 "lead" INT,

 FOREIGN KEY ("lead") REFERENCES "People"("ID"),

 "name" VARCHAR(50),

 UNIQUE ("lead", "name"),

The green triples above are generated by considering the new elements in the augmented database. Note:

The Reference Triple <People/ID=7> <People#ref-deptName;deptCity> <Department/ID=23> is generated by considering a foreign key
referencing a candidate key (different from the primary key).

2.3 Multi-column primary keys

Primary keys may also be composite. If, in the above example, the primary key for Department were (name, city) instead of ID, the identifier for

the only row in this table would be <Department/name=accounting;city=Cambridge>. The triples involving <Department/ID=23> would be
replaced with the following triples:

2.4 Empty (non-existent) primary keys

If there is no primary key, each row implies a set of triples with a shared subject, but that subject is a blank node. A Tweets table can be added

to the above example to keep track of employees' tweets in Twitter:

The following is an instance of table Tweets:

Given that table Tweets does not have a primary key, each row in this table is identified by a Blank Node. In fact, when translating the above

table the direct mapping generates the following triples:

2.5 Referencing tables with empty primary keys

Rows in tables with no primary key may still be referenced by foreign keys. (Relational database theory tells us that these rows must be unique
as foreign keys reference candidate keys and candidate keys are unique across all the rows in a table.) References to rows in tables with no
primary key are expressed as RDF triples with blank nodes for objects, where that blank node is the same node used for the subject in the
referenced row.

Here is DDL for a schema with references to a Projects table which has no primary key:

Tweets

→ People(ID)

tweeter when text

7 2010-08-30T01:33 I really like lolcats.

7 2010-08-30T09:01 I take it back.

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 5/12

 "deptName" VARCHAR(50),

 "deptCity" VARCHAR(50),

 UNIQUE ("name", "deptName", "deptCity"),

 FOREIGN KEY ("deptName", "deptCity") REFERENCES "Department"("name", "city")

)

CREATE TABLE "TaskAssignments" (

 "worker" INT,

 FOREIGN KEY ("worker") REFERENCES "People"("ID"),

 "project" VARCHAR(50),

 PRIMARY KEY ("worker", "project"),

 "deptName" VARCHAR(50),

 "deptCity" VARCHAR(50),

 FOREIGN KEY ("worker") REFERENCES "People"("ID"),

 FOREIGN KEY ("project", "deptName", "deptCity") REFERENCES "Projects"("name", "deptName", "deptCity"),

 FOREIGN KEY ("deptName", "deptCity") REFERENCES "Department"("name", "city")

)

@base <http://foo.example/DB/>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:c rdf:type <Projects> .
_:c <Projects#lead> <People/ID=8> .
_:c <Projects#name> "pencil survey" .
_:c <Projects#deptName> "accounting" .
_:c <Projects#deptCity> "Cambridge" .
_:c <Projects#ref-deptName;deptCity> <Department/ID=23> .

_:d rdf:type <Projects> .
_:d <Projects#lead> <People/ID=8> .
_:d <Projects#name> "eraser survey" .
_:d <Projects#deptName> "accounting" .
_:d <Projects#deptCity> "Cambridge" .
_:d <Projects#ref-deptName;deptCity> <Department/ID=23> .

<TaskAssignments/worker=7.project=pencil%20survey> rdf:type <TaskAssignments> .
<TaskAssignments/worker=7.project=pencil%20survey> <TaskAssignments#worker> 7 .
<TaskAssignments/worker=7.project=pencil%20survey> <TaskAssignments#ref-worker> <People/ID=7> .
<TaskAssignments/worker=7.project=pencil%20survey> <TaskAssignments#project> "pencil survey" .
<TaskAssignments/worker=7.project=pencil%20survey> <TaskAssignments#deptName> "accounting" .
<TaskAssignments/worker=7.project=pencil%20survey> <TaskAssignments#deptCity> "Cambridge" .
<TaskAssignments/worker=7.project=pencil%20survey> <TaskAssignments#ref-deptName;deptCity> <Department/ID=23> .
<TaskAssignments/worker=7.project=pencil%20survey> <TaskAssignments#ref-project;deptName;deptCity> _:c .

The following is an instance of the preceding schema:

In this case, the direct mapping generates the following triples from the preceding tables:

The absence of a primary key forces the generation of blank nodes, but does not change the structure of the direct graph or names of the
predicates in that graph.

3 Direct Graph Definition

The Direct Graph is a formula for creating an RDF graph from the rows of each table and view in a database schema. A base IRI defines a web
space for the IRIs in this graph; for the purposes of this specification, all IRIs are generated by appending to a base. Terms enclosed in <> are
defined in the SQL specification [SQLFN].

