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Multitraining Support Vector Machine for Image Retrieval

Jing Li, Nigel Allinson, Member, IEEE, Dacheng Tao, and
Xuelong Li, Member, IEEE

Abstract—Relevance feedback (RF) schemes based on support vector
machines (SVMs) have been widely used in content-based image retrieval
(CBIR). However, the performance of SVM-based RF approaches is often
poor when the number of labeled feedback samples is small. This is mainly
due to 1) the SVM classifier being unstable for small-size training sets
because its optimal hyper plane is too sensitive to the training examples;
and 2) the kernel method being ineffective because the feature dimension
is much greater than the size of the training samples. In this paper, we
develop a new machine learning technique, multitraining SVM (MTSVM),
which combines the merits of the cotraining technique and a random
sampling method in the feature space. Based on the proposed MTSVM
algorithm, the above two problems can be mitigated. Experiments are
carried out on a large image set of some 20 000 images, and the preliminary
results demonstrate that the developed method consistently improves the
performance over conventional SVM-based RFs in terms of precision
and standard deviation, which are used to evaluate the effectiveness and
robustness of a RF algorithm, respectively.

Index Terms—Content-based image retrieval (CBIR), multitraining
SVM (MTSVM), relevance feedback (RF), support vector machine (SVM).

I. INTRODUCTION

Recently, content-based image retrieval (CBIR) [5], [10], [11] has
become an important research direction in the multimedia informa-
tion processing field because of the rapidly increasing requirements in
many practical application areas, such as architectural design, museum
management, education and fabric design. Due to the semantic gap
[10] between low-level visual features and high-level semantic infor-
mation, the retrieval performances of conventional CBIR schemes are
still not good enough for many practical applications. Different users
at different times may have different viewpoints on or understanding of
the same image. In these situations, interactions between the user and
the search engine are introduced to improve the retrieval performance.
Therefore, relevance feedback (RF) [10] has been proposed as an effec-
tive solution for this kind of interaction. Current RF schemes can ex-
hibit some general limitations of over sensitivity to subjective labeling
by users and the inability to accumulate knowledge over different ses-
sions and users [15], [16]. The traditional process of RF is as follows:
1) from the retrieved results, the user labels a number of relevant sam-
ples as positive feedbacks, and also labels a number of irrelevant sam-
ples as negative feedbacks; 2) to obtain improved retrieval results, the
CBIR system then refines its retrieval procedure based on these labeled
feedback samples. These two steps can be carried out repeatedly. As a
result, the performance of the CBIR system can be improved by means
of the system gradually learning the user’s preferences.

Several RF methods have been developed in recent years, for ex-
ample [10] adjusts the weights of various features to adapt to the user’s
preference, while [3] estimates the density of the positive feedback
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samples. Discriminant learning has also been employed for feature se-
lection in RFs [18]. However, all of these methods have some limita-
tions; for example, the method in [10] is only heuristically based, the
density estimation method in [3] ignores any information contained in
the negative feedback samples, and the discriminant learning in [18]
often suffers from the so-called matrix singular problem or the curse of
dimensionality. More recently, classification-based RFs [5], [7], [17]
have become a popular technique in CBIR and the support vector ma-
chine (SVM)-based RF approach [2], [14] has shown promising results
due to the SVM’s good generalization ability for classification. How-
ever, SVM-based RF algorithms have their own drawbacks.

1) The SVM classifier is unstable for a small size training set because
the optimal hyperplane, determined by the support vectors, can be
very sensitive to the training examples. In CBIR RF, the number of
feedback samples is usually small, because the user is reluctant to
mark many samples. Consequently, the performance of the system
may be poor due to insufficient and inexactly labeled samples;
and,

2) The kernel method cannot exert its normal capability because the
feature dimensions are much higher than the number of training
samples. In this circumstance, the kernel machine can achieve a
zero training error but poor generalization.

