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Abstract

Let G b e a matrix function of type mxn and suppose that G is expressible as the
sum of an i/00 function and a continuous function on the unit circle. Suppose also
that the (k — l)th singular value of the Hankel operator with symbol G is greater than
the kth singular value. Then there is a unique superoptimal approximant to G in H^:
that is, there is a unique matrix function Q having at most k poles in the open unit
disc which minimizes sx(G — Q) or, in other words, which minimizes the sequence

(8?(G-Q),8?(G-Q),sf(G-Q),...)

with respect to the lexicographic ordering, where

8?(F) =BUV 8}{F{Z))
zsT

and Sj(.) denotes the jth singular value of a matrix. This result is due to the present
authors [PY1] in the case k = 0 (when the hypothesis on the Hankel singular values
is vacuous) and to S. Treil[T2] in general. In this paper we give a proof of uniqueness
by a diagonalization argument, a high level algorithm for the computation of the
superoptimal approximant and a recursive parametrization of the set of all optimal
solutions of a matrix Nehari-Takagi problem.

Introduction

The celebrated results of Adamyan, Arov and Krein show how to approximate
scalar functions on the circle by meromorphic functions in the open unit disc D with
a prescribed number of poles. These results, besides being of mathematical interest,
have made an impact on some engineering questions, notably the problem of
constructing good low-order models of a given linear system (see the tutorial papers
[G2, Y3]). Because most engineering systems have several inputs and outputs, they
are described by matrix-valued functions, and so generalizations of the results of
[AAK] to such functions are needed. There have been many papers carrying out such
generalizations, starting with [KL]. There are often significant new complications in
the matrix case: in particular, this is so for the question of uniqueness. Is the best
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approximation to a given matrix function G on T by an element QeH^ unique?
HereH^y is the set of meromorphic matrix-valued functions on D, bounded on T and
having at most k poles in D (a fuller definition is given below). For an affirmative
answer one needs a more refined criterion of optimality than the simple minimization
of the 2v°° norm. A natural approach is to take account of all the singular values of
the error function matrices G(z) — Q(z): this leads to the notion of superoptimality. In
[PY1] we carried out a thorough investigation of superoptimal approximations for
the case & = 0 — that is, when G is to be approximated by a function Q bounded and
analytic in D (the Nehari problem). The key result is that the superoptimal
approximant is indeed unique as long as G is expressible as the sum of a continuous
function on T and a function bounded and analytic in D. Furthermore, we obtained
detailed structural information about the superoptimal error G — Q. Briefly this error
can be diagonalized by certain unitary-valued functions to give a diagonal matrix
function whose diagonal entries each have constant modulus and negative winding
number.

For applications to the problem of model reduction it is the case k > 0 which is
important, and so the question naturally arises as to whether the uniqueness
statement remains valid when k > 0. A simple example shows that it does not, but
S. Treil [T2] showed that uniqueness does hold subject to a simple condition on the
Hankel singular values of G. His method of proof is entirely different from that of
[PY1]: he makes interesting and original use of matricial weighting functions, which
amounts to a kind of implicit diagonalization. His method is efficient for numerous
purposes, but it is not clear how it can be used for the construction of the
superoptimal approximant. The method of [PY1] proceeds via explicit diag-
onalization and does yield an algorithm, as well as detailed structural information.

In this paper we extend our method to the case k > 0. We obtain a proof by
diagonalization of Treil's uniqueness result and a high level algorithm for the
construction of the superoptimal approximant. We also obtain a parametrization of
all optimal solutions of the matrix Nehari—Takagi problem which is of independent
interest.

The 'continuous time' analogues of the present results (relating to the
approximation of functions on the imaginary axis by functions meromorphic in the
right half plane) are given in [PY2].

