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Abstract. Methods for node localisation in sensor networks usually
rely upon the measurement of received strength, time-of-arrival, and/or
angle-of-arrival of an incoming signal. In this paper, we propose a method
for achieving higher accuracy by combining redundant measurements
taken by different nodes. This method is aimed at compensating for the
systematic errors which are dependent on the specific nodes used, as well
as their spatial configuration. Utilising a technique for data fusion on the
physical layer, the time complexity of the method is constant and inde-
pendent of the number of participating nodes. Thus, adding more nodes
generally increases accuracy but does not require additional time to re-
port measurement results. Our data analysis and simulation models are
based on extensive experiments with real ultrasound positioning hard-
ware. The simulations show that the ninety-fifth percentile positioning
error can be improved by a factor of three for a network of fifty nodes.

1 Introduction

In sensor networks, knowledge of physical node topology is important for packet
routing, power control, location annotation of gathered sensor data, and to sat-
isfy demands for specific application areas, such as mobile computing. A variety
of solutions for node localisation have been proposed, concentrating on both
sensing technologies and algorithms. These techniques have traditionally traded
off performance attributes (such as accuracy and location update rate) with
resource requirements (such as sensor node cost, power consumption, computa-
tional complexity, and communication overhead).

There has been a significant amount of effort invested in improving the accu-
racy of the location result while keeping the algorithm resource requirements to
a reasonable level. More recently, some researchers have become concerned with
characterising how the location result is affected by the error of the raw sensor
measurement (such as radio signal strength, range, or angle-of-arrival) [1, 2]. In
this paper, we introduce a new method wherein the systematic measurement er-
ror typically found in localisation systems can be dramatically reduced without
incurring additional computational complexity or communication overhead. In
fact, as the number of nodes within sensing range increases, the communication
overhead of the method stays constant, and the overall accuracy gain improves.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.1 Related Work

A number of systems have been developed for tracking people and objects [3].
These have employed a variety of sensing media, including infrared, ultrasound,
RF signal strength, ultra-wideband radio, computer vision, and physical contact.
However, many of these systems have been designed for static deployment using
dedicated infrastructure.

Other systems have been specifically designed for the processing, communi-
cation, power constraints, and dynamic deployments imposed upon sensor net-
works. Primarily, these have relied upon creating ranging estimates using the
received signal strength indication (RSSI) provided by a sensor node’s radio
transceiver [4, 5], or creating finer-grained (centimetre-scale) ranging estimates
by measuring the time-of-flight of an acoustic signal [6–8]. Recently, it has been
shown that competitive ranging accuracies are possible by measuring the phase
offset between two slightly different radio carrier frequencies [9]. Some authors
have also proposed measuring the angle-of-arrival of a signal, to be used to com-
pute node orientation [7], or as a quantity to be used in triangulation to produce
location results [10] (as opposed to trilateration which is applied using range
measurements).

There has been a large focus on developing and comparing algorithms which
take sensed ranges and compute location results with varying degrees of dis-
tributed operation [11]. Some of the algorithms do not require anchor nodes
whose location is previously surveyed or known—these algorithms produce a set
of relative coordinates which describe the spatial layout of the nodes with respect
to one another, but not to any global reference point [12, 13]. Relative location
solutions are often sufficient for the purposes of network routing or analysing
how sensor readings vary across the network (e.g. temperature and humidity in
environmental monitoring). Researchers have also analysed the effects of ranging
noise on the location results [1, 14]. One paper in particular showed for multi-hop
networks how ranging and angle-of-arrival measurement error creates accuracy
bounds for the location result [2].

1.2 Motivation

Much in the spirit of the latter papers, our approach is informed by analysis
of measurement error. However, rather than try to produce increasingly robust
(and possibly resource-intensive) algorithms, we chose to address the measure-
ment error, specifically the systematic error that is common in many sensor
node localisation systems. This paper’s contribution is twofold. First, it presents
a method to reduce systematic errors usable for many sensor measurement set-
tings. Second, a lightweight framework is proposed which requires minimal hard-
ware, software and network resources and is able to support such error reduction
even in scenarios where there are a large number of sensor devices.