In this paper, which aims to address these issues, we propose a mul-
titraining SVM (MTSVM) mechanism for a CBIR RF. MTSVM is
based on the observation that 1) the success of the cotraining model
[1] to augment labeled examples with unlabeled examples in informa-
tion retrieval; and 2) advances in the random subspace method [4] to
overcome the small sample size problem. With the incorporation of the
SVM and the multitraining model, unlabeled examples can generate
new informative training examples for which the predicted labels be-
come more accurate. Ttherefore, the new MTSVM method can work
well in practical situations. In the MTSVM learning model, we choose
the majority voting rule (MVR) [8] as the similarity measure in com-
bining individual classifiers since every single classifier has its own
distinctive ability to classify relevant and irrelevant samples.

This paper is organized as follows. A brief review of the traditional
SVM-based RF is given in Section II. The newly developed MTSVM
is then described in Section III. In Section IV, we introduce our CBIR
platform with embedded RF. Section V describes preliminary experi-
mental results based on a large scale image database, and, finally, Sec-
tion VI is the conclusion.

II. SUPPORT VECTOR MACHINE-BASED RELEVANCE FEEDBACK

The SVM [2], [14] is a very effective binary classifier. Consider a
linearly separable binary classification problem
{(wiy) ¥ty and g = {+1,-1} e))

where w; is an n-dimension vector and y; is the label of this vector.
SVM separates these two classes of points by a hyperplane

wie+b=0 )
where x is an input vector, w is an adaptive weight vector, and b is a

bias. SVM finds the parameters w and b for the optimal hyperplane to
maximize the geometric margin 2/||w||, subject to

yi(w!x; +b) > +1. 3)

1057-7149/$20.00 © 2006 IEEE
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TABLE I
WEAK CLASSIFIER UPDATE

Input: weak classifier 7, training samples x,, training labels L,, unlabelled training

setU , z* is the minimum acceptance threshold for the positive label, and 7~ is the
maximum acceptance threshold for the negative label.

Output: the updated weak classifiers 7.

1. Use L, to train a classifier 4 that considers only the x, portion of x, 1<i<N,.
2. Allow A to label p positive and » negative examples from U, 1<i<N,.
3. FORloop_classifier (i)=1TO N, {
4. FOR loop_unlabbled_example (j)=1TO |U| {
5. IF > hlu)z7

ISISN,, %0

6. Add u, to L, as a positive sample;
7. }
8 ELSEIF Y h(u,)<7 {

: ISISN, I#i
9. Add u, to L, as a negative sample;
10. }
11. ELSE {
12. Reject the sample;
13. }
14. }
15. }

16.  Retrain the weak classifiers 4 according to the updated Z,, 1<i< N

0o

TABLE II
MULTITRAINING SVM (MTSVM)

Input: feature set F, weak SVM classifier #, integer N, (number of generated

classifiers), labelled examples set L, unlabelled examples set U (top |U | retrieved

images, after the current feedback), integer N, (rounds of multi-training SVM), and

image database D .

Output: a series of SVM classifiers 4, and the strong classifier C(z)= sign[

5 )

1S/SN,

1. Create L, =L, 1<i<N,.
2. FORloop_observation (j))=1TO N, {
3 Random sampling without replacement on F to generate the observation
: x; for weak SVM classifier 7, ;
4.}
5.  FORloop MTSVM (i) =1TO N, {
Call the routine Weak Classifier Update and obtain the retrained classifiers
6. h;
7. Use majority voting rule to generate the classifier C(z)= sign[ Z h, (z)] ;
1</EN,
Using the dissimilarity measure function f to resort images in D|(L,U);
8. where D|(L,U) means D without L and U.
9 Select top |U]| retrieved images as the unlabelled examples to replace the
existing unlabelled examples;
10. 3}

The solution can be obtained using the Wolfe dual problem with a
Lagrangian-multiplier «;

@

Qa) =) ai - Z oYy (Xi 'XJ‘)/2

i=1 =1

subjectto o; > Oand )" | o,y = 0.
In the dual format, the data points only appear in the inner product,
and to achieve a potentially better representation of the data, the data

points are mapped onto the Hilbert Inner Product Space by means of
the replacement

5

X - X5 = ¢(x;) - (x5) = K(x:,%;)

where K ( -) is a kernel function. We then get the kernel version of the
Wolfe dual problem

Qo) = Za/i - Z aiogyiy K (x; ~xj)/2_ (6)
=1

7,7=1
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Fig. 1. Flowchart of the image retrieval system. (Color version available online at http://ieeexplore.ieee.org.)