An SQL table has a set of uniquely-named columns and has a set of foreign keys, each mapping a <column name list> to a <unique column list>
(a list of columns in some table).

SQL table and column identifiers compose RDF IRIs in the direct graph. These identifiers are separated by the punctuation characters '#', ';', '/'
and '='. All SQL identifiers are escaped following R2RML's escaping rules.

Definition percent-encode:

Replace the string with the IRI-safe form per section 7.3 of [R2RML].

There is either a blank node or IRI assigned to each each row in a table:

Projects

Unique key

Unique key

→ People(ID) → Department(name, city)

lead name deptName deptCity

8 pencil survey accounting Cambridge

8 eraser survey accounting Cambridge

TaskAssignments

PK

→ Projects(name, deptName, deptCity)

→ People(ID) → Departments(name, city)

worker project deptName deptCity

7 pencil survey accounting Cambridge

http://www.w3.org/TR/2012/REC-r2rml-20120927/#dfn-iri-safe

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 6/12

Definition row node:

If the table has a primary key, the row node is a relative IRI obtained by concatenating:

the percent-encoded form of the table name,
the SOLIDUS character '/',
for each column in the primary key, in order:

the percent-encoded form of the column name,
a EQUALS SIGN character '=',
the percent-encoded lexical form of the canonical RDF literal representation of the column value as defined in
R2RML section 10.2 Natural Mapping of SQL Values [R2RML],
if it is not the last column in the primary key, a SEMICOLON character ';'

If the table has no primary key, the row node is a fresh blank node that is unique to this row.

A table forms a table IRI:

Definition table IRI: the relative IRI consisting of the percent-encoded form of the table name.

A column in a table forms a literal property IRI:

Definition literal property IRI: the concatenation of:

the percent-encoded form of the table name,
the hash character '#',
the percent-encoded form of the column name.

A foreign key in a table forms a reference property IRI:

Definition reference property IRI: the concatenation of:

the percent-encoded form of the table name,
the string '#ref-',
for each column in the foreign key, in order:

the percent-encoded form of the column name,
if it is not the last column in the foreign key, a SEMICOLON character ';'

Any input database with a given schema has a direct graph defined as:

Definition direct graph: the union of the table graphs for each table in a database schema.

Definition table graph: the union of the row graphs for each row in a table.

Definition row graph: an RDF graph consisting of the following triples:

the row type triple.
a reference triple for each <column name list> in a table's foreign keys where none of the column values is NULL.
a literal triple for each column in a table where the column value is non-NULL.

Definition row type triple: an RDF triple with:

subject: the row node for the row.
predicate: the RDF IRI rdf:type.
object: the table IRI for the table name.

Definition literal triple: an RDF triple with:

subject: the row node for the row.
predicate: the literal property IRI for the column.
object: the R2RML natural RDF literal representation of the column value as defined in R2RML section 10.2 Natural Mapping of
SQL Values.

Definition reference triple: an RDF triple with:

subject: the row node for the row.
predicate: the reference property IRI for the columns.
object: the row node for the referenced row.

4 References

R2RML

R2RML: RDB to RDF Mapping Language , Souripriya Das, Seema Sundara, Richard Cyganiak, Editors. World Wide Web Consortium,
27 September 2012. This version is http://www.w3.org/TR/2012/REC-r2rml-20120927/. The latest version is http://www.w3.org/TR/r2rml/.
This document is work in progress.

SPARQL

SPARQL Query Language for RDF, Eric Prud'hommeaux and Andy Seaborne 2008. (See http://www.w3.org/TR/rdf-sparql-query/.)

http://www.w3.org/TR/2012/REC-r2rml-20120927/#dfn-canonical-rdf-lexical-form
http://www.w3.org/TR/2012/REC-r2rml-20120927/#natural-mapping
http://www.w3.org/TR/2012/REC-r2rml-20120927/#dfn-natural-rdf-literal
http://www.w3.org/TR/2012/REC-r2rml-20120927/#natural-mapping
http://www.w3.org/TR/2012/REC-r2rml-20120927/

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 7/12

SQLFW

SQL. ISO/IEC 9075-1:2008 SQL – Part 1: Framework (SQL/Framework) International Organization for Standardization, 27 January 2009.
SQLFN

ISO/IEC 9075-2:2008 SQL – Part 2: Foundation (SQL/Foundation) International Organization for Standardization, 27 January 2009.
RDF-concepts

Resource Description Framework (RDF): Concepts and Abstract Syntax, G. Klyne, J. J. Carroll, Editors, W3C Recommendation, 10
February 2004 (See http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.)