Systematic errors appear as constant and repeatable error within measured
quantities. This systematic error component can arise due to sensor decalibration
(e.g. misalignment of an acoustic sensor) or environmental interference which is
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constant for that spatial distribution of nodes (e.g. a metal object is present near
one of the nodes, affecting its radio RSSI measurements).

Because a large component of the systematic error is hardware-dependent or
spatially-dependent and thus different for each node in the system, we propose
fusing the measurements taken by different nodes together in order to “average
out” this measurement offset. This can be done when the nodes are capable of
independently computing estimates of the same spatial quantities. For exam-
ple, if all nodes in a system are capable of independently estimating the range
between two given nodes, then all of these range measurements could be com-
bined to produce an inter-node range whose systematic error component is much
reduced.

As more nodes join the system and are capable of measuring the same physi-
cal quantities, then the communication overhead required for each node to report
its measurement can become prohibitively expensive, especially if measurement
updates need to be provided at a high rate. To avoid this, our method accom-
plishes the averaging by using a physical layer data fusion technique called syn-
chronous distributed jam signalling (SDJS). This allows all nodes to report their
measurements for a given quantity simultaneously. Thus, the communication
overhead for our method is constant and independent of the number of nodes
in the system. The error models, proof-of-concept, and simulations are based on
extensive data gathered using an ultrasonic relative positioning system [15].

1.3 Target application scenarios

Because our method relies upon averaging of measurements from different nodes
to remove large systematic errors, it naturally grows more effective when there
are greater numbers of nodes within measurement range of one another. High
node densities are often envisioned for application scenarios such as environmen-
tal habitat monitoring and battlefield surveillance, and it is typical to consider
high node densities in analyses of node localisation algorithms and error [2, 11,
13].

Another application area which envisions high node densities is that of mo-
bile and ubiquitous computing. In such scenarios, it is assumed that everyday
objects such as mobile phones, furniture, or even coffee cups are embedded with
microcontrollers, sensors, and wireless communication. These augmented objects
are thus able to sense, compute, communicate, and work together to aid people
in their everyday tasks. Contextual data is often needed for this, and one of the
most important types of context data is location information. Thus, accurate
localisation is an important goal for the dense settings of sensors envisioned for
mobile and ubiquitous computing.

2 System Operation

This section discusses the attributes and operation of the type of positioning
sensor network that we consider in this paper. We begin with a notation for
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relative positioning systems and then discuss how nodes can locally estimate the
same physical quantity. Throughout this paper, we focus on implementation and
analyses of 2D localisation systems, such as the hardware platform in figure 1,
but similar methods could be applied for 3D systems.

2.1 Relative Positions

Fig. 1. A node used for ultrasonic rel-
ative positioning

Fig. 2. Relative positioning of nodes

Figure 2 depicts three sensor nodes which take measurements that can be
used to estimate the nodes’ relative positions. Each node in figure 2, denoted
with a capital letter, defines its own local coordinate system, referenced to its
sensor hardware. In figure 2 this is marked with the local (x,y) - coordinate
systems that belong to each of the nodes. Relative positioning systems normally
do not use anchor nodes or global coordinate systems, so we have to clarify a
relative position (which is a vector) by always including the according reference
coordinate system in the notation.

For example,
−→
ABA expresses the position of B (meaning the vector A to B) in

the view of a local coordinate system of A. If we determine relative positions via
multiple hops, we can just add the vectors together as long as we assure to use
the same reference coordinate system for all vectors. Different views of positions
(and therefore vectors) can be translated by simply transforming the according

coordinate systems. The position of C in figure 2 in the view of A (=
−→
ACA) can

be combined through step by step summation of a vector chain from A to C:

−→
ACA =

−→
ABA +

−→
BCA

−→
BCA =

(
cos ρ − sin ρ

sin ρ + cos ρ

) −→
BCB (1)