Thus, for a given kernel function, the SVM classifier is given as

F(x) = sgn(f(x)) @)

where f(x) = 2121 a;y; K (x;,%) =+ b is the output hyperplane deci-
sion function of SVM.

In general, when | f (x)| is high for a given pattern, the corresponding
prediction confidence will also be high. On the contrary, a low | f(x)|
for a given pattern means this pattern is close to the decision boundary
and its corresponding prediction confidence is low. Consequently, in
our application the output of SVM f(x) is used to measure the dissim-
ilarity [17], [5] between a given pattern and a query image.

III. MULTITRAINING SUPPORT VECTOR MACHINE

As described in the Introduction, traditional SVM-based RFs often
exhibit some intrinsic problems. To address these problems, we pro-
pose a new learning scheme to enhance the SVM, which is named the
multitraining SVM (MTSVM). The MTSVM has the benefits of the
cotraining technique [1] and the random subspace method [4]. Before
describing the proposed MTSVM method, we first introduce the co-
training algorithm and the random subspace method as essential back-
ground.

A. Cotraining Algorithm

As described in [1], the cotraining algorithm has been proposed as
an approach to construct a strong classifier that is trained on a small
number of labeled and unlabeled samples. The basis of the cotraining
algorithm is that one object (sample) has several different aspects; for
example, a biometric classifier could be based on facial, gait, and fin-
gerprint data. For two different aspects of a sample under consideration,
two subclassifiers can be trained individually on the given small labeled
sample sets. With a well-designed methodology, these initial subclas-
sifiers can gradually gain benefits from the unlabeled samples—each
subclassifier independently labels several unlabeled samples and en-
larges the training set by including these new samples. After several
iterations, the subclassifiers are improved and can be combined as a
single one, which can outperform the one obtained by merely directly
combining the initial subclassifiers. Therefore, the cotraining algorithm
can be very effective for small quantities of labeled data.

Using the cotraining algorithm directly with a SVM is not realistic.
This is chiefly because the cotraining algorithm requires that the initial
subclassifiers to have been adequately trained, i.e., each subclassifier
has already a good generalization ability before the cotraining proce-
dure commences. However, in the CBIR RF procedure, this precondi-
tion for subclassifiers cannot be guaranteed. Consequently, we need to
enhance the generalization ability of each subclassifier by using classi-
fier committee learning (i.e., the random sampling without replacement
in the feature space). With an enhanced ensemble classifier, we can en-
large the training set more accurately by using unlabeled samples.

B. Random Subspace Method

The random subspace method [4], an example of a random sampling
algorithm, incorporates the benefits of bootstrapping and aggregation.
Multiple classifiers can be generated by training on multiple sets of
features that are produced by bootstrapping, i.e., random sampling with
replacement on the training features. Aggregation of the generated clas-
sifiers can then be implemented by the MVR or other multiple classi-
fiers combination rules. For SVM-based RFs, overfitting is encountered
when the training set is relatively small compared to the high dimen-
sionality of the feature vectors. In order to avoid this over-fitting issue,
we sample a small subset of features to reduce the discrepancy between
the size of the training data size and the length of the feature vector.
Exploiting this feature sampling step, we can make the kernel method
operate satisfactorily. However, we cannot utilize the random subspace
method directly because the cotraining algorithm requires that the dif-
ferent subclassifiers should only be weakly related. Consequently, we
randomly select the subset features without replacement in our new al-
gorithm to meet our requirements for multitraining.

In the next part of this section, we develop the multitraining scheme
for SVM, which inherits the merits of the existing cotraining technique
and the new random subspace method without replacement step.