ReuseableIDs
Reusable Identifiers in the RDB2RDF mapping language, Michael Hausenblas and Themis Palpanas, 2009. (See
http://esw.w3.org/topic/Rdb2RdfXG/ReusableIdentifier.)

URI

RFC3986 - Uniform Resource Identifier (URI): Generic Syntax (See http://tools.ietf.org/html/rfc3986.)
RFC3987

RFC3987 - Internationalized Resource Identifier (IRIs) (See http://tools.ietf.org/html/rfc3987.)
SQL2SW

Translating SQL Applications to the Semantic Web. Syed Hamid Tirmizi, Juan Sequeda and Daniel Miranker. 2008 (See
http://www.springerlink.com/content/mv58805364k31734/.)

DMSurvey

Survey of directly mapping SQL databases to the Semantic Web. Juan Sequeda, Syed Hamid Tirmizi, Oscar Corcho, Daniel P. Miranker.
2011 (See http://journals.cambridge.org/abstract_S0269888911000208.)

A Direct Mapping Algebra (Informative)

A.1 Notations

The RDB and RDF data models make use of the commonly defined Abstract Data Types Set, List and MultiSet, used here as type constructors.
For example, Set(A) denotes the type for the sets of elements of type A. We assume that they come with their common operations, such as the
function size : Set → Int.

The definitions follow a type-as-specification approach; thus the models are based on dependent types. For example,
{ s:Set(A) | size(s) ≤ 1 } is a type denoting the sets for elements of type A, such that those sets have at most one element.

The denotational RDF semantics makes use of the set-builder notation for building the RDF sets.

The buttons below can be used to show or hide the available syntaxes.

Set notation (s) Show English Syntax (e)

A.2 Relational Data Model

A.2.1 RDB Abstract Data Type

[1] Database ::=Set(Table)

[2] Table ::=(TableName, Set((ColumnName, Datatype)), Set(CandidateKey), Set(PrimaryKey) | size() ≤ 1,
Set(ForeignKey), Body)

[3] Body ::=MultiSet(Row)

[4] Row ::=Set((ColumnName, CellValue))

[5] CellValue ::=Value | NULL

[6] ForeignKey ::=(List(ColumnName), Table, CandidateKey)

[7] PrimaryKey ::=CandidateKey

[8] CandidateKey::=List(ColumnName)

[9] Datatype ::=Int | Float | Date | …

[10]TableName ::=String

[11]ColumnName ::=String

A.2.2 RDB accessor functions

[12]tablename :Table → TableName

[13]header :Table → Set((ColumnName, Datatype))

[14]candidateKeys:Table → List(CandidateKey)

[15]primaryKey :Table → { s:Set(CandidateKey) | size(s) ≤ 1 }

[16]foreignKeys :Table → Set(ForeignKey)

[17]unary :ForeignKey → Boolean

[18]lexicals :Table → Set({ c:ColumnName | ! unary(c) })

[19]body :Table → Body

[20]datatype :{ h:Set((ColumnName, Datatype)) } → { c:ColumnName | ∃ d, (c,d) ∈ h } → { d:Datatype | (c,d) ∈ h }

[21]table :{ r:Row } → { t:Table | r ∈ t }

[22]value :{ r:Row } → { a:ColumnName | a ∈ r } → CellValue

[23]dereference :{ r:Row } → { fk:ForeignKey | fk ∈ foreignKeys(table(r)) }
→ { targetRow:Row | let (columnNames, targetTable, ck) = fk in

 targetRow ∈ body(targetTable)

 and ∀ ci
fk ∈ columnNames, ∀ cj

ck ∈ ck,

 ∀ (ck
r, vk

r) ∈ r, ∀ (cl
target, vl

target) ∈ targetRow,

 i = j → ci
fk = ck

r → cj
ck = cl

target → vk
r = vl

target }

http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Set_(computer_science)
http://en.wikipedia.org/wiki/List_(computer_science)
http://en.wikipedia.org/wiki/Set_(computer_science)#Multiset
http://en.wikipedia.org/wiki/Dependent_type
http://en.wikipedia.org/wiki/Set-builder_notation

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 8/12

A.3 RDF Data Model

Per RDF Concepts and Abstract Syntax, an RDF graph is a set of triples of a subject, predicate and object. The subject may be an IRI or a blank
node, the predicate must be an IRI and the object may be an IRI, blank node, or an RDF literal.

This section recapitulates for convience the formal definition of RDF.

