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The preliminary results of an investigation of nonlinear second sound waves

in a high quality resonator filled with superfluid 4He are presented and dis-

cussed. It is found that, for a sufficiently strong periodic driving force, a

cascade of second sound waves is formed at harmonics of the driving fre-

quency over the extremely wide range 1–100kHz. It can be described by a

power law Aω = const × ω−m, where the scaling index m ≈ 1. These ob-

servations can be attributed to the formation of a Kolmogorov-like turbulent

cascade in the system of second sound waves, accompanied by a directed en-

ergy flux through the frequency scales. It manifests itself as a limitation of

the amplitude of the standing waves, a distortion in the shape of the ini-

tially harmonic waves, and a reduction of the effective quality factor Q of

the resonator.

PACS: 67.40.Pm, 67.60.Fp

1. INTRODUCTION

The stationary distribution of interacting waves in an incompressible
liquid was first described theoretically more than sixty years ago1. During
the last few decades nonlinear wave dynamics and wave turbulence have be-
came topics of intensive theoretical investigation under a variety of different
conditions2–5. Theoretical models have been developed to describe diverse
manifestations of wave turbulence in physics, including waves on the sur-
faces of conventional and quantum liquids2,6,7, nonlinear waves in superfluid
helium8, phonon turbulence in perfect crystals9, turbulence in plasmas10,
and turbulence in helium gas flow at high Reynolds numbers11.

In this paper we present and discuss some preliminary results of our on-
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going investigations of acoustic turbulence in a system of nonlinear second
sound waves in a high-quality resonator filled with superfluid 4He. Important
features of this system are its linear dispersion law for the wave spectrum
ωk = u20 k, the large nonlinear coefficient12 of the second sound velocity
u2(δT ) = u20+α2×δT as a function of its temperature excursions δT , and the
low dissipation in the second sound waves. The nonlinearity coefficient α2 of
roton second sound changes from −∞ at Tλ to a large positive value (α2 ≈ 2
K−1 at T = 1.5 K) within the experimentally convenient temperature range
1.5 < T < 2.17 K. Furthermore, α2 passes through zero at Tα = 1.88 K,
allowing us to identify unambiguously the effects of the nonlinearity. Thus,
at temperatures T 6= Tα, a propagating second sound pulse with δT ∼ 1 mK
transforms to a triangle with a shock (temperature discontinuity) formed at
the front of the pulse if T < Tα, or at the trailing edge of the pulse if T > Tα

at a distance ∼ 1 cm from the second sound generator13 e.g. a thin-film
heater).

For second sound waves in a high-Q resonator the amplitude of a stand-
ing wave should be Q times higher than the amplitude of the initial wave
generated by a heater, due to resonant amplification. Except at very small
driving amplitudes, therefore, we may expect a large Q to be associated with
the distortion of initially harmonic waves, and in the appearance of multiple
harmonics due to nonlinearity. At sufficiently high α2, this will occur even
for relatively small generator powers. We show below that this leads to the
formation of a Kolmogorov-like cascade of second sound standing waves over
the frequency range 1–100 kHz.

2. EXPERIMENTS

The resonator8,14 was formed from a cylindrical quartz tube length
L = 7 cm, diameter D = 1.5 cm, capped by a pair of parallel flat glass
plates that carried the bolometer and heater. The sensitivity of the Sn-Cu
bolometer15 lay in the range 1.2–2.6 V/K for temperatures T = 1.79−2.08 K,
and could be shifted to its optimal sensitivity by an external magnetic field.
The bolometer signal was amplified, digitized by an analog-to-digital con-
verter, and subsequently analyzed. The second sound waves were generated
by a heater connected to a sinewave generator. The frequency fd of the tem-
perature waves from the heater (at twice the generator frequency fg) could
be varied within the range 50 Hz–50 kHz. The ac heat flux radiated by the
heater lay in the range 1 < W < 50 mW/cm2.

In a linear approximation the resonant frequency for longitudinal modes
in a resonator can be written as f(p) = 1/2 × c20 × p/L, where p ≥ 1 is the
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Fig. 1. The second sound amplitude (temperature variation AB, in arbitrary
units) in the resonator at the 11th resonance, fd = 1478 Hz, as a function
of applied voltage from the sinewave generator. Note that parts a) and b)
have different ordinate scales. The temperature was T = 1.767 K, i.e. the
nonlinear coefficient was positive. The highest amplitudes δT correspond to
∼ 5 mK. The arrow indicates the critical heat flux density Wc for generation
of a cascade of high frequency harmonics.

number of a resonant mode. The Q-factor of the resonator for resonant
modes p ≥ 9 lies in the range 1000 < Q < 7000. At sufficiently small W the
amplitude AB ∝ δT of the standing wave should be given by

AB ∝ W ∝ U2
g

where Ug is the voltage of the sinusoidal wave applied to the heater.
This relationship was indeed observed for small enough applied signals

(W < 5 mW/cm2), as shown in Fig. 1b. Increase of the excitation above
∼ 5 mW/cm2 led to deviations from the line

√
AB ∝ Ug, and the results are

then better described by AB ∝ Ug (Fig. 1a). Attenuation of second sound
waves by quantized vortexes created by the second sound heat flux can be
shown to be small under the conditions of our measurements (heat flux den-
sity W < 50 mW/cm2). Thus nonlinearity and viscous attenuation of sound
play central roles in the dynamics of waves in the high-Q resonator. The
leak of energy away from the driving frequency is accompanied by visible
deformation of the initially sinusoidal temperature wave, due to the non-
linearity. It is this steepening of the harmonic wave that accounts for the
multiple harmonics formed in its spectrum (Fig. 2) and for the transforma-
tion of energy from fd to higher f . For larger W > Wc, the observed strong
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Fig. 2. Formation of high frequency harmonics with increasing the ac voltage
UG applied to the heater for T = 1.767 K, driving at the 11th resonant mode.
The arrows indicate the second harmonic of the driving frequency (i.e. the
22nd resonant mode).

deviation of the amplitude from a linear dependence on the drive can thus
be connected to the cascade generation of high frequency harmonics. The
voltage Ug = 1.63 V corresponds to W = Wc in Fig. 1.

Fig. 3 shows a typical spectrum of second sound standing waves observed
at W ≈ 12 mW/cm2 at T = 2.08 K. The full line corresponds to a power-
law dependence of the peak height Af ∝ f−m, where m = 1.6. It follows
from theoretical analysis4 and numerical estimation16 that the exponent m
for developed acoustic turbulence (with a Kolmogorov-like cascade) should
be close to unity. Our experimental data for the fully developed cascade,
obtained at different temperatures and driving frequencies, yields a power-
law dependence with m = 1.5 ± 0.3.

In measurements at higher resonant modes we were able to observe the
effect of the high frequency edge of Kolmogorov’s spectrum as an abrupt
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Fig. 3. Typical power spectra of second sound standing waves in the res-
onator for a heat flux density of 12 mW/cm2 , T = 2.08 K, α2 is negative,
31st resonance, fd = 3166 Hz

change of slope on double-log scales at frequencies above fb ∼ 30 kHz.
Plotted on a log-linear scale (lower part of Fig. 3) the onset of dissipative
processes evidently occurs near 20 kHz and can be described in terms of
damping within the system of harmonics: A ∼ exp(−0.2 n), for n ≥ 6, where
n is number of the harmonic. The energy dissipation may be connected
with the finite viscosity of helium at wavelengths shorter than l ∼ c20/fb ∼
4 × 10−4 m, i.e. a few hundred microns.

3. CONCLUSIONS

By investigation of large-amplitude second sound in a high-Q resonator
we have shown that the standing wave system exhibits a nonequlibrium
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stationary energy distribution characterised by linear dispersion. We infer
that, for T 6= Tα, fully-developed acoustic turbulence (a Kolmogorov-like
cascade) can be formed, with energy flowing continuously from the lower
(driving) frequency domain to the high frequency (damping) domain.
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