1. The superoptimal Nehari—Takagi problem

The problem of finding QeH^ which is closest to a given L00 function G on the unit
circle with respect to the Z°°-norm is sometimes called the Nehari-Takagi problem
[BGR]. For matrix functions there is typically a high degree of non-uniqueness in
the solution, and the question arises as to whether there is a natural way of selecting
a 'very best' approximation. One idea is the superoptimal approximation, which is
easily grasped with the aid of the following example. Let

I t is easy to calculate with the aid of the familiar scalar theory of the Nehari—Takagi
problem (see, for example, [AAK] or [Y, chapter 16]) that the best approximation
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to g with respect to the L00 norm by functions with at most a single pole in the open
unit disc is the zero function. Now let

Then the distance from G to H^ is 1, and this distance is attained at every element
of the form

with any q e H^ of norm no greater than 1. Thus there is a whole £°° ball of optimal
solutions to the present approximation problem. The most natural of these to pick
is the one for which q = 0, and one might ask for a modification of the optimality
condition which would select this solution. One way to achieve this aim is to ask for
the Q among the optimal approximants which minimizes

def

s?(G-Q) = esssups1(G-g)(2)

since sf(G-Q) = \\q\\x

as long as the right-hand side is no greater than 1. This quantity is minimized
uniquely when q = 0.

Let us now formalize the above notions. We write Mm< n for the space of complex
m x n matrices with the usual operator norm (the largest singular value). We denote
by L"" the space of essentially bounded matrix functions on the unit circle with
essential supremum norm (when we need to emphasize that the functions are of type
mxnwe write Lco(Mm _„)). Thus, for GeL°°(Mmn),

\\G\\J=fmavv\\G(z)\\.

Hw (or Hco(Mm „)) denotes the space of bounded analytic matrix functions in the
open unit disc, with supremum norm. By Fatou's theorem, Hm(Mmrn) can be
isometrically identified with a subspace of Lco(Mm n). We denote by H^)(Mmn) or
simply Hfi.) the subset of Lco(ifm n) consisting of functions essentially bounded on the
unit circle, meromorphic on the open unit disc and having at most k poles there.
These poles are counted as follows. A finite Blaschke—Potapov product of degree k is
a function of the form

= U
o

z — a. 0

0 im-A

z — a9

IJ1 \\—a2z

Y 0 /
0 r z — a

m — 1 .

k

i-akz
0

k
0

uk,

where m e N, \a}\ < 1, 1 ̂  j ^ k, and U} is a constant mxm unitary matrix, 0 < j ^ k.
We say that GeL™ of type m x n has at most k poles in the open unit disc if G is
expressible on T in the form

G = O"1^

for some FeHx(Mm n) and some Blaschke-Potapov product O of degree k. We
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denote by C the space of continuous matrix functions on the unit circle. The singular
values of a matrix A are denoted by

and for GeL™ we write
def

sf(G) = ess sup s}(G(z)),

def

Of course the first term of this sequence is \\G\\X, and if G is of type m x n then at most
the first min(m,n) terms can be non-zero. We shall say that Q is a superoptimal
approximation to G in / / ^ if Q is an element of Hfy at which the sequence sco((r — Q)
attains its minimum with respect to the lexicographic ordering.

H ™ + C is the space of matrix functions on the unit circle expressible in the form
F + G with FeH^^eC. It was shown in [PY1] that if GeHx + C then there is a
unique superoptimal approximation to G in H$); and it is natural to hope that the
same will be true for //(°£} with positive k. I t was claimed in [Y2] that this conclusion
does hold in the case of rational G, but the following example shows it is not true.

Let

G(z) =

-1

z

0

o"
1

2 -

Then the lexicographic minimum of sx(G — Q) over
minimum is attained for either of the Hfo functions

is (1,0,0,...), and this

'o o
l

o -2 J

Q2(z) =
0

(or indeed for any function P/z with P a rank one orthogonal projection on C2).
However the conclusion does follow \isk{HG) < sk_1{HG), as was shown by Treil[T2].
We give an alternative proof using the diagonalization method of [PY1].

The starting point of most studies of the Nehari-Takagi problem is the theorem of
Adamyan, Arov and Krein which relates best//(") approximations to singular values
and vectors of Hankel operators. Let H2(Cn) denote the Hardy space of C"-valued
functions on the circle (see [He]). Corresponding to the given G we define the Hankel
operator

HH2(Cn)(H2(Cm))1

HGx = P_(Gx),

P_:L2(Cm)-+(H2(Cm))L

by

where

is the orthogonal projection operator. For GeH^ + C, HG is a compact operator.
There is a matrix version of the theorem of Adamyan, Arov and Krein (see [Tl])
which tells us that

inf \\G-Q\\x = sk{HG), (1)

the &th singular value or s-number of HG. The following simple fact is folklore.
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LEMMA 1. If GeH^ then HG has rank at most k.

