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Abstract— In this paper a new method for training single-
model and multi-model fuzzy classifiers incrementally and adap-
tively is proposed, which is called FLEXFIS-Class. The evolving
scheme for the single-model case exploits a conventional zero-
order fuzzy classification model architecture with Gaussian fuzzy
sets in the rules antecedents, crisp class labels in the rule
consequents and rule weights standing for confidence values in
the class labels. In the multi-model case FLEXFIS-Class exploits
the idea of regression by an indicator matrix to evolve a Takagi-
Sugeno fuzzy model for each separate class and combines the
single models’ predictions to a final classification statement. The
paper includes a technique for increasing the prediction quality,
whenever a drift in a data stream occurs. An empirical analysis
will be given based on an online, adaptive image classification
framework, where images showing production items should be
classified into good or bad ones. This analysis will include the
comparison of evolving single- and multi-model fuzzy classifiers
with conventional batch modelling approaches with respect to
achieved prediction accuracy on new online data. It will also
be shown that multi-model architecture can outperform conven-
tional single-model architecture (’classical’ fuzzy classification
models) for all data sets with respect to prediction accuracy.

Index Terms— evolving fuzzy classifiers, single- and multi-
model architecture, incremental training, regression by indicator
matrix, process safety, data drift, image classification framework

I. INTRODUCTION

In the contemporary industrial systems data-driven fuzzy
classifiers are applied for decision making [1], fault detection
or image classification tasks [2] quite often. The reason is
not only a high predictive quality [3], which can be achieved
when applying these types of classifiers, but also the good
transparency in the form of linguistic rules that shows under-
standable dependencies between the features [4]. This is an
essential point e.g. for finding reasons of a faulty system state.
Furthermore, confidence values for models’ decisions can be
calculated easily based on fulfillment degrees of the rules.
These confidence values usually support the operators, as they
point out the trustworthiness of the classifier’s decisions. In
case when the data is recorded online with a high frequency,
the training of fuzzy classifiers has to be carried out in an
incremental and evolving manner on a sample-per-sample
basis, because a complete rebuilding of the classifier with
all the recorded data contradicts with the online demands.
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Moreover, some operators may overrule a decision of the
classifier during online operation. Another reason that requires
incremental and evolving learning techniques is the usually
huge size of the data bases.

A number of papers exist that consider fuzzy rule-based
classifiers [5] [6]. To our best knowledge, the evolving fuzzy
and neuro-fuzzy modelling techniques such as SAFIS [7],
DENFIS [8], FLEXFIS [9] etc. has not yet been applied
to classification. The only incremental and evolving fuzzy
approaches for classification that we are aware of are [10] and
[11]. The first one introduces the eClass method which applies
all-in-one fuzzy rule-base which contains sub-rule-bases per
class and uses zero order (singleton) consequents. This concept
is taken further in [11] where a first order multi-input-multi-
output (MIMO) Takagi-Sugeno non-linear model is used.

In this paper a different approach is proposed, FLEXFIS-
Class, which uses both, multi-model architecture based on
the idea of regression by an indicator matrix (FLEXFIS-
Class MM) and single-model architecture (’classical’ fuzzy
classification models) (FLEXFIS-Class SM). Both variants of
FLEXFIS-Class are basically deduced from FLEXFIS [9],
which serves as an evolving method for building up fuzzy
regression models fully automatically and adaptively with new
incoming data points (from measurement signals, data streams
etc.). For both model architectures, the evolving mechanism
for the rule antecedent parts takes place in the clusters space
by using an evolving version of vector quantization [12]
(the original VQ in [13]), including cluster evolution, an
alternative winner selection strategy and updates of cluster
surfaces synchronously to their centres. In the single-model
case the evolution of the consequents (=single class labels)
and rule weights is based on a plurality choice and relative
frequency of classes in the different clusters (rules), which
both can be updated sample-wise (Section II). In the multi-
model case one Takagi-Sugeno fuzzy regression model [14] is
trained for each separate class and their continuous outputs are
aggregated to an overall classification statements (Section III).
The incremental training of the consequents in the TS models
(hyper-planes) is carried out by exploiting recursive weighted
least squares [15] (also applied for consequent adaptation in
[16]). Improving the fuzzy classifiers towards approximation
accuracy (dealing with drifts in online data streams [17]) is
described in Section IV. The paper is concluded in Section
V with an evaluation of the proposed approaches within an
online adaptive image classification framework and based
on a pen-digit recognition data set from the UCI-repository.
This evaluation includes a comparison of the impact of the
two model architectures on prediction accuracy and model
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complexity as well as a comparison with other well-known
batch modelling methods.