ρ = φ + (180o − ϕ)
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2.2 Creating Local Estimates of the Same Physical Quantity

As described above, relative positions and orientations can be computed by ap-
plying trigonometry to measured ranges, angles-of-arrival, and angles-of-emission.
The method proposed in this paper relies upon multiple nodes being able to in-
dependently create local estimates of a given physical quantity so that they can
then be fused to improve accuracy. We now give two examples of how multiple
distributed estimates of the same physical quantities would be created:

Ranging For example, many observing nodes might independently estimate the
range between two beaconing nodes A and B. To do this, an observing node (for
example C) would need to minimally measure its range to A and B (dAC and
dBC), as well as the angles-of-arrival of the ranging signals from both A and
B (φAC and φBC). Applying the Law of Cosines, the observing node C could
then estimate dAB with only these locally-measured quantities. Using experi-
mental data, Section 4.2 demonstrates that ranges locally estimated in this way
by three observing nodes can be fused together to yield an improved range result.

Positioning Alternatively, many nodes might each estimate the relative posi-
tion of B with respect to A. As explained below in Section 5, an observing node
is able to independently estimate this physical quantity by locally measuring the
ranges to A and B, the angles-of-arrival of the ranging signals, as well as the
angles-of-emission of the ranging signals. By way of simulations, Section 6 shows
how an improved estimate of the relative locations of A and B can be created
by fusing estimates from many observing nodes.

3 A Model for Measurement Errors

In general for measurement systems, the process of measuring can be understood
as an operation based on the ground truth. For example, suppose we take a sen-
sor observation r̃. It is based on the actual physical quantity being observed, the
“ground truth”r. Incorporated in the observation is also an error due to the sys-
tem status (e.g. spatial configuration of the nodes, or environmental conditions)
which is described by a vector we want to call t. Additionally, there is an inde-
pendent part n influencing the measurement, which appears as random noise on
the measurements. Thus, the overall sensor observation can be described as the
sum

r̃ = r + f(t, r) + n. (2)

This model divides the influences on our measurement into the two types of sys-
tematic (f(t, r)) and statistical (n) errors. Statistical errors come from random
sources of noise, such as the thermal noise present in sensors and their sup-
porting circuitry, or (particularly relevant to ultrasonic sensing) acoustic noise
created by uncorrelated physical events in the environment. Statistical errors

5



cannot be avoided but can be reduced by techniques such as cooling of elec-
tronic parts or aggressive filtering of the sensor signal. Systematic errors in a
measurement system occur for a variety of reasons, including component ageing,
wear-and-tear, or changing environmental conditions that affect the measure-
ment process in a constant and repeatable way. To handle the systematic errors,
the traditional approach is to either model the errors or calibrate the affected
parts of the system. Modelling systematic error is e.g. done in ultrasonic ranging
systems by taking temperature and humidity measurements to gain an accurate
estimate of the speed of sound in air.4 Methods for calibration on the other hand
vary in difficulty and effectiveness, but a thorough calibration can be a tedious
task requiring high precision. Moreover, re-calibration is often required during
the life-time of a product, and this can also be very difficult and expensive to
manage.

By analysing measurements from our ultrasonic localisation system, we dis-
covered that a large component of the systematic error is dependent upon the
spatial configuration of the nodes. Spatially-dependent systematic error has been
shown to exist for other sensing modalities as well; examples include infrared
light intensity [16] and radio RSSI [17]. We would expect that our methods
can be applied to sensor network localisation systems based on infrared light,
ultrasound, audible sound, or radio signals.

4 Removing Error in Measurements

In this paper, we focus on the low-labour technique of averaging; device-specific
calibration and modelling can always be carried out and applied in addition to
averaging. According to our error model (2), multiple measurements taken in
the same system conditions will help to reduce the statistical error n (assuming
the statistical error is non-biased). By contrast, the systematic part f(t, r) can
not be averaged out in this way, since it represents the constant and repeatable
error component.