Proof. We have G = <t>*F for some Blaschke-Potapov product O of degree k and
FeH™. Forareftf2)1,

from which it is clear that kerH£ r> <t>*(H2)L and hence that the co-kernel of # * is
contained in the fc-dimensional space (H2)1 Q<t>*(H2)L. Thus R% has rank ^ k.

LEMMA 2. Let <j>beannx 1 inner function. There exists a co-outer n x (n— 1) function
<j>c such that

def

unitary-valued, and all minors on the first column of O belong to

Here a function (peH"3 is inner if ̂ (z) is an isometry (i.e. 0(z)*0(z) is the identity)
for almost all zeJ. A function FeHco(Mm „) is outer ifFH2(Cn) is dense in H2(Cm).
F is co-outer if .FT, the transpose of F, is outer. A minor of <t> is the determinant of a
square submatrix of <t>; if the submatrix corresponds to rows ilt...,ip and columns,
j x , . . . ,jp where j1 = 1 then the minor is said to be on the first column of O.

For the proof see [PY, theorem 1-1]. At first sight the class of such <1> looks less
natural than the class of inner functions. However, it seems to be essential to use such
functions to obtain superoptimality results in the desired generality. There are
moreover unexpected other benefits, notably a simplification of the diagonalization
process.

THEOREM 1. Let GeH™ + C be an mxn matrix function and let k be a non-negative
integer. If either k = 0 or sk(HG) < S^^HQ) then there is a unique QeH^)(Mm n) such
that s™(G — Q) is a minimum with respect to the lexicographic ordering. For this Q the
singular values

Sj(G(z)-Q(z))

are constant a.e. on the unit circle for each j ^ 0.

Proof. Consider any QeH^ which is at minimal distance from G. From (1),

det

If sk = 0 then the rank of HG is at most k and hence GeHfij.y Thus the only Q which
minimizes \\G — Q\\m is G itself, and so the theorem holds in this case. Now
assume slc>0. Let veH2 be a unit singular vector of HG corresponding to sk. We
claim that

(G-Q)v=HGv.

In the case k — 0 this was established in [AAK]. Consider the case k > 0. Since HQ

has rank at most k, by Lemma 1, it follows from the definition of singular value that

On the other hand,
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and so \\HG-Q\\ = sk.

We can thus apply the following elementary observation (see [P, theorem 6-14]).

LEMMA 3. Let T be a bounded linear operator on Hilbert space and let k be a positive
integer. Suppose that sk_1(T) > sk(T) and that R is an operator of rank at most k such that
\\T—R\\ = sk(T). Then every singular vector of Tcorresponding to sk(T) is a maximizing
vector of T—R and is in keri?.

It follows that v is a maximizing vector of HG_Q, and so

«* = \WG-Q\\ = \\HG-Qv\\ = \\P_(G-Q)v\\ < \\(O-Q)v\\ ^ \\G-Q\\J\v\\ = sk.

Equality holds throughout, and so

\\P-{Q-Q)v\\ = \\(G-Q)v\\,

whence (G-Q)v = P_{G-Q)v = HG_Q v = HGv,

and our claim is established.
We wish to use v to block-diagonalize G — Q. Let S denote the class of all G — Q,

where QeH^ attains the infimum in (1). Write

to = sk(HG), w = t-lHGve(HY.

Then, v,lweH2 and we may perform inner-outer factorizations

v = Vfh, zw = wthx,

where vi,wi are inner column matrices and h, hx are scalar outer functions. The
Adamyan—Arov—Krein theorem gives us the further information that

^y^ l l c a.e.,

whence we may take hx = h. We thus have

Evth = to'ZWih

for every EeS. Let the scalar unimodular function u0 be defined by

«0 = zh/h. (2)
Then

Evt = towtuo (3)
for all EeS.

If n = 1 then vt is a non-zero scalar H2 function and we may divide through to
obtain the uniqueness result for the m x 1 case. By considering GT we may deduce
uniqueness and constancy of the singular values for the 1 x n case. Thus the result is
true if min (m, n) = 1. Now consider min (m, n) > 1 and suppose the result holds for
any lesser value of min (TO, n). By Lemma 2 there exist co-outer functions a,/? such
that

def def _

V=[Vi «], wT = [wt fi]

are unitary-valued and have the property that all minors on the first column belong
to Hx. Equation (3) can be expressed

EV[l 0 . . .0] T = W*[touo 0. . .0]T
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for all EsS, whence

• = K«o *]WEV

In view of the fact that \\E\\m = t0 and u0 has unit modulus a.e. the (1,2) block must
be identically zero, and so, for every Ee$ there exists FeL^ such that

(4)

F being of type (m— 1) x (n— 1). We now have to characterize the class of all F which
can occur for some EeS.