C. Multitraining Support Vector Machines

The utilitarian cost can be very high in acquiring a large set of labeled
examples so we propose a semi-supervised learning method, which can
effectively improve the learning performance by introducing the unla-
beled data to augment the labeled data. A major concern for our scheme
is having multiple views of a sample that are redundant but weakly
correlated. During the learning procedure, MTSVM assigns strong la-
bels to the unlabeled examples that are unambiguous. Similar to the co-
training scheme, a key property of MTSVM is that several examples,
which may be confidently labeled by one subclassifier, can be misclas-
sified by the other subclassifiers. The subclassifiers can, therefore, train
each other by providing additional informative labeled examples. The
different elements of the features are almost independent since they de-
scribe different parts of an object. So, we can incorporate the cotraining
and the random subspace method for the learning procedure to further
improve the retrieval or classification performance.

The proposed MTSVM algorithm has two stages: the first is the weak
classifier update, which is outlined in Table I, and the second, the main
body of MTSVM, is outlined in Table II. The weak subclassifier up-
date stage is modified from the cotraining method described in [1] be-
cause cotraining will not reject any samples, even though some sam-
ples could be labeled by the weak classifiers with low confidence. In
the multitraining scheme, we use the classifier committee learning with
a threshold to reject unlabeled samples with low classification con-
fidence. Rejecting the low confidence unlabeled samples can ensure
the retrained subclassifiers have a higher confidence without further
rejection.



3600

Performance Compaison Performance Compaison

bt 09 H

——

Top10 Precision
Top20 Precision

o 1+ 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
Number of Iterations Number of terations.

Performance Compaison Performance Compaison

Tops0 Precision
Topeo Precision

Number of terations. Number of Iterations

Performance Compaison Performance Compaison

Top10 Standard Deviation
Top20 Standard Deviation

Number of terations. Number of Iterations

Performance Compaison Performance Compaison

5—BDA

Tops0 Standard Deviation
Top6 Standard Deviation

Number of terations. Number of Iterations

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 11, NOVEMBER 2006

Performance Compaison

Performance Compaison

Topao Precision
Topo Precision

Number of terations. Number of terations.

Performance Compaison Performance Compaison

Top70 Precision
Top8O Precision

Number of terations. Number of Iterations

Performance Compaison Performance Compaison

Top30 Standard Deviation
Topd0 Standard Deviation

01 01
o 1t 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

Number of terations. Number of Iterations.

Performance Compaison Performance Compaison

03

©—BDA
- DBDA
o SVM
3 CSVM

cTSVWM

Top70 Standard Deviation
Top80 Standard Deviation

Number of terations. Number of Iterations.

(b)

Fig. 2. Relative RF algorithms performance, up to nine iterations, for 500 randomly selected queries. (a) Precision recorded as percentage of returned relevant
images in the top-ranked /N images (.V = 10, 20, 30, 40, 50, 60, 70, 80). (b) Corresponding SD curves. The “0” iteration point refers to retrieval based soley on
an Euclidean similarity measure and no RF procedure applied. (Color version available online at http://ieeexplore.ieee.org.)

As dissimilarity measure in RF, we first utilize the MVR to identify a
given sample as a query relevant or irrelevant sample then we measure
the dissimilarity between the sample and the query using an individual
SVM classifier, which provides a label with the largest confidence (the
absolute value of the corresponding SVM output).

D. RF Requirements and MTSVM Cotraining

The effectiveness of SVM for RF in CBIR systems has been demon-
strated previously [3], [S], [7], [17] and the modified approach pre-
sented here takes full account of the initially weak classification rules,
which are strengthened gradually through repeated user feedback. The
different low-level image features are normally independent, e.g., tex-
ture and color histograms of an image have no intrinsic linkage and are
often of different dimensionality. Our proposed algorithm uses the ap-
proach of random sampling without replacement to meet the general
requirement of an independent distribution. Finally, in RF, users do not
like to label a large number of feedback samples [10], and with these

samples, we demonstrate that we can form initial weak classifiers based
on different features.