4.1 Removing systematic error

One of the core ideas presented in this paper is a natural extension to averaging
in location system. It is obvious that averaging of multiple measurements helps
against statistical errors such as thermal noise in analogue components. In the
same way, we want to use averaging on the systematic error. We can achieve
this by varying the system state during multiple measurements. In our applica-
tion of positioning systems, this would e.g. imply to vary the system states like
temperature, orientation etc. In other words, if we are able to measure the same
physical value under varying system states, we will not get a repeatable, but
also varying systematic error, and thus the systematic error loses its systematic
nature.
4 If the estimate of the speed of sound is too fast or too slow, then all measurements

will suffer from a systematic over– or under-ranging.
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4.2 Analysis of experimental measurements
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Fig. 3. Mean error for angles-of-arrival
detected by five nodes in many different
spatial configurations. The error char-
acteristic in this plot is for measure-
ments where the incoming ultrasound
pulses were sensed on two or more of
the node’s transducers; this condition
was true for over seventy percent of the
successful measurements taken.
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Fig. 4. Angle-of-arrival measurements
taken by a single node in different spa-
tial configurations. The error bars indi-
cate the tenth and ninetieth percentile
levels of the observed errors at a given
angle. The angle-of-arrival error offsets
for a given system state tend to be
tightly constrained, and thus system-
atic.

In figure 3, we see a plot of the errors of the angle-of-arrival of ultrasound
pulses that were measured experimentally; our experimental analysis is based
on data gathered using five nodes placed in fifty spatial configurations, with
favourable line-of-sight conditions [15]. The distribution is very similar to the
Gaussian indicated in the same figure. But for a given node spatial arrange-
ment, we are more interested in the specific error distribution rather than the
total distribution for all nodes/configurations. Figure 4 shows the angle-of-arrival
measurement errors reported by one node over many experimental settings. Each
error bar shows the distribution of angle-of-arrival errors measured from a par-
ticular node in a particular location. While the error distribution for different
nodes in different spatial configurations varies, the spread of errors for a given
node in a given spatial configuration tends to be small. Thus, if measurements
are taken by a node in the same system state (t is constant), the error tends
not to vary much; it is repeatable, or systematic. This holds true for readings
taken by all five nodes used in the experiments; ninety percent of the ninetieth
percentile angle errors are within 16° of the median error.

For a particular node’s repeated measurements, Figure 4 shows that the
angle-of-arrival error tends to have a systematic offset. However, in order to mo-
tivate the use of averaging to compensate for systematic errors, it is necessary
to show that the systematic errors of the nodes in a given spatial configuration
are independent. Using the experimental data collected from five nodes in fifty
spatial configurations, the range between two of the nodes was estimated by
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Fig. 5. Removal of systematic error using data collected from three nodes to estimate
the range between two others

using data collected locally by the other three. The three estimates were then
averaged together to create a fused estimate of the range between the two nodes.
Figure 5 illustrates the result of fusing three locally-obtained range estimates.
The ninetieth percentile accuracy improves by about 15 cm. The graph demon-
strates that the device– and location-dependent systematic errors in the system
are not significantly correlated with one another; averaging the locally-estimated
quantities, despite their individual systematic offsets, yields an improved result.

5 Multiple, Simultaneous Measurements

In our analysis of the measurements, we found that a large component of the
systematic error depends on the particular signal angles-of-arrival at each node,
which is in turn dictated by the relative locations of the nodes. Instead of car-
rying out a device-specific calibration, we propose choosing a physical quantity
which is to be measured by many nodes to overcome the systematic nature.
Because each node has its own systematic but specific error offset (dependent
on the node’s location, orientation, and particular hardware), the random spa-
tial configuration of the nodes can be exploited to yield several estimates of
the same physical quantity which have different systematic error offsets. These
independent estimates can then be averaged together for an improved result.