II. FLEXFIS-CLASS USING (CLASSICAL)
SINGLE-MODEL ARCHITECTURE

For the single-model architecture case we exploit the ’clas-
sical’ architecture for fuzzy classifiers [5] [6], where the ith
rule is defined in the following way:

Rulei : IF x1 IS µi1 AND...AND xp IS µip THEN yi = ci

(1)

where p is the dimensionality of the input space, µi1, ..., µip

are the p antecedent fuzzy sets and ci is the crisp output class
label from the set {1, ...,K} with K the number of classes.
Now, for each new incoming sample ~x, the final crisp class
label is obtained by taking the class label of that rule with the
highest activation degree, i.e. by calculating

y = ci∗ with i∗ = argmax1≤i≤C µi (2)

with C the number of rules and µi the activation degree of
rule i defined by (using product t-norm):

µi =
p∏

i=1

µij(xj)

Furthermore, we introduce K rule weights wi1, ..., wiK ,
which denote the confidence of the ith rule in all the K
classes, whereas the highest weight corresponds to the output
class ci. Note that confidence values are of great help for a
better interpretation of the model’s final output and quite often
demanded by operators in an industrial system, especially in
case of incorrect model’s feedback. Based on the rule weights
an overall confidence conf of the overall output class label
y = k ∈ {1, ...,K} is calculated through the following
weighted average:

conf =
∑C

i=1 wikµi∑C
i=1 µi

(3)

Note that in case of a two-class classification task, the single-
model architecture can be made even slimer, as the rule
weights can be directly encoded in the consequent part of
the rules, serving as continuous output values between 0 =
class#1 and 1 = class#2. If for example a rule has consequent
value of 0.6, this means that it is confident in class#2 with a
degree of 0.6 and in class#1 with a degree of 1− 0.6 = 0.4.
Consequently, if the value of the rule with highest activation
degree is greater or equal 0.5 the current data sample belongs
to class#2, otherwise to class#1.

The adaptive and evolving training procedure for the rules’
antecedent parts is done with the help of an incremental
and evolving clustering procedure that is modified, evolving
version of VQ [12] (eVQ), whose algorithm is summarised
in the flowchart of Figure 1 (assuming normalized features).
After each new incoming sample the updated/generated cluster
in the high-dimensional data space is projected onto the axes
to form one-dimensional Gaussian fuzzy sets, i.e. µij(xj) =

e
− 1

2
(xj−cij)2

σ2
ij . The fuzzy sets projected from one cluster on

Fig. 1. Workflow of evolving version of vector quantization [12] (assuming
normalized features)

each axis form the antecedent part of one rule. In this sense,
antecedent parts are permanently updated and new rules and
fuzzy sets are born, whenever a new cluster is born according
to Step 7a in Figure 1. Please note that the class labels are
included during the whole learning procedure. The crisp and
unique class label in the consequent part of the ith rule is
elicited by counting the relative proportions of all the samples
which formed the corresponding cluster to all the K classes
and taking the maximal value of these proportions:

ci =
K

max
k=1

(wik) =
K

max
k=1

(
nik

ni
) (4)

These values can be updated by counting ni, the number
of samples, which formed the antecedent part of the ith
rule and nik the number of samples forming the antecedent
part of the ith rule and falling into class k. The K rule
weights wi1, ..., wiK are also obtained through (4). Combining
evolving antecedent and consequent learning yields FLEXFIS-
Class with single-model architecture, FLEXFIS-Class SM:

Algorithm 1: FLEXFIS-CLASS SM
1) Collect N data points sufficient for the actual dimension-

ality of the problem, estimate the ranges of all features
from these N points.