[24]Graph ::=Set(Triple)

[25]Triple ::=(Subject, Predicate, Object)

[26]Subject ::=IRI | BlankNode

[27]Predicate ::=IRI

[28]Object ::=IRI | BlankNode | Literal

[29]BlankNode ::=RDF blank node

[30]Literal ::=PlainLiteral | TypedLiteral

[31]PlainLiteral::=lexicalForm | (lexicalForm, langageTag)

[32]TypedLiteral::=(lexicalForm, IRI)

[33]IRI ::=RDF URI-reference as subsequently restricted by SPARQL

[34]lexicalForm ::=a Unicode String

A.4 Denotational semantics

In this model, Databases are inhabitants of RDB and they are denoted by mathematical objects living in the RDF domain. This denotational

semantics is what we call the Direct Mapping.

The url-encoding function renders strings in a form suitable to insert into IRIs. Data values are expressed in the XML Schema canonical form
before url-encoding.

[35]ue : String → String

 , canon: (Row, Column) → String

[36] r, ccanon= let v = value(r, c) in

let d = header(table(r)) in

canonical RDF literal(v, d)

Most of the functions defining the Direct Mapping are higher-order functions parameterized by a function φ(r) which maps any row to a unique IRI
or Blank Node.

[37]φ : ∀ db:Database, ∀ r:Row, r ∈ db
if primaryKey(table(r)) ≠ ∅ then

 ue(tablename(table(r))) + '/' + ue(c0) + '=' + ue(canon(r, c0)) + ';'

 + ⋯ + ';' + ue(cn-1) + '=' + ue(canon(r, cn-1))

else

 a BlankNode unique to r

 tableIRI : TableName → IRI

[38] ttableIRI = ue(tablename(t))

 , litcol : (Row, Column) → IRI

[39] r, clitcol =ue(tablename(table(r))) + '#' + ue(c))

 , refcol: (Row, ForeignKey) → IRI

[40] r, fkrefcol= let(from*, reftable, to*) = fk in

 ue(tablename(table(r))) + '/ref-'

+ ue(from0) + ';' + ⋯ + ';' + ue(fromn-1)

The Direct Mapping is defined by induction on the structure of RDB. Thus it is defined for any relational database. The entry point for the Direct

Mapping is the function φdatabase .

 φdatabase : Database → Graph

[41] dbφdatabase ={ triple | triple ∈ tφtable | t ∈ db }

 φtable : Table → Set(Triple)

[42] tφtable ={ triple | triple ∈ rφrow | r ∈ body(t) }

noNULLs : Row → ForeignKey → Boolean

[43]noNULLs(r, fk)= let (columnNames, _, _) = fk in

∀ c ∈ columnNames, value(r, c) ≠ NULL

 φrow : Row → Set(Triple)

[44] rφrow = let s = φ(r) in

 { rφtype }

⋃ { r, cφlex | value(r, c) ≠ NULL | c ∈ lexicals(r) }

⋃ { r, fkφref | noNULLs(r, fk) | fk ∈ foreignKeys(table(r)) }

 type : (Row) → Triple

[45] rtype = let s = φ(r) in

let t = table(r) in

let o = ttableIRI in

{ (s, rdf:type, o) }

 , lex : (Row, Column) → Triple

[46] r, clex = let s = φ(r) in

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-rdf-graph
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-blank-node
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-URI-reference
http://www.w3.org/TR/rdf-sparql-query/#docTerminology
http://www.w3.org/TR/2012/REC-r2rml-20120927/#dfn-canonical-rdf-lexical-form
http://en.wikipedia.org/wiki/Mathematical_induction
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 9/12

Triple(S, "rdf:type", O) ← r(X1, ..., Xm), generateRowIRI("r", ["ap1", ..., "apn"], [Xp1, ..., Xpn], S), generateTableIRI("r", O)

This box contains a Direct Mapping rule

This box contains examples of applying a Direct Mapping rule

[46] r, clex = let s = φ(r) in

let p = table(r), clitcol in

let v = value(r, c) in

let d = header(table(r)) in

if v is NULL then ∅

else let o = natural RDF literal(v, d) in

 { (s, p, o) }

 , ref : (Row, ForeignKey) → Triple

[47] r, fkref = let s = φ(r) in

let targetSpec = dereference(r, fk) in

let p = table(r), fkrefcol in

let o = φ(row(targetSpec)) in

(s, p, o)

B Direct Mapping as Rules (Informative)

In this section, we formally present the Direct Mapping as rules in Datalog syntax, inspired by the previous approaches in [SQL2SW]
[DMSurvey]. The left hand side of each rule is the RDF Triple output. The right hand side of each rule consists of a sequence of predicates from
the relational database and built-in predicates. The built-in predicates are divided into four groups. The first group contains some built-in
predicates for dealing with repeated rows in a table without a primary key.