Localisation nodes which are capable of measuring (1) the time-of-flight (i.e.
a range), (2) the angle-of-emission, and (3) the angle of arrival of the signal can,
using simple trigonometry, locally estimate the relative positions of any other
two beaconing nodes (figure 2). Note additionally that in many sensor systems,
any signals used for localisation (such as infrared, ultrasound, or ultra-wideband
radio) are of a broadcast nature.
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Thus, multiple measurements can be accomplished simultaneously by differ-
ent nodes: whenever a node emits a localisation signal, a number N of other
nodes can take a measurement. Provided these N nodes can all estimate the
same quantity from their measurements (such as the range between two nodes
A and B, or their relative location coordinates), then the scaling of taking mea-
surements can be improved from O(N) to O(1).

Fig. 6. Performing multiple measurements in a relative positioning system based on
ultrasound

As shown in figure 6, if A and B both successively emit ranging signals, the
other nodes present can individually and simultaneously compute results under
different system states which can then be combined for improved positioning
of A and B. For example, when A transmits, another node D can measure A’s
relative position using the angle-of-arrival and range to A. When B transmits,
D similarly estimates its relative location. Since D has additionally logged the
angle-of-emission of the signal from A, D can perform a rotation (1) of its locally-
referenced coordinate system to express the location of B relative to A:

−→
ABA= (

−→
ADD −

−→
BDD)A. (3)

Other nodes in the environment (C, E, and F) can do the same, simultane-
ously arriving at the relative position of B with respect to the local coordinate

system of A (
−→
ABA). Thus after an ultrasonic emission from both A and B, there

are N = 4 measurements of
−→
ABA. These estimates individually held by the

nodes C, D, E, and F now need to be combined, ideally in a way which scales
favourably as N increases.
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5.1 Data Fusion with Multi-SDJS

We now hold N measurements r̃i of the same vector from A to B, which we want
to collect for a data process such as averaging. With multi-SDJS, we are capable
of collecting these vectors in a very efficient way. The important property is that
the time required to perform SDJS is independent of the number of participants.
Increasing the number of participants in multi-SDJS allows more observations
to be incorporated into the fused data estimate, without impacting the amount
of time required for the fusion process.

For the ease of understanding, we explain the protocol directly with our appli-
cation of collecting the measured vectors from A to B; we called the measurement
r̃i. The SDJS process we utilise operates with scalar values in an a-priori known

interval. Therefore, the
−→
ABA measurements are expressed as polar coordinates

(r̃i, ϕ̃i)T , and multi-SDJS is performed for each component.5 For the SDJS pro-
cess, we assume that the nodes are within radio range of one another, since they
have been able to perform the localisation measurements.

Fig. 7. The multi-SDJS process for collecting data using signalling on the physical
layer of the nodes’ radio

Figure 7 shows how the collecting of data works. Node A initiates the multi-
SDJS scheme by broadcasting a start packet, which contains information about
the upcoming SDJS communication. In this case, it specifies that three SDJS
schemes will follow, each scheme containing four SDJS slots. The schemes corre-
spond to the ranges 30–32 cm, 32–34 cm, and 34–36 cm. To lower the necessary

5 Note that averaging can only work using a polar coordinate representation (r, ϕ)T ,
as the distribution of the measurement (as that shown in figure 10) is not bias-free in
(x, y)T . This is because the raw ultrasonic measurements themselves produce relative
distances and angles, and not (x, y) coordinate results.
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slots and schemes, the ranges are based on the distance estimation that the
initiating node A has.

After the start packet, each node selects the SDJS scheme which corresponds
to their measurement. For example, if node D has a measurement of 31.2 cm,
it would select the first SDJS scheme. Then, during the time of the first SDJS
scheme, node D (and also node E) randomly select one SDJS-slot and emit a
jam signal. Using these emissions, from D and E signal to A that they have a
measurement that lies in the interval from 30 to 32 cm. Node A will receives
the signals and can estimate the number of nodes based on counted signals and
collisions. Node A does not simply count the number of jam signals but has to
include possible collisions into its estimation. For a discussion on the estimation
theory, the reader is referred elsewhere [18].