2) Generate an initial fuzzy classifier with these N points
by applying eVQ as in Fig. 1 (with features normalized
by their ranges) and eliciting the consequent labels as
in (4) for all clusters (=rules).

3) Take the next incoming sample ~x, elicit its class label,
say k; either the data is pre-labelled or it can be for
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instance labelled by calculating (2) when using all the
fuzzy rules obtained so far and obtaining feedback from
an operator if the class output is correct.

4) Proceed through evolving VQ as demonstrated in Figure
1 from Step 3 on without going back to Step 2 (with
features normalized by their ranges).

5) Project updated or newly generated cluster onto the input
feature axes, forming the complete antecedent part of
the corresponding rule. Hereby, the jth dimension of
the cluster prototype and width is assigned to the center
and width of the Gaussian fuzzy set in the jth premise
part.

6) If a new rule is born, set ni = 1 and nik = 1.
7) Else Update the corresponding consequent label and

confidence values in all K classes by setting ni = ni+1
and nik = nik + 1 and using (4).

8) Update ranges of features
9) If new incoming data points are still available then goto

Step 1; otherwise stop.

III. FLEXFIS-CLASS USING MULTI-MODEL
ARCHITECTURE

FLEXFIS-Class MM is based on multiple Takagi-Sugeno
fuzzy regression models [14] using a K indicator matrices for
the K classes which are generated from the original classifica-
tion matrix, containing different features in different columns
and a label entry in the last column. This is done for the ith
matrix by setting each label entry to 1, if the corresponding
row belongs to the ith class, otherwise it is set to 0. The
feature columns remain the same for all indicator matrices.
In this sense, it is guaranteed that the regression surface is
forced towards 1 in the region of those samples belonging to
its corresponding class and otherwise it approaches 0.

The overall output from the fuzzy classifier is calculated by
inferencing a new multi-dimensional sample ~x through the K
Takagi-Sugeno models (fuzzy basis function networks [18], as
a product t-norm in connection with Gaussian fuzzy sets):

f̂m(~x) =
C∑

i=1

liΨi(~x) m = 1, ...,K (5)

with the normalized membership functions

Ψi(~x) =
e
− 1

2

∑p
j=1

(xj−cij)2

σ2
ij∑C

k=1 e
− 1

2

∑p
j=1

(xj−ckj)2

σ2
kj

(6)

and consequent functions

li = wi0 + wi1x1 + wi2x2 + ... + wipxp (7)

and then eliciting that model producing the maximal output
and taking the corresponding class as label response, hence

y = class(~x) = argmaxm=1,...,K f̂m(~x) (8)

In [19] it is maintained that regression by an indicator
matrix only works well on two-class problems (0/1) and can
have problems with multi-class problems, as then a complete
masking of one class by two or more others may happen.

However, opposed to linear regression by an indicator ma-
trix [20], the TS fuzzy models are non-linear, i.e. not only
the (locally linear) rule consequents but also the non-linear
antecedent parts are trained based on the indicator matrix
information, i.e. by taking the label column as the (regressing)
target variable. In this sense, the approximation behaviour is
non-linear which forces the surface of a model fk going to 0
more rapidly in regions apart from class k samples as in the
case of inflexible linear hyper-planes, therefore the masking
is much weaker than in the pure linear case. In Section V-
B an empirical verification of this point will be given based
on a high-dimensional data set containing 10 classes, where
the classification accuracy obtained by conventional batch
modelling approaches (which do not suffer by the masking
problem) can be approximated with FLEXFIS-Class MM quite
well, whereas linear regression by an indicator matrix is far
behind. An overall confidence value is elicited by normalizing
the maximal output value by the sum of the output values from
all K models.

Now the problem remains how to generate the K Takagi-
Sugeno fuzzy models in incremental and evolving manner.
This is done here with the original version of FLEXFIS [9],
extended in [12] (FLEXFIS-MOD), compared with eTS in [21].
The basics of this algorithm are:

• It applies eVQ [12] for incremental clustering, see Figure
1

• The updated cluster centers and surfaces are projected
onto the axes after each incremental learning step in order
to adapt the fuzzy sets and rules.

• It uses recursive local learning by exploiting recursive
weighted least squares [15], [16] for the linear consequent
parameters.

The FLEXFIS-Class MM algorithm for building an evolving
multi-model fuzzy classifier can be summarized in the follow-
ing pseudo-code:

Algorithm 2: FLEXFIS-CLASS MM
1) Collect N data points sufficient for the actual dimen-

sionality of the problem, estimate ranges of all features
from the N points.

2) Generate K (initial) TS fuzzy models for K classes
present with N data points by using batch mode FLEX-
FIS [9], i.e. eVQ as in Figure 1 (with normalized
features by their ranges) and axis-projection first and
least squares afterwards.

3) Take the next incoming data point ~x; elicit its class label,
say k; either the data is pre-labelled or it can be for
instance labelled by calculating (2) when using all the
fuzzy rules obtained so far and obtaining feedback from
an operator if the class output is correct.

4) Update ranges of features
5) Update the kth TS fuzzy model by taking y = 1 as

response (target) value and using FLEXFIS(-MOD) [9]
[12]

6) Update all other TS fuzzy models by taking y = 0 as
response (target) value and using FLEXFIS(-MOD) [9]
[12]

7) If new incoming data points are still available then goto
365



Step 3; otherwise stop.

IV. TRACKING DRIFT IN THE DATA

More accuracy can be achieved for specific data streams,
whenever a drift in the data appears after some time. For
achieving a smooth tracking of a drift in the data, an expo-
nential forgetting of older data points over time is applied. In
FLEXFIS-Class MM this forgetting takes place exclusively in
the linear consequent parameters of all the TS fuzzy models
synchronously. This can be achieved by introducing a so-called
forgetting factor λ and incorporating them into the recursive
weighted least squares formula [22] (here for the ith rule of
any model):

~̂wi(k + 1) = ~̂wi(k) + γ(k)(y(k + 1)− ~rT (k + 1) ~̂wi(k)) (9)

γ(k) =
Pi(k)~r(k + 1)

λ
Ψi(~x(k+1)) + ~rT (k + 1)Pi(k)~r(k + 1)

(10)

Pi(k + 1) = (I − γ(k)~rT (k + 1))Pi(k)
1
λ

(11)

with Pi(k) = (Ri(k)T Qi(k)Ri(k))−1 the inverse weighted
Hesse matrix and ~r(k + 1) = [1 x1(k + 1) x2(k +
1) . . . xp(k +1)]T the regressor values of the (k +1)th data
point. Note that in the case of λ = 1 no forgetting takes
place, while with decreasing λ the forgetting gets stronger
and stronger. In this way, drifts in the trajectory of the TS
fuzzy regression models can be tracked [21], which changes
the overall output of the fuzzy classifier more rapidly. For
recognizing a drift in the data the cluster ageing strategy
as introduced in [23] and further developed in [24] can be
exploited, as then slopes of the rule age curves tend to increase.
A verification example for this point will be demonstrated in
Section V-A.

When using single-model architecture the forgetting of the
consequent class labels can be achieved by using a window
with fixed size, over which ni and nik are counted. Depending
on the window size, the forgetting is faster or slower. However,
this requires a batch storage of data samples in a buffer with
the same size as the chosen window. A better alternative is to
fix a value ε and add this for each counting cycle, i.e. after N
samples belonging to the ith rule we get

ni =
N∑

i=1

(1 + (i− 1)ε) (12)

The same is carried out for nik. Depending on the size of ε
older points are forgotten faster or slower. For instance, when
setting ε = 1 and the first three points belonging to the ith
cluster (=rule) fall into class#1 and the next two into class#2,
then we get ni = 1+2+3+4+5 = 15 and ni1 = 1+2+3 = 6
while ni2 = 4 + 5 = 9, hence ci = 2, as the last two data
samples count more than the first three.