card(r, l, k): Given a table name r without a primary key and the list l of values [v1, ..., vn] for a row of table r, it returns in k the multiplicity of l

in r (that is, k is the number of times row l appears in r)
n ≤ m: This is the usual order on positive integer values (given positive integers n and m, it holds if n is smaller than or equal to m)

The second group contains a predicate to deal with null values.

nonNull(v): Given a value v, it holds if v is not null

The third group of built-in predicates is used to generate IRIs for identifying tables and the columns in a table, and to generate IRIs or blank
nodes for identifying each row in a table.

generateTableIRI(r, i): Given a table name r, it generates the table IRI i of r
generateLiteralPropertyIRI(r, a, i): Given a table name r and an attribute name a, it generates the literal property IRI i for a
generateReferencePropertyIRI(r, l, i): Given a table name r and a non-empty list of columns l, it generates the reference property IRI i for l
generateRowIRI(r, l1, l2, i): Given a table name r, a non-empty list l1 of columns and a non-empty list l2 of values (for the columns in l1), it

generates the row node (or Row IRI) i for the given row
generateRowBlankNode(r, l, n, i): Given a table name r without a primary key, a list l of values for a row of table r and a positive integer n, it
generates the row node i for the n-th occurrence of row l in r (which is a Blank Node in this case). It is assumed that n is smaller than or
equal to the multiplicity of l in r (that is, if card(r, l, k) holds, then 1 ≤ n ≤ k)

Finally, the fourth group of built-in predicates is used to generate typed literals.

generateTypedLiteral(u, a, r, v): Given a value u, an attribute name a and a table name r, it generates an R2RML natural RDF literal v
representation of the column value u, given the type of a in r and as defined in R2RML section 10.2 Natural Mapping of SQL Values.

Throughout the section, boxes containing Direct Mapping rules and examples will appear. These boxes are color-coded. Yellow boxes contain
Direct Mapping rules:

Green boxes contain examples of applying the previous Direct Mapping rule:

Consider again the example from Section Direct Mapping Example. It should be noticed that in the rules presented in this section, a formula of
the form Addresses(X, Y, Z) indicates that the variables X, Y and Z are used to store the values of a row in the three columns of the table
Addresses (according to the order specified in the schema of the table, that is, X, Y and Z store the values of ID, city and state, respectively). In
particular, uppercase letters like X, Y, Z, S, P and O are used to denote variables. Moreover, double quotes are used in the rules to refer to the
string with the name of a table or a column. For example, a formula of the form generateRowIRI("Addresses", ["ID"], [X], S) is used to generate
the row node (or Row IRI) for the row of table "Addresses" whose value in the primary key "ID" is the value stored in the variable X. The value of
this Row IRI is stored in the variable S.

B.1 Generating Row Type Triples

B.1.1 Table has a primary key

Assume that r is a table with columns a1, ..., am and such that [ap1
, ..., apn

] is the primary key of r, where 1 ≤ n ≤ m and 1 ≤ p1 < ... < pn ≤ m. Then

the following is the direct mapping rule to generate row type triples from r:

For example, table Addresses in the Direct Mapping Example has columns ID, city and state, and it has column ID as its primary key. Then the

following is the direct mapping rule to generate row type triples from Addresses:

http://www.w3.org/TR/2012/REC-r2rml-20120927/#dfn-natural-rdf-literal
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-blank-node
http://www.w3.org/TR/2012/REC-r2rml-20120927/#dfn-natural-rdf-literal
http://www.w3.org/TR/2012/REC-r2rml-20120927/#natural-mapping

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 10/12

Triple(S, "rdf:type", O) ← Addresses(X1, X2, X3), generateRowIRI("Addresses", ["ID"], [X1], S), generateTableIRI("Addresses", O)

Triple(S, "rdf:type", O) ← Department(X1, X2, X3, X4), generateRowIRI("Department", ["name","city"], [X2, X3], S),

 generateTableIRI("Department", O)

Triple(S, "rdf:type", O) ← r(X1, ..., Xm), card("r", [X1, ..., Xm], U), V ≤ U, generateRowBlankNode("r", [X1, ..., Xm], V, S),

 generateTableIRI("r", O)

Triple(S, "rdf:type", O) ← Tweets(X1, X2, X3), card("Tweets", [X1, X2, X3], U), V ≤ U, generateRowBlankNode("Tweets", [X1, X

 generateTableIRI("Tweets", O)