6 Simulation

Our simulation is based on an indoor scenario of a 5m by 5m room with up to 200
nodes.6 The simulation error models for the range and angle-of-arrival accuracy
were derived from our experiments, in which over half a million measurements
were taken using five ultrasonic positioning nodes placed in fifty different spatial
configurations [15]. The following models were used for the simulation:

Angles-of-arrival: a Gaussian systematic error with µ = 0◦ and σ = 14◦; a
Gaussian statistical error with µ = 0◦ and σ = 1.4◦

Angles-of-emission: a uniform distribution in the interval [−45◦ . . . + 45◦]

Ranges: a right-sided half-Gaussian systematic error with µ = 0 cm and σ =
3.5 cm; a Gaussian statistical error with µ = 0 mm and σ = 4.9 mm

Simulation model for the SDJS process: The SDJS process influences the
averaging process of the distributed measurements. It quantises the numbers
(we used a resolution of 2 cm and 2°) and then the number estimation of
the SDJS process can also introduce errors due to an inadequate range of
possible values or due to using too few slots per scheme. For our simulation,
we assumed that the SDJS process would be suitably parameterised such
that the errors introduced with SDJS are negligible.

In the simulations, we compare “direct measurements” with the measuring
process results of our framework. The direct measurements assume a measure-
ment that is based on signals and data exchange only between the endpoint
nodes. We always take the best possible solution here and let B transmit and A
receive as the model for the angle-of-arrival (Gaussian, σ = 14o) is much more
narrow than the transmit model (uniform ±45o).
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6.1 Acquisition of the relative position between two nodes

Figure 8 shows a simulated room with 50 nodes. We measured the relative loca-
tion from node A (150, 150)T to B (350, 350)T . We simulated 1000 runs of this
scenario, varying the position of the 48 “helper” nodes. We looked at the error

for the relative position of node B, meaning the error of
−→
ABA. In figure 9, we

compare the results of direct measurements and our framework for the case of
50 nodes. The three plots show the relative occurrences of error values for the
angle between A and B, the absolute position error of B and the error for the
Cartesian coordinates (x,y) of the room. All three plots compare the distribution
of the results of the direct measurements with those of our framework.

For the direct measurements, the maximum error in positive x direction is
given when node B is (wrongly) positioned on the same y-position like A in the

room, then the x-position
−→
ABA of B is 432 cm plus some noise, resulting in a

x-position error of 82 cm plus noise. We can see this limit around 100 cm in
the x-position errors of figure 9. The distribution of angles are symmetric to
zero, which we expected. For all values, we see how the framework improves
the overall results. The distribution are much more narrow. The error on the
absolute location error gives the distribution of the distance of the results from
the target position of B. We also see here, how the mean was shifted towards
zero.

Figure 10 gives another illustration of one of our simulation runs. It shows
how the distribution of the direct measurements are placed on a segment of a
circle, as the error in the angle ϕ is much higher than on the radius r. After
the averaging process of the 48 helper nodes, the distribution is much more

6 The simulation was done using OMNet++. See http://www.omnetpp.org/.
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N

concentrated around the target node B. We simulated 1000 runs, each run with
a new topology, only the (x,y)-position of node A and B were held constant.
Their orientation varied as well.

In table 1, we find the statistical characteristics of the distributions for the
normal direct measurement process and the averaged values through our frame-
work. The improvements are exceedingly visible in the decreasing of the standard
deviation of the distributions. With the averaging, we achieve much more nar-
row distributions. The (x,y) coordinates describe the relative position error of
node B in the view of node A. Φ denotes the angle under which B was estimated
from the view of A. The row labelled “Euclidian” shows the absolute Euclidian
position error in the location estimation of B from its real position at (350,350).