V. APPLICATION EXAMPLES

In this section an evaluation of the two evolving classi-
fication approaches, FLEXFIS-Class SM and FLEXFIS-Class
MM, within two applications is demonstrated: a generic online
adaptive image classification framework (from an EU-project)

TABLE I
COMPARISON OF FLEXFIS-Class SM AND MM WITH BATCH CLASSIFIERS

WHEN APPLYING THEM ONTO CD IMPRINT DATA

Method MC Rate Agg.
/ No. of Rules
/ No. of Inputs
/ Training Time

FLEXFIS-Class SM 16.77% / 39 / 17 / 1.98s
FLEXFIS-Class MM 9.02% / 62 / 17 / 3.56s
FLEXFIS-Class MM + forg. 8.76% / 62 / 17 / 3.56s
CART [25] 8.76%
Probabilistic NN [26] 9.54%

and recognition of pen-based hand-written digits. This eval-
uation includes tests on the accuracy and complexity of the
evolved classifiers. Furthermore, the impact on the accuracy
of forgetting consequent parameters in the multi-model case
when a drift in the data set is observed, will be pointed out.

A. Image Classification Framework

In this section an application example is given, which in-
cludes an automatically self-reconfigurable and adaptive fault
detection framework for images which classifies each image
as good or bad, and evolves the classifier upon operator’s
feedback and the data. The images are taken from an online
production process with a high frequency with the aim to
supervise the system, as they may show errors in a production
process. This framework including pre-processing, segmenta-
tion and classification is shown in Fig. 2.

In principle, each type of image may be processed through
the classification framework as shown in Fig. 2. The only
assumption is that a master image is available: the purpose
is to generate deviation images by subtracting newly recorded
images from the master one in order to be able to classify
the image into good or bad (depending on the structure and
characteristics of the deviation pixels). For the evaluation of
our approaches we applied image data from a CD-imprint
production process, where faults due to weak colours, wrong
palettes etc. should be detected within a process frequency of
about one Hz. The data stream comprises 1164 images that
were recorded one by one. Out of these images 776 served as
training samples for building up the classification models in
an evolving manner and the remaining 388 samples (test data)
were used only for classification only (without an adaptation
of the classification models, in order to be able to compare
with the batch modelling approaches). 17 aggregated features
were extracted, describing the distribution, density, shape etc.
of the pixel fragments in the deviation images. The miss-
classification rates on this test data set are demonstrated in
Table I. From this table it can be recognized, that FLEXFIS-
Class MM can compete with two well-known batch modelling
methods, the decision tree-based classification method CART
with optimal pruning strategy [25] and possibilistic neural
networks [26], with respect to classification accuracy. By
taking into account that the two renowned approaches access
the whole data set information at once, the applicability
and worthiness of FLEXFIS-Class MM should be clearly
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Fig. 2. Classification framework for classifying images into good and bad

underlined. From this table it is also clear that FLEXFIS-
Class MM significantly outperforms FLEXFIS-Class SM in
terms of accuracy. This is because Takagi-Sugeno models offer
more flexibility, when regressing on the indicator matrix, than
classical classification models which strongly depend on the
incremental clustering procedure for evolving the antecedent
parts of the rules. Regarding time complexity, FLEXFIS-Class
SM is superior to FLEXFIS-Class MM. This is because in
FLEXFIS-Class MM two TS fuzzy models need to be updated
synchronously (one for class ’bad’, one for class ’good’), there
are more consequent parameters to update (p+1 per rule versus
1 per rule in case of FLEXFIS-Class SM) and the adaptation
of the consequent parameters itself is much more complex, as
a parameter vector and an inverse matrix needs to be updated,
whereas in FLEXFIS-Class SM updating is done by simple
counting. However, both can cope with the on-line demand
of this system, as the image data is usually loaded with a
frequency of about 1 Hz, whereas the training time in Table I
is listed for the whole 776 training data samples.