Triple(S, P, V) ← r(X1, ..., Xm), nonNull(Xj), generateRowIRI("r", ["ap1", ..., "apn"], [Xp1, ..., Xpn], S),

 generateLiteralPropertyIRI("r", "aj", P), generateTypedLiteral(Xj, "aj", "r", V)

Triple(S, P, V) ← Addresses(X1, X2, X3), nonNull(X1), generateRowIRI("Addresses", ["ID"], [X1], S),

 generateLiteralPropertyIRI("Addresses", "ID", P), generateTypedLiteral(X1, "ID", "Addresses", V)

Triple(S, P, V) ← Addresses(X1, X2, X3), nonNull(X2), generateRowIRI("Addresses", ["ID"], [X1], S),

 generateLiteralPropertyIRI("Addresses", "city", P), generateTypedLiteral(X2, "city", "Addresses", V)

Triple(S, P, V) ← Addresses(X1, X2, X3), nonNull(X3), generateRowIRI("Addresses", ["ID"], [X1], S),

 generateLiteralPropertyIRI("Addresses", "state", P), generateTypedLiteral(X3, "state", "Addresses", V)

Triple(S, P, V) ← Department(X1, X2, X3, X4), nonNull(X1), generateRowIRI("Department", ["name", "city"], [X2, X3], S),

 generateLiteralPropertyIRI("Department", "ID", P), generateTypedLiteral(X1, "ID", "Department", V)

Triple(S, P, V) ← Department(X1, X2, X3, X4), nonNull(X2), generateRowIRI("Department", ["name", "city"], [X2, X3], S),

 generateLiteralPropertyIRI("Department", "name", P), generateTypedLiteral(X2, "name", "Department", V)

Triple(S, P, V) ← Department(X1, X2, X3, X4), nonNull(X3), generateRowIRI("Department", ["name", "city"], [X2, X3], S),

 generateLiteralPropertyIRI("Department", "city", P), generateTypedLiteral(X3, "city", "Department", V)

Triple(S, P, V) ← Department(X1, X2, X3, X4), nonNull(X4), generateRowIRI("Department", ["name", "city"], [X2, X3], S),

 generateLiteralPropertyIRI("Department", "manager", P), generateTypedLiteral(X4, "manager", "Department", V)

Triple(S, P, V) ← r(X1, ..., Xm), nonNull(Xj), card("r", [X1, ..., Xm], U), V ≤ U, generateRowBlankNode("r", [X1, ..., Xm], V, S),

 generateLiteralPropertyIRI("r", "aj", P), generateTypedLiteral(Xj, "aj", "r", V)

As a second example, consider table Department from the example in Section Foreign keys referencing candidate keys, which has columns

ID, name, city and manager, and assume that (name, city) is the multi-column primary key of this table (instead of ID). Then the following is the

direct mapping rule to generate row type triples from Department:

B.1.2 Table does not have a primary key

Assume that r is a table with columns a1, ..., am and such that r does not have a primary key. Then the following is the direct mapping rule to

generate row type triples from r:

For example, table Tweets from Section Empty (non-existent) primary keys has columns tweeter, when and text, and it does not have a
primary key. Then the following is the direct mapping rule to generate row type triples from Tweets:

B.2 Generating Literal Triples

B.2.1 Table has a primary key

Assume that r is a table with columns a1, ..., am and such that [ap1
, ..., apn

] is the primary key of r, where 1 ≤ n ≤ m and 1 ≤ p1 < ... < pn ≤ m. Then

for every aj (1 ≤ j ≤ m), the direct mapping includes the following rule for r and aj to generate literal triples:

For example, table Addresses in the Direct Mapping Example has columns ID, city and state, and it has column ID as its primary key. Then the

following are the direct mapping rules to generate literal triples from Addresses:

As a second example, consider again table Department from the example in Section Foreign keys referencing candidate keys, which has

columns ID, name, city and manager, and assume that (name, city) is the multi-column primary key of this table (instead of ID). Then the
following are the direct mapping rules to generate literal triples from Department:

B.2.2 Table does not have a primary key

Assume that r is a table with columns a1, ..., am and such that r does not have a primary key. Then for every aj (1 ≤ j ≤ m), the direct mapping

includes the following rule for r and aj to generate literal triples:

For example, table Tweets from Section Empty (non-existent) primary keys has columns tweeter, when and text, and it does not have a

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 11/12

Triple(S, P, V) ← Tweets(X1, X2, X3), nonNull(X1), card("Tweets", [X1, X2, X3], U), V ≤ U, generateRowBlankNode("Tweets", [X

 generateLiteralPropertyIRI("Tweets", "tweeter", P), generateTypedLiteral(X1, "tweeter", "Tweets", V)