(µ/σ) direct meas. with framework (N=48)

Φ (degrees) ( -0.3/ 13.4) ( -0.1/ 4.9)

Euclidian (cm) (53.6/ 38.8) ( 38.5/ 10.8)

x (cm) (-4.7/ 47.2) ( 1.4/ 17.2)

y (cm) (-2.6/ 46.0) ( 1.6/ 17.7)

Table 1. Statistical characteristics for N=0, 48

Table 2, demonstrates how adding large numbers of nodes improves the re-
sults of the system. Numbers are based on a simulation of the same situation,
but with 198 “helper” nodes. One can see, how the standard deviations σ of
the resulting statistics decrease and the distribution becomes even more nar-
row. The tabulated ninety-fifth percentiles give the error values at which the
corresponding cumulative distribution reached 0.95. In other words, 95% of all
measurements will have an error equal or smaller than that value.
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(σ/95%) direct N=48 N=198

x (cm) (47.2/90.5) (17.2/ 32.4) (9.9/18.6)

y (cm) (46.0/86.5) (17.7/33.5) (10.0/20.6)

Φ (degrees) (13.4/35.6) (4.9/9.8) (2.8/5.5)

Euclidian (cm) (38.8/125) (10.8/56.3) (5.2/44.1)
Table 2. statistical characteristics for N=0, 48, 198

As a next step, we now want to look at the dependency of our achieved
accuracy and the number of nodes. Table 2 already gives a hint on the clear
convergence with increasing number of nodes N . We again simulated the same
situation but now with a variable number of nodes from N = [1..200]. For each
number of nodes, we simulated 100 random topologies in the 5 by 5 m room
but kept nodes A and B at (x,y)-position (150,150) and (350,350) with random
orientation. We numerically extracted mean and standard deviations from the
results of the framework and plotted them against the number of nodes in Figure
11. We see how the standard deviation of the measurements decreases the more
nodes that are involved. The gradient is especially high for the low number
of nodes (N < 10). That means, that even with a comparably small number
of nodes, we can already achieve great improvements in accuracy. But as the
framework process time is independent of the number of participants, one would
always include all available measurements from all nodes in the area.

7 Conclusion

This paper has described and evaluated a method for reducing device-dependent
and spatially-dependent systematic error in localisation systems. Using this
method, many nodes simultaneously gather measurements to create estimates of
the same physical quantity, such as the relative location of one node with respect
to another. In so doing, the systematic errors can be treated as statistical or ran-
dom, since they depend on the nodes’ independent locations and orientations.
Averaging can then be applied to these independent estimates to improve the
overall result.

Using the SDJS protocol, the time required for sensor measurements and data
fusion is constant and independent of the number of nodes involved; the accuracy
increases with a higher number of nodes involved, as long as this number stays
in reasonable bounds. Some quantitative measures have been previously pub-
lished [18]. As an example calculation, we want to parameterise a typical SDJS
process for our application. With an initial estimate of the location of B relative
to A, we may need for the next estimate a range of ±50 cm for the SDJS process
with a resolution of 1 cm, resulting in one hundred SDJS schemes. Assuming a
slot time with 18 µs (based on physical parameter from IEEE 802.11a) and fifty
slots per value, we get a total time of 100 · 50 · 18µs = 90.0 ms for the averaging
process. Using fifty slots per value would allow the network to scale to upwards
of 300 nodes, and the SDJS process would still return accurate fused estimates.
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With these properties, our method is ideally suited for low-cost hardware
that is densely distributed in the environment. With the method, we address
both statistical and even severe systematic errors of the hardware through the
fusion of measurements taken from different nodes in different locations and
orientations.

Using a large number of measurements captured from five ultrasonic local-
isation nodes, we demonstrated that the systematic errors of locally-estimated
ranges between any two nodes are independent and thus the overall error can
be vastly reduced by fusing the local estimates; even with just three nodes per-
forming the process, the ninetieth percentile range error can be improved by
about 20 cm. With the error models derived from these real measurements, we
also showed in simulations that the accuracy can be greatly improved using even
more nodes. For this, we simulated a 5 × 5 m room with both 50 and 200 nodes
and quantified the accuracy improvement. For example, the standard deviation
of the determined relative angle was reduced from σΦ,2 = 13.4 for the direct
measurement over σΦ,50 = 4.9 with a setting of 50 nodes to only σΦ,200 = 2.8
when using 200 nodes in the room.
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