The evolution of the accuracy over time was examined,
when building up the classifier with FLEXFIS-Class MM step
by step. Therefore, the fuzzy classification model was trained
in incremental manner with 100, 200, 300, ..., 776 (all) data
samples and the development of the miss-classification rate
tracked, see Figure 3. One can see that the classifier improves
with the number of samples, which shows the consistency
with respect to the amount of information provided by the
operator. Furthermore, cluster ageing as introduced in [23] and
[24] was applied for detecting a potential drift in the data set
(indicating that one or more operating conditions changed).
This can be used as a trigger for exponential forgetting of
older data points in the linear consequent adaptation within
FLEXFIS-Class MM (see Section IV). In fact, it turned out
that a small drift occurred for the last 80 data samples (as the
slope of the age curves tend to increase), hence a forgetting
with λ = 0.99 was initiated for the last 80 points. The results
are listed in Row 3 of Table I; it can be seen that a some
decrease of the miss-classification rate can be achieved. The
complexity and computational performance of the classifier
are practically the same without forgetting, (only a single
parameter value is included in the weighted RLS update for
linear consequent parameters, which does not affect the rule
evolution and adaptation part). It should be also mentioned

Fig. 3. Performance of FLEXFIS-Class MM on CD print data with increasing
number of (online) training samples

that a forgetting applied on the complete second half of the
training data set worsened the miss-classification rates for both
data sets. This indicates that a correct detection of a drift to
trigger a forgetting is essential, when intending to improve the
accuracy of the fuzzy classifier.

B. Pen-Based Recognition of Handwritten Digits

This data set from the UCI repository1 was created by
collecting 250 samples from 44 writers, which was generated
with the use of a pressure sensitive tablet with an integrated
LCD display and a cordless stylus. The data set contains
16 features, 7494 training data samples and 3498 test data
samples, containing ten different classes (for the ten digits)
which are almost equally distributed in both, training and test
data set. Principally, this data set is an off-line batch data
set. However, we simulate it as an on-line pseudo-stream by
performing a loading of data samples and evolve the fuzzy
classifiers with each new incoming point separately.

Table II shows the results when applying the two model
architectures for this data set. The conclusion is similar to
that one for the image data set: FLEXFIS-Class SM is more
transparent and less accurate, while FLEXFIS-Class MM pro-
duced ten TS fuzzy models with in sum 61 rules in total, which

1http://www.ics.uci.edu/ mlearn/MLRepository.html
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TABLE II
COMPARISON OF EVOLVING VARIANTS TO WELL-KNOWN BATCH

CLASSIFICATION METHODS ON HANDWRITTEN DIGITS DATA

Method Accuracy
/ No. of Rules / No. of Rules
FLEXFIS-Class SM 88.77% / 16
FLEXFIS-Class MM 96.23% / 61
CART [25] 97.68%
k-NN 97.40%
Lin. regr. with indicator mat. 82.0%

is hardly interpretable, but could achieve an accuracy of over
96% which comes quite close to the results of the decision
tree classifier CART [25] as well as of k-NN. Taking into
account that the results for CART and k-NN were produced
with the best parameter grid search procedure (for CART
optimal pruning strategy, for k-NN the parameter k was varied
from 1 to 20) while FLEXFIS-Class MM was started with the
default parameter setting, it underlines even more the strength
of FLEXFIS-Class MM on this data set. Compared to linear
regression by an indicator matrix, which usually suffers from
the masking problem when applied to a multi-classification
task, FLEXFIS-Class MM can significantly outperform this
method.

VI. CONCLUSION AND OUTLOOK

Two variants for evolving fuzzy classification schemes
were presented, FLEXFIS-Class SM based on single-model
architecture and FLEXFIS-Class MM based on multi-model
architecture. The key issues of their algorithms were pointed
out in detail in Sections II and III, whereas a concept for
reacting on drifts in the data was demonstrated in Section IV,
improving the accuracy of the model as shown in Section V-A.
In the evaluation section two applications were described: i)
classifying images into good or bad; ii) pen-based recognition
of handwritten digits were described. Both methods produced
reliable results; while FLEXFIS-Class SM produces a slim
and transparent fuzzy model (with low number of rules and
unique models), FLEXFIS-Class MM generates more complex
models, but could achieve a higher accuracy, especially for
the CD imprint data set. Furthermore, a reliable connection of
cluster/rule ageing with forgetting of consequent parameters
(as done in FLEXFIS-Class MM) could be achieved, triggering
a benefit in terms of a better accuracy of the resulting classifier.
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