Triple(S, P, V) ← Tweets(X1, X2, X3), nonNull(X2), card("Tweets", [X1, X2, X3], U), V ≤ U, generateRowBlankNode("Tweets", [X

 generateLiteralPropertyIRI("Tweets", "when", P), generateTypedLiteral(X2, "when", "Tweets", V)

Triple(S, P, V) ← Tweets(X1, X2, X3), nonNull(X3), card("Tweets", [X1, X2, X3], U), V ≤ U, generateRowBlankNode("Tweets", [X

 generateLiteralPropertyIRI("Tweets", "text", P), generateTypedLiteral(X3, "text", "Tweets", V)

Triple(S, P, O) ← r1(X1, ..., Xi), generateRowIRI("r1", ["ap1", ..., "apj"], [Xp1, ..., Xpj], S),

 r2(Y1, ..., Yk), generateRowIRI("r2", ["cq1", ..., "cqm"], [Yq1, ..., Yqm], O),

 nonNull(Xs1), ..., nonNull(Xsn), Xs1 = Yt1, ..., Xsn = Ytn, generateReferencePropertyIRI("r1", ["as1", ..., "a

Triple(S, P, O) ← People(X1, X2, X3), generateRowIRI("People", ["ID"], [X1], S),

 Addresses(Y1, Y2, Y3), generateRowIRI("Addresses", ["ID"], [Y1], O),

 nonNull(X3), X3 = Y1, generateReferencePropertyIRI("People", ["addr"], P)

Triple(S, P, O) ← r1(X1, ..., Xi), generateRowIRI("r1", ["ap1", ..., "apj"], [Xp1, ..., Xpj], S),

 r2(Y1, ..., Yk), card("r2", [Y1, ..., Yk], U), V ≤ U, generateRowBlankNode("r2", [Y1, ..., Yk], V, O),

 nonNull(Xs1), ..., nonNull(Xsn), Xs1 = Yt1, ..., Xsn = Ytn, generateReferencePropertyIRI("r1", ["as1", ..., "a

Triple(S, P, O) ← People(X1, X2, X3), generateRowIRI("People", ["ID"], [X1], S),

 Addresses(Y1, Y2, Y3), card("Addresses", [Y1, Y2, Y3], U), V ≤ U, generateRowBlankNode("Addresses", [Y1
 nonNull(X3), X3 = Y1, generateReferencePropertyIRI("People", ["addr"], P)

primary key. Then the following are the direct mapping rules to generate literal triples from Tweets:

B.3 Generating Reference Triples

For each foreign key from a table r1 to a table r2, one of the following four cases is applied.

B.3.1 Table r1 has a primary key and table r2 has a primary key

Assume that:

r1 is a table with columns a1, ..., ai and such that [ap1
, ..., apj

] is the primary key of r1, where 1 ≤ j ≤ i and 1 ≤ p1 < ... < pj ≤ i

r2 is a table with columns c1, ..., ck and such that [cq1
, ..., cqm

] is the primary key of r2, where 1 ≤ m ≤ k and 1 ≤ q1 < ... < qm ≤ k

the foreign key indicates that the columns as1
, ..., asn

 of r1 reference the columns ct1
, ..., ctn

 of r2, where (1) 1 ≤ s1, ..., sn ≤ i, (2) 1 ≤ t1, ..., tn

≤ k, and (3) n ≥ 1

Then the direct mapping includes the following rule for r1 and r2 to generate Reference Triples:

For example, table Addresses in the Direct Mapping Example has columns ID, city and state, where column ID is the primary key. Table
People in this example has columns ID, fname and addr, where column ID is the primary key, and it has a foreign key in the column addr that

references the column ID in the table Addresses. In this case, the following is the direct mapping rule to generate Reference Triples:

B.3.2 Table r1 has a primary key and table r2 does not have a primary key

Assume that:

r1 is a table with columns a1, ..., ai and such that [ap1
, ..., apj

] is the primary key of r1, where 1 ≤ j ≤ i and and 1 ≤ p1 < ... < pj ≤ i

r2 is a table with columns c1, ..., ck, and it does not have a primary key

the foreign key indicates that the columns as1
, ..., asn

 of r1 reference the columns ct1
, ..., ctn

 of r2, where (1) 1 ≤ s1, ..., sn ≤ i, (2) 1 ≤ t1, ..., tn

≤ k, and (3) n ≥ 1

Then the direct mapping includes the following rule for r1 and r2 to generate Reference Triples:

For example, assume that table Addresses in the Direct Mapping Example has columns ID, city and state, and that column ID is a candidate

key (instead of a primary key), so that table Addresses does not have a primary key. Moreover, assume that table People in this example has
columns ID, fname and addr, it has column ID as its primary key, and it has a foreign key in the column addr to the candidate key ID in the table

Addresses. In this case, the following is the direct mapping rule to generate Reference Triples:

B.3.3 Table r1 does not have primary key and table r2 has a primary key

Assume that:

r1 is a table with columns a1, ..., ai, and it does not have a primary key

28/3/2014 A Direct Mapping of Relational Data to RDF

http://www.w3.org/TR/rdb-direct-mapping/ 12/12

Triple(S, P, O) ← r1(X1, ..., Xi), card("r1", [X1, ..., Xi], U), V ≤ U, generateRowBlankNode("r1", [X1, ..., Xi], V, S),

 r2(Y1, ..., Yk), generateRowIRI("r2", ["cq1", ..., "cqm"], [Yq1, ..., Yqm], O),

 nonNull(Xs1), ..., nonNull(Xsn), Xs1 = Yt1, ..., Xsn = Ytn, generateReferencePropertyIRI("r1", ["as1", ..., "a

Triple(S, P, O) ← Tweets(X1, X2, X3), card("Tweets", [X1, X2, X3], U), V ≤ U, generateRowBlankNode("Tweets", [X1, X2, X3], V, S),

 People(Y1, Y2, Y3), generateRowIRI("People", ["ID"], [Y1], O),

 nonNull(X1), X1 = Y1, generateReferencePropertyIRI("Tweets", ["tweeter"], P)

Triple(S, P, O) ← r1(X1, ..., Xi), card("r1", [X1, ..., Xi], U1), V1 ≤ U1, generateRowBlankNode("r1", [X1, ..., Xi], V1, S),

 r2(Y1, ..., Yk), card("r2", [Y1, ..., Yk], U2), V2 ≤ U2, generateRowBlankNode("r2", [Y1, ..., Yk], V2, O),

 nonNull(Xs1), ..., nonNull(Xsn), Xs1 = Yt1, ..., Xsn = Ytn, generateReferencePropertyIRI("r1", ["as1", ..., "a

Triple(S, P, O) ← Tweets(X1, X2, X3), card("Tweets", [X1, X2, X3], U1), V1 ≤ U1, generateRowBlankNode("Tweets", [X1, X2, X3
 People(Y1, Y2, Y3), card("People", [Y1, Y2, Y3], U2), V2 ≤ U2, generateRowBlankNode("People", [Y1, Y2, Y

 nonNull(X1), X1 = Y1, generateReferencePropertyIRI("Tweets", ["tweeter"], P)

r2 is a table with columns c1, ..., ck and such that [cq1
, ..., cqm

] is the primary key of r2, where 1 ≤ m ≤ k and 1 ≤ q1 < ... < qm ≤ k

the foreign key indicates that the columns as1
, ..., asn

 of r1 reference the columns ct1
, ..., ctn

 of r2, where (1) 1 ≤ s1, ..., sn ≤ i, (2) 1 ≤ t1, ..., tn

≤ k, and (3) n ≥ 1

Then the direct mapping includes the following rule for r1 and r2 to generate Reference Triples:

For example, table People in the Direct Mapping Example has columns ID, fname and addr, and it has column ID as its primary key, while
table Tweets from Section Empty (non-existent) primary keys has columns tweeter, when and text, it does not have a primary key, and it has a
foreign key in column tweeter that references column ID in table People. In this case, the following is the direct mapping rule to generate

Reference Triples:

B.3.4 Table r1 does not have primary key and table r2 does not have a primary key

Assume that:

r1 is a table with columns a1, ..., ai, and it does not have a primary key

r2 is a table with columns c1, ..., ck, and it does not have a primary key

the foreign key indicates that the columns as1
, ..., asn

 of r1 reference the columns ct1
, ..., ctn

 of r2, where (1) 1 ≤ s1, ..., sn ≤ i, (2) 1 ≤ t1, ..., tn

≤ k, and (3) n ≥ 1

Then the direct mapping includes the following rule for r1 and r2 to generate Reference Triples:

For example, assume that table People in the Direct Mapping Example has columns ID, fname and addr, and that column ID is a candidate
key (instead of a primary key), so that People does not have a primary key. Moreover, assume that table Tweets from Section Empty (non-

existent) primary keys has columns tweeter, when and text, it does not have a primary key, and it has a foreign in column tweeter that
references candidate key ID in table People. In this case, the following is the direct mapping rule to generate Reference Triples:

