
COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 55

M
ost organizations selling software-
intensive products today face a similar
challenge: providing high-quality
products of increasing size and com-
plexity customized to the special
needs of individual customers or mar-

ket segments with less amounts of effort and time. Mas-
tering this challenge requires mature and adequate
engineering and management practices focusing on future
needs of customers or markets. Product line approaches,
such as Fraunhofer PuLSE (Product Line Software and
System Engineering) provide the required methods,
processes, and tools for planning, engineering, managing,
and maintaining products of an organization as a family
characterized by well-defined sets of common and varying
properties. Efficiency is then achieved through systematic
reuse that has been proactively planned with respect to
expected future requirements.

By Jaejoon Lee and Dirk Muthig

FEATURE-ORIENTED
VARIABILITY MANAGEMENT
IN PRODUCT LINE
ENGINEERING
Implementing feature-oriented variability modeling
throughout the life cycle.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

56 December 2006/Vol. 49, No. 12 COMMUNICATIONS OF THE ACM

Expected products for
targeting market seg-
ments are captured
explicitly by a product
line scope that is inten-
sively discussed among all
organizational units
including marketing,
management, and devel-
opment. The scope thus
captures a common view
of an organization’s future
and thus specifies the type
of products, as well as the
space of features and their
variations, that should be
supported by a reuse
infrastructure.

From our experience in
applying Fraunhofer PuLSE with
diverse industry partners since
1998, variability management, which consistently
covers all life cycle stages and organizational roles, is
fundamental to run a sustainable successful product
line in practice. Variability management is the major
product-line-unique discipline that must be newly
established within non-product-line organizations.
It is responsible for systematically managing the
scope itself, and ensuring its traceability with gener-
icity of product line artifacts.

This article introduces a feature-oriented
approach to explicit modeling and managing vari-
ability information. It takes features as first-class
entities for controlling variability and enables an
organization to exploit commonality and manage
variability in both problem and solution space.

FEATURE ORIENTATION

The idea of feature orientation for analyzing com-
monality and variability of a product line appeals to
many product line engineers because features are

effective “media” sup-
porting communication
among diverse stakehold-
ers of a product line.
Therefore, it is natural
and intuitive for people
to express commonality
and variability of product
lines in terms of features.

Especially envisioned,
future products are typi-
cally discussed and
described in terms of fea-
tures gathered from mar-
ket surveys, individual
customers, research labs,
or technology roadmaps.
For constructing a suc-
cessful product line, how-

ever, more detailed information on features is
required. Therefore, a feature model is refined to
provide a more tangible basis for a later develop-
ment, parameterization, and configuration of vari-
ous reusable assets (for example, product line
requirement models, reference architectural models,
and reusable code components).

Feature orientation, as such, has been used exten-
sively for product line engineering both in industry
and academia, after the Software Engineering Insti-
tute first introduced Feature-Oriented Domain
Analysis (FODA) as early as in 1990 [6]. For exam-
ple, Organization Domain Modeling (ODM) [11]
builds on both the faceted classification approach
and FODA, and FeatuRSEB [5] incorporated the
FODA’s feature model as a catalog of commonality
and variability captured in models (such as use case
and object models). Feature-Oriented Reuse
Method (FORM) [7] also extended the original
FODA to address the issues of reference architecture
development and object-oriented component engi-
neering. Moreover, a feature model is used in con-

Lee fig 1 (12/06)

Figure 1. A feature model of a VOF product line.

Follow Me

User
Localize

Log-on Printer
Register

Virtual
printer

FOLLOW
ME

File
Upload

File
Converter

User Positioning
Method

Access
Point Based

RFID
based

FILE
CONVERTER

VIRTUAL
PRINTER

USER
POSITIONING

METHOD

NAME

Mandatory feature

Composed-of

Generalization

Implemented-by

Optional feature

Alternative feature

A binding unit

Binding unit name

Legend

VOF

Figure 1. A feature
model of a VOF

product line.