Let S denote the set of all G-Q with QeH^ such that W(G-Q) V is of the form
def

(4). Then S => S, and, for QeHfa, the error E = G-Q belongs to § if and only if

Ev = tow, w*E = tov*.

Fix some Ele<i, say E1 = G — Q1. Then

Qxv = Gv — tow, w*Q1 = w*G — tov*.

For any E = G — QeS we have

WEV = WEj F+ W^! V-QV). (5)
Suppose

Since W£F, Tf£x F have the same first column (cf. (4)), so do Q1 V and QV, say

G i F = [ C ^ i ] . QV=[C H]. (7)
Then (5) gives

The functions / / which can appear in (7) are precisely those HeLco(Mm n_1) satisfying
(i) [C H]eH?k)(Mm,n)V;

(\\\ W(H, — H)e\ and \ \+W(H1—H) has Lm norm at most t0.
L-̂  \mm-i.,n-l)l LJ lJ

We wish to find / / for which

(iii) sm(WEV) is minimized.

Now

and since WT = [wt ft], (iii) is equivalent (in the presence of (ii)) to the statement
that sx(F1 + ̂ *{H1-H)) is minimized.
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We now parametrize the H satisfying (i).

LEMMA 4. Let

V=[vt a]

be unitary-valued of type nxn with v{, a. inner and a co-outer. Let CeH^)(Mm: n) vf. Then
there exist KeHco(Mm n) and a Blaschke-Potapov product <t> of type mxm and degree
I ̂  k such that [C H\eH^.){Mm n) V if and only if

He&lKS+H^Wn^)). (8)

Proof. Pick a minimal inner m x m <1> such that OC'e//00^-. Let I be the degree of <J>.
Then I «c k. Pick a,nyKeHx{Mm x) such that OC = Kv{. Then the parametrization (8)
holds with these functions.

Suppose H is of the form (8): H = <S>*{Ka + ®*h) for some Blaschke-Potapov
product 0 of degree ^ k — l and some heHx. Then

0d>[C H] = [QKvt

V. (9)
Hence [C

Conversely, suppose [C H^eH^ V. There exists a Blaschke-Potapov product X
of degree k and /e i / 0 0 such that

[C H]=X*fV. (10)

Consideration of the first column of this equation gives XC = fvt. By choice of <!>,
X = 0<J> for some inner 0, which must have degree at most k — l. We have

(f-&K)vt = 0,

and hence, by choice of a, f—&K = ZocT for some Z in i/00. Take the second block
column in (10) to get

fcc=XH = 0d>#,

whence 0<i># = {<dK+ZaT)a. = QKoL + Z.

Thus H = <S>*(Ka + Q*Z) and so H is of the form (8).

Let us extract from this proof a formula for future use. For any optimal Q
and [C H] given by (7), if H is parametrized as in the lemma by

where / is the degree of d> and heH^_l)t then (9) gives

haT)V,
and so, by virtue of (7),

Q = ®*{K+haT). (11)

Lemma 4 enables us to write H1,H in (ii) above in the form

with hx, heH^^y We can thus express conditions (i)—(iii) as

(i') H =
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(ii') ivT^i^-h) = 0 and JF1 + /?*O*(A1-A) has L™ norm at most t0,

(iii') sco{Fl + ̂ *(^*(h1 — h)) is minimized,
where hx is a fixed element of H^._l)(Mm n_1). Note that the norm condition in (ii')
automatically holds when (iii') is satisfied. We next parametrize the h in H^._[)(Mm n_j)
which satisfy (ii').

LEMMA 5. Let h1eH^))(Mm n_1) and let [x y] be unitary-valued of type m x in with
z, y inner, x of type m x 1 and y co-outer. There exist A eHx'(Mm n_1) and an (n— 1)-
square Blaschke-Potapov product *F of degree r ^p such that, for heH^, h satisfies
xT(h — h1) = 0 if and only if

Y*. (12)

Proof. Let T b e a minimal inner function such that

and let r be the degree of *F. Since h1eH^)),r ^ p. Let

xTh1 = xTAx¥* where AeHm.