IV. IMAGE RETRIEVAL SYSTEM

To evaluate the performance of the proposed method, a general-pur-
pose CBIR system was developed, in which any RF algorithm can be
embedded. For this system (Fig. 1), when a query image is input, the
low-level features are extracted. All images in the database are then
sorted based on a specified similarity metric. The user labels some
highly ranked images as positive and negative samples. Using these
feedback samples, a RF model is trained and the similarity metric is
updated based on the output of the RF. All images are resorted using
the updated similarity metric, and the procedure is executed repeatedly
until the user is satisfied with the outcome.

For our demonstrator system, three main features—color, texture,
and shape—are extracted to represent the images. For the color fea-
ture, we use the color histogram [12] in the HSV (8:8:4 bits) color
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space. Texture is extracted from the Y component of the YCbCr space
by the pyramid wavelet transform (PWT) using the Haar wavelet; the
mean value and the standard deviation are calculated for each subband
at each decomposition level with a resulting feature length of 2 x 4 x 3.
For the shape feature, the edge histogram [9] is calculated from the
Y component of the YCbCr space; edges are grouped into four cate-
gories—horizontal, 45 diagonal, vertical, and 135 diagonal. We com-
bine these features into a single feature vector, and standardize each
feature to a normal distribution. The environment of the test system is
a Windows XP PC running MATLAB 7.0.

V. EXPERIMENTS

We have comprehensively compared the proposed MTSVM algo-
rithm with existing popular RF algorithms. Experiments were carried
out upon a subset of images from the Corel Photo Gallery. This subset
consists of about 20 000 images of very diverse subject matter for which
each image was manually labeled with one of 90 concepts. Initially,
500 queries were randomly selected, and the program autonomously
performs a RF with the top five most relevant images (i.e., images with
the same concept as the query) marked as positive feedback samples
within the top 40 images, similarly five negative feedback samples are
marked. The procedure is chosen to replicate a common working sit-
uation where a user would not label many images for each feedback
iteration.

Precision and standard deviation (SD) are used to evaluate the per-
formance for all RF algorithms. Precision is defined as the percentage
of relevant images in the top NV retrieved images. In our experiments,
a precision curve is the averaged precision values over the 500 queries.
Similarly, an SD curve is the SD values of the 500 query precision
values. The precision curve assesses the effectiveness of a given algo-
rithm and the corresponding SD curve assesses its robustness.

In Fig. 2, we compare the proposed MTSVM with the cotraining
SVM (CTSVM) and the random subspace method SVM (RSMSVM)
operating on their own. MTSVM is also compared with the orig-
inal SVM-based RF [17], the constrained similarity measure SVM
(CSVM)-based RF [7], the biased discriminant analysis (BDA)-based
RF [18], and the direct BDA (DBDA) [13]. The effectiveness of
BDA- and SVM-based RF approaches has been demonstrated in [18],
[13], and [3], [5], [7], [17], respectively. The results illustrate that
1) MTSVM can consistently outperform the conventional SVM and
other SVM-based approaches. Moreover, MTSVM also outperforms
BDA- and DBDA-based RF approaches, and 2) from the SD curves,
we can also note that MTSVM is generally more robust than the other
algorithms.

In our experiments, we chose a Gaussian kernel K(x,y) =
e=PI==¥1” with p = 1 (the default value in the OSU-SVM MatLab
toolbox [19]) for all algorithms. The performances of these SVM
algorithms are stable over a range of p values.

VI. CONCLUSION

In this paper, we propose a new algorithm for RF in CBIR designed
to solve the small sample size problem and improve the capability of
the kernel machine compared to traditional SVM-based RFs. The new
MTSVM has the advantages of both the cotraining technique and the
random sampling method. Extensive experiments using a large subset
of the Corel Photo Gallery, some 20000 manually labeled images,
demonstrate that the newly developed MTSVM algorithm outperforms
several established CBIR RF methods consistently in terms of effec-
tiveness and robustness.
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