Feature modeling is the activity of identifying externally
visible characteristics of products in a product line

and organizing them into a feature model.

junction with aspect-oriented programming [8],
generative programming [2], formal methods [1],
and reengineering of legacy systems [3].

Here, we introduce some basic concepts of feature
modeling and extensions that we made to address
new challenges originated from an ambient applica-
tions product line.

FEATURE MODELING: BASIC CONCEPTS AND EXTENSIONS

Feature modeling is the activity of identifying exter-
nally visible characteristics of products in a product
line and organizing them into a
feature model. Features can be
services (such as call forwarding
in the telephony product line),
operations (dialing in the
telephony product line), non-
functional characteristics (per-
formance), and technologies
(navigation methods in the
avionics product line) of a partic-
ular product line.

Common features among dif-
ferent products are modeled as
mandatory features, while differ-
ent features among them may be optional or alter-
native. Optional features represent selectable features
for products of a given product line and alternative
features indicate that no more than one feature can
be selected for a product. A feature diagram, a graph-
ical AND/OR hierarchy of features, organizes iden-
tified features by using three types of relationships:
composed-of, generalization/specialization, and
implemented-by. Composition rules supplement the
feature model with mutual dependency and mutual
exclusion relationships that are used to constrain the

selection from optional or alternative features.
Figure 1 shows a feature model of a Virtual Office

of the Future (VOF) product line, which provides a
range of various office services (including printing,
organizing a meeting, planning a business trip, and
so forth) to a user virtually anywhere in an office
building whenever the user requests; see
www.ricoh.rlp-labs.de/index.html. The VOF prod-
uct line includes service features (Virtual Printer,
Follow Me, Smart Fax), operational features (Logon,
User Localize), and technology features (User Posi-
tioning Method).

A feature model is then analyzed to capture fea-
ture binding units (FBUs) [9]; an FBU is defined as
a set of features that are related to each other by the
relationships in a feature model (see Figure 1 for the
identified FBUs). Features that belong to the same
FBU work for a common service and, therefore,
must exist together for correct operation of the ser-
vice. This grouping reduces complexity in managing
variations of product configuration, thus helping
engineers to analyze the change impacts of a feature
selection. Also, binding dependency between varia-
tion points can be identified and managed efficiently
with mappings to FBUs. For instance, it became
clear that FILE CONVERTER could be selected
only after its parent FBU, VIRTUAL PRINTER,

was selected.
Recently, there

have been increas-
ing demands for
the postponement
of decisions on
product variations
to runtime to pro-
vide an operating-
context relevant
service [4]. This

means features can be selected and/or parameterized
at runtime by a user or by a product itself when a cer-
tain contextual change is recognized. For example,
the service features of VOF should be dynamically
reconfigured to provide context-relevant services as
users’ physical locations and available resources
change dynamically. To support such demands, a
feature model is further enhanced with a feature
binding graph, which is a labeled digraph without
cycles and captures FBUs and their binding relations
with preconditions. (See Figure 2 for a feature bind-
ing graph of VOF.)

In a feature binding graph, each node corresponds
to an FBU identified through the feature binding

COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 57

Lee fig 2 (12/06)

Figure 2. A feature binding graph.

Legend

r

m o

o

a
oo

Virtual Printer Selection = True
and
User = Manager or Director
and
of Available Printer >= 1

VIRTUAL
PRINTER

FILE
CONVERTER

AUTOMATIC
LOG-ON

ENVIRONMENT
VISUALIZATION

FOLLOW
ME

VOF

Feature binding unit node

Static binding relation

Dynamic binding relation

r : Root node
m : Mandatory node
o : Optional node
a : Alternative node

USER
POSITIONING

METHOD
(AP or RFID)

Figure 2. A feature binding graph.

