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We show that in granular normal-ferromagnetic metals the giant magnetothermopower is related to
the giant magnetoresistance as it is a result of the interplay between the spin-dependent elastic
scattering �responsible for magnetoresistance effect� and the inelastic spin mixing scattering on
magnetic clusters. For a small change of resistance of sample in an applied magnetic field the
variation of the thermopower is connected linearly with the giant magnetoresistance and both are
proportional to the square of the sample magnetization. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2409282�

After the discovery of giant magnetoresistance �GMR�
in magnetic multilayers,1 a lot of attention has been attracted
to various combinations of normal and ferromagnetic mate-
rials driven by possible device applications.2 Later the same
phenomenon was uncovered in granular media consisting of
single domain ferromagnetic particles in a nonmagnetic
noble matrix.3,4 GMR was naturally explained in terms of
spin-dependent electron transport suggested by a polarization
of the magnetic component in an applied field.5,6 Later, ther-
moelectric power in these systems was also found to have a
strong dependence on the magnetic field and a correlation
between GMR and magnetothermopower �MTP� has been
registered7–12 and attributed to the energy dependent density
of states in a weakly ferromagnetic metal with a complex
band structure.

In this article we show that a strong magnetic field de-
pendent contribution to the thermopower coefficient, �c
=c�B�−c�0�, rises routinely in kinetic theory from an inter-
play between the inelastic contribution towards the momen-
tum relaxation of electrons caused by spin-flip processes in-
volving polarized magnetic scatterers and a spin-dependent
elastic scattering responsible for the GMR effect. The mag-
netic field dependence of �c tracks the magnetic field depen-
dence of GMR,

�c�B� =
k

e

�s
−1

�↑
−1 − �↓

−1��B� , �1�

where the proportionality coefficient is the ratio between the
spin-flip transfer rate �s

−1 and the relative difference between
the inverse mean free path time �↑�↓�

−1 of electrons with spins

parallel �antiparallel� to the cluster polarization axis, k is the
Boltzmann constant, and e is the electron charge. In a metal
with ferromagnetic clusters5 or magnetic impurities13 with a
large spin S�1, the magnetoresistance, ��R�B� /R�0�−1,

��B� = − � �↑ − �↓

�↑ + �↓
�2

�lz	2, �2�

reflects the degree of polarization, �lz	=coth�y�−y−1, y
=�BS /kT, of the magnetic subsystem by a magnetic field
B=nzB. The strength of the MR effect depends on the rela-
tive difference between the mean free path times �↑ and �↓.
Here all relaxation rates are formally determined for a sys-
tem with fully polarized clusters and equal density of states �
for electrons with spin-↑ and spin-↓.

The diffusive nature of transport properties in granular
normal-ferromagnetic heterogeneous metals was confirmed
to agree with the Wiedemann-Franz law. For instance, in a
Co–Ag compound it holds throughout the temperature range
of 2–300 K.9 When two parts of a sample polarized by an
external magnetic field are kept at different temperatures,
T1�T2, the heat flux which equilibrates the thermal condi-
tions on the opposite sides has to be accompanied by a trans-
port of magnetization, i.e., spin current. Locally, the process
of such an equilibration involves the spin transfer from clus-
ters to conduction electrons via spin-flip scattering processes.
Then, the magnetization is carried by electrons diffusing be-
tween sample areas kept at different temperatures, thus lead-
ing to a spin current. Due to the difference between mean
free path times �thus, mobilities� of “up” and “down” spin
carriers, the spin current also drags a charge current. In an
open circuit, this generates a thermopower.

A microscopic justification of this phenomenological ar-
gument is supported by the following analysis of the
electron-hole symmetry breaking in such a system, which
represents a necessary attribute of thermoelectric effect. In
normal metals diffusive thermopower is caused by the en-
ergy dependence of the density of states near the Fermi en-
ergy, so that c
��2 /3��k /e��kT /	F�. In a magnetic material
electron-hole asymmetry is created in alternative way—via
the formation of energy and spin dependence of quasiparticle
kinetic properties, such as its scattering rate.14,15

We model ferromagnetic nanoclusters �FmnC’s� using
the Hamiltonian16a�Electronic mail: o.tsyplyatyev@lancaster.ac.uk
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− �BSz +� 
†�r��
i

�U + J� · Ŝi���r − ri�
�r�d3r .

Here, U takes into account the FmnC charge and mismatch
in band structures between normal and magnetic metals,
whereas J is the exchange interaction, � is the spin of the
electron, B is the external magnetic field, and � is the Bohr
magneton, so that �S is the magnetic moment of a cluster.
The GMR analysis in materials with large spin clusters, S
�1, can be done using a macrospin model,5 where the op-
erator S is replaced by Sl �here, l is a unit vector in the
direction of the polarization of an individual cluster�. In con-
trast, the analysis of the MTP and tracking a kinetically gen-
erated electron-hole asymmetry necessitates taking into ac-
count the quantum nature of the cluster spin via the electron
spin-flip process.