Figure 3. Excerpt of a
generic design model.

analysis and the relation between two FBUs is either
static or dynamic. Also, a dynamic binding relation
is annotated with preconditions that indicate when
two FBUs can be bound at runtime. For instance,
the Virtual Printer feature, which selects the nearest
printer to a user with a most appropriate printing
quality at the moment when the service is requested,
must be bound at runtime only if: the feature is
selected for the current product configuration; the
requesting user’s job function is a manager or a
director; and more than one printer is available
nearby. (See the annotation at the dynamic binding
relation between VOF and VIRTUAL PRINTER
nodes in Figure 2.) With
the feature binding
graph, we could provide
an intuitive and visual
description of dynami-
cally changing product
configuration. Also, we
could explore appropriate
binding techniques based
on this information.

VARIABILITY DESIGN

Variability design is the activity of constructing and
evolving a reuse infrastructure, which realizes all
variability requirements specified in a feature model.
The major concept for designing variability is to
encapsulate specified features (or related binding
units) fully within single components at the archi-
tectural level. Optional units can thus later be easily
included or excluded; additionally alternative real-
izations of the same but varying feature can concep-
tually be hidden from other related architectural
elements.

In our example, an optional component Virtual
Print Service Manager may be defined to encapsu-
late all functionalities related to the optional Virtual
Printer feature in the feature model. As components
are recursively refined and decomposed, variant con-

cepts and components may also occur at all levels. A
File Convert Handler realizing the File Converter
feature may, for instance, be designed as an optional
subcomponent of the optional Virtual Print Service
Manager component.

Each architectural view or design artifact is
potentially affected by variability and thus must be
prepared to capture these product line concepts
explicitly. Hence, design is captured analogously as
in single system development except for extensions
by variant model elements [4]. The structural view
in Figure 3, for instance, depicts an excerpt of
generic component decomposition for the VOF

product line containing
some variant parts. (Note
that the black circles in
Figure 3 represent varia-
tion points, at which
selections of variants are
controlled.)

In simple cases, decisions on the exclusion of
individual variant elements can be taken indepen-
dently of each other. It must, however, also be
ensured that excluding model elements will result
again in well-formed design models. From this per-
spective, excluding the Virtual Print Service Man-
ager component also requires the exclusion of all
connected components (for example, File Convert
Handler). Also, there are typically other conceptual
dependencies among variant elements. This is the
case because some variability can, in general, not be
encapsulated by a single element. For example,
excluding the Virtual Print Service Manager com-
ponent but including the Printer Registration Han-
dler component is not a useful configuration of a
product.

In addition to relationships and constraints
among elements in a single model, decisions on vari-
ant features must be propagated consistently
throughout all artifacts. Therefore, architecture and
design documents must be accompanied by a deci-

58 December 2006/Vol. 49, No. 12 COMMUNICATIONS OF THE ACM

Lee table (12/06)

FBU

VIRTUAL
PRINTER

Child FBU

FILE
CONVERTER

Allocated
Components

Virtual Print
Service Manager

Printer
Registration Handler

Location of
Variation Points

Office Machine
Registration Manager

Table title: A part of decision model for VOF.

Virtual Office System

Part of the decision
model for VOF.

The combination of feature modeling and variability
design provides the basic mechanisms needed to

implement feature-oriented variability management.

sion model [10], which explicitly captures all con-
straints among variant elements of all models in a
table format. (See the table here for a part of the
decision model for VOF.) A decision model is thus
the analogous artifact in the solution space of a fea-
ture model for managing features and their interrela-
tionships in the problem space as introduced earlier:
variant model elements correspond to features; sets
of model elements referring to the same varying fea-
ture correspond to binding units.

Eventually, the decision model links features in
the problem space via a constraint network with
variant design elements. As a result, variability can
be traced from problem to solution space and vice
versa. This combination of feature modeling and
variability design thus establishes a systematic and
consistent management of product line variability
across all phases of the product line life cycle.

More complete technical details on the approach
described here for feature modeling, and designing
product lines and their variability from architecture
to component implementation, are presented in [7]
and [10].

CONCLUSION

This article has described techniques that enable the
explicit modeling and management of product line
variability across the life cycle from problem to solu-
tion space. The combination of feature modeling
and variability design provides the basic mechanisms
needed to implement feature-oriented variability
management.

We have realized the presented approach several
times in diverse industry contexts. Its implementa-
tions are already practically useful, however, we also
uncovered several technical challenges that clearly
require further research. Our approach must be
extended to address other issues such as a formal
base for analyzing consistency between various arti-
facts (including behavior specifications and archi-
tecture models) and a support for controlling and
evolving variability information consistently along
the evolution of a product line infrastructure. Most
notably, managing and modeling varying non-
functional or quality properties of products in a
product line is not fully possible with available
technologies.

References
1. Batory, D. Feature models, grammars, and propositional formulas. In

H. Obbink and P. Klaus, Eds., Software Product Lines. LNCS 3714.
Springer-Verlag, Berlin Heidelberg, 2005, 7–20.

2. Czarnecki, K. and Eisenecker, U. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, New York, 2000.

3. Ferber, S. et al. Feature interaction and dependencies: Modeling fea-
tures for reengineering a legacy product line. In G.J. Chastek, Ed., Soft-

ware Product Lines. LNCS 2319. Springer-Verlag, Berlin Heidelberg,
2005, 235–256.

4. Gomaa, H. and Saleh, M. Feature-driven dynamic customization of
software product lines. In M. Morisio, Ed., Reuse of Off-the-Shelf Com-
ponents. LNCS 4039. Springer-Verlag, Berlin Heidelberg, 2006,
58–72.

5. Jacobson, I., Griss, M., and Jonsson, P. Software Re-use: Architecture,
Process and Organization for Business Success. Addison-Wesley, New
York, 1997.

6. Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson, S. Feature-
oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Pittsburgh, PA, Software Engineering Institute,
Carnegie Mellon University, 1990.

7. Kang, K., Lee, J., and Donohoe, P. Feature-oriented product line engi-
neering. IEEE Software 19, 4 (July/August 2002), 58–65.

8. Lee, K. et al. Combining feature-oriented analysis and aspect-oriented
programming for product line asset development. In Proceedings of 10th
International Software Product Line Conference (SPLC 2006), Baltimore,
MD, 2006, 103–112.

9. Lee, J. and Kang, K. Feature binding analysis for product line compo-
nent development. In F. van der Linden, Ed., Software Product Family
Engineering. LNCS 3014. Springer-Verlag, Berlin Heidelberg, 2004,
266–276.

10. Muthig, D. and Atkinson, C. Model-driven product line architectures.
In G.J. Chastek, Ed. Software Product Lines. LNCS 2379. Springer-Ver-
lag, Berlin Heidelberg, 2002, 110–129.

11. Simos, M. et al. Software Technology for Adaptable Reliable Systems
(STARS) Organization Domain Modeling (ODM) Guidebook Version
2.0. STARS-VC-A025/001/00, Lockheed Martin Tactical Defense Sys-
tems, Manassas, VA, 1996.

Jaejoon Lee (jaejoon.lee@iese.fraunhofer.de) is a scientist in the
Product Line Architectures department at the Fraunhofer Institute
for Experimental Software Engineering (IESE) in Kaiserslautern,
Germany.
Dirk Muthig (dirk.muthig@iese.fraunhofer.de) is the
department head of the Product Line Architecures department at the
Fraunhofer Institute for Experimental Software Engineering (IESE) in
Kaiserslautern, Germany.

PuLSE is a registered trademark of the Fraunhofer Institute for Experimental Software
Engineering in Kaiserslautern, Germany.

This research is partially carried out in the Cluster of Excellence Dependable Adaptive
Systems and Mathematical Modeling project, which is funded by the Program Wissen
schafft Zukunft of the Ministry of Science, Education, Research and Culture of
Rhineland-Palatinate, Germany, AZ.: 15212-52 309-2/40 (30).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/1200 $5.00

c

COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 59