To find the transport coefficients we solve a steady state
kinetic equation,

�v � − eE�p��± = �I±��+,�−�	 , �3�

where the collision integrals I± describe the balance in the
distribution functions �± of electron with spin-↑ and spin-↓
formed via scattering from a group of FmnC’s with given Sz,
and we assume the paramagnetic state of the system,17 thus

average over the thermal distribution of initial state of clus-
ter.

I±��� =
2�nc


� d3p�

h3 �U2 + Sz
2J2 ± 2UJSz���±� − �±���	p − 	p��

+ J2��S2 − Sz
2 + S ± Sz���� �1 − �±� − �S2 − Sz

2 + S � Sz�

��±�1 − ��� ����	p� − 	p � �B� . �4�

In the above equation the first term describes elastic spin
conserving processes ↑�↓�→ ↑ �↓�, whereas the second term
describes inelastic spin-flip processes ↑�↓�→ ↓ �↑�, where
scattering amplitudes are taken in the Bohr approximation.
We restrict this study to a temperature higher than the Kondo
temperature. By inspection of the second term, one can no-
tice that the probabilities of electrons ↓→↑ and ↑→↓ spin-
flip scattering processes from the same cluster slightly differ,
so that in a system with a preferential polarization of FmnC’s
along an external magnetic field, this leads to the same be-
havior of electron momentum relaxation rate.

In the linear response approximation, temperature gradi-
ent and electric field are treated as small perturbations. Thus
we expand the electron density function into angular har-
monics in the momentum space, �±�T+�± ·p / p �here,
�T�	�= �e	/kT+1�−1� and find that

�eE −
	 − 	F

T
� T�vF�	�T = −

2�nc�


�U2 + J2S�S + 1� ± 2UJS�lz	 ± J2S�lz	�2�T�	 ± �B� � 1���±, �5�

where the factor in front of �± is the energy dependent mo-
mentum relaxation rate in each of two spin channels.16 Since
the inelastic part is a Fermi function shifted by a finite value
�the Zeeman energy� from the Fermi level, Mott’s formula
cannot be used to calculate the thermopower coefficient18

straight away. Evaluation of electrical current j
= �e /3��d	���++�−�=�E+��T for the limit of large spin
from solution of Eq. �5� yields
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Here, the factor f�x�=x2ex / �ex−1�2, x=�B /kT, takes into ac-
count the availability of thermal electrons to transfer energy
	−	�=�B when impurity changes the spin state and is spe-
cific for the case S�1.19 In the above mean free path scat-
tering times are defined in a completely polarized sample,

�↑�↓�
−1 =

2�nc�


�U2 + J2S�S + 1� ± 2UJS� ,

�8�

�s
−1 =

4�nc�


J2S .

Having expressed both the conductivity � �which deter-
mines the MR in a metal embedded with FmnC’s� and � in
terms of the degree of polarization of FmnCs �lz	, we can
relate the MTP, �c=−� /�, caused by the electron spin-flip
scattering resulting in the e-h asymmetry to the MR coeffi-
cient,

�c�B� =
k

e

�s
−1

�↑
−1 − �↓

−1

��B�
1 + ��B�

f��B

kT
� . �9�

The magnetic field dependence of MTP implicit in the above
result has two scales in it. First, at a low magnetic field
where the polarization of clusters develops, the MTP is pro-
portional to the MR and saturates together with ��B� at the
field, where B*
kT /S� and f��B /kT�1�1. Then, at a
much higher field range, B1
kT /�, the MTP gets sup-
pressed and dies away. Also, the MR effect in the experimen-
tally studied metallic structures embedded with ferromag-
netic clusters is weak, ��0.1, so that in the field range B1

�kT /�, we can relate the GMR and MTP effects to each
other as in Eq. �1�.

Bending of electron trajectories by a magnetic field gen-
erates the Hall contribution to the electric current. Thus the
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conductivities � and � in the definition of j before Eq. �6�
become tensors. The off-diagonal components of �̂ describe
the Hall effect, RH=Ey /Bjx. Its dependence on the degree of
polarization �lz	 is similar to that of the diagonal component
of resistivity in Eq. �2�,

RH =
3

2vF
2�emc

�1 − ��B�� , �10�

where c is the velocity of light. The off-diagonal components
of � describe the Nernst effect, N=Ey /B�xT. Its dependence
on the degree of polarization is similar to that of the ther-
mopower coefficient in Eq. �9�,

N =
8k

mc

��↑
−1 − �↑

−1��s
−1�lz	2f��B/kT�

��↑
−1 + �↑

−1�3�1 + ��B��2 . �11�

In both results we assumed ���↑
−1+�↓

−1�−1�1,20 �=eB /mc is
a cyclotron frequency.

In conclusion, we demonstrated that in the diffusive re-
gime giant MTP is the result of interplay between an
electron-hole asymmetric contribution towards the momen-
tum relaxation of carriers in a metal caused by spin-flip pro-
cesses involving polarized magnetic scatterers and a spin-
dependent elastic scattering responsible for the GMR effect.
In this case the giant MTP is proportional to the GMR for
small values of GMR which gives an interpretation of ex-
periments in Refs. 7–12 and both are proportional to the
square of the sample magnetization.
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