Then the parametrization (12) holds with these functions.
Suppose that h = {A+yZ)W* for some ZeH™p_r). Then

xT(h1-h) = ~xTyZW* = 0.

Conversely, suppose xT(h — h1) = 0. Pick an n— 1 square inner function Q of degree
at most p such that hQeH00. Then xTh1ileHco and hence Q = *¥X for some inner X
of degree at most p — r. Since

xT(h-AxF*) = 0,

we have hY-A = yZ for some ZeLco(Mm_1 n_1). Then

hCl = hWX = AX + yZXeH™.

Thus yZXeH™, and since y is co-outer it follows that ZXeH™ and so that

Now multiply both sides of condition (ii') by the scalar inner function detcD to see
that it is equivalent to xT{h1—h) = 0 where x = (adj <P)Tw;i. To apply Lemma 5 we
need an inner co-outer function y of type m x (m— 1) such that [x y] is unitary-
valued. Now

a.dj<l>T[wi fi] = [x (adjcp*)/y] = [x (det<D)<5#| (13)

is unitary-valued, and so therefore is [x $/?]. Let

be the inner—outer factorization of (<t>/?)T, so that T is (m— l)-square and y is inner
and co-outer of type nix (m— 1). Then [x y] is unitary-valued and <t>/? = yX. Thus

T = y*O/?. (14)

By Lemma 5 there exist AeH^ and a finite Blaschke-Potapov product V of degree
r ^ & —? such that the general h satisfying (ii') can be written as

h = (A+yZ)xF*, (15)
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where ZeH^._i_r){Mm_lin_x). In particular

for some Z1eH^._l_r)(Mm_1 n_1). The objective (iii') becomes to minimize

1 + Y*(Z1-Z)x¥*)

as Z varies over H^_t_r): there is a one-one correspondence between superoptimal
approximants QeH^ to G and 2 e ^ . , _ r ) to

def

We are faced with a superoptimal model reduction problem for matrix functions of
type (TO — 1) x (n— 1). We shall show that this problem satisfies the hypotheses of the
theorem so that we can invoke the inductive hypothesis.

Go back to equation (6) and take the 2 x 2 minor corresponding to rows 1, i and
columns 1, j (2 ^ i ^ TO, 2 < j ^ n) of both sides. We obtain

r,s , (,

By choice of W, V, each of the 2 x 2 minors Wu rs and Vtu 1} are in Hm, and since
E-^eH^ + C, it follows tha t the 2 x 2 minor (EJrSitueHco + C. Since Hx + C is an
algebra the left-hand side of (16) is inH^ + C, and so u0F1eHco + C (we can suppose
t0 =|= 0). From (3) we have

while it is shown in [PK] that if u0 has the form (2) and uoeHx + C then also
+ C. Hence we have

Since T ,Te^°° and

we conclude that

We are seeking ZeH^^^ to minimize s^(Gl — Z). Uniqueness will follow from the
inductive hypothesis provided either k — l — r = 0 or

Suppose these are both false, that is, that l + r < k and

Then there exists ZeHft^,.^ which minimizes HĜ  — ZH^ over 2e5(™.,.f). This Z
determines via (11) and (14) an element QeH^ which is a best approximation to G.
Now these formulae combine to give

Q = <b*(K + (A+yZ) Y*ocT).
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Since Z has at most k — l — r—1 poles and <J>, *F are of degree I, r respectively, it follows
that Q has at most k— 1 poles. This implies

and hence, by the generalization to matrix functions of the Adamyan-Arov-Krein
theorem,

This contradicts the hypothesis of the theorem. It follows that the singular values of
HG satisfy the requisite inequality for the inductive hypothesis to apply to Gv There
is thus a unique ZeH^._t_r) such that sco(G1 — Z) attains its lexicographic minimum,
and furthermore, for this Z, the singular values of (G1 — Z) (z) are constant a.e. on the
unit circle. It follows that there is a unique QeH^ which minimizes 5cc((r — Q), and
since we have

it follows that the singular values of (G — Q)(z) are constant a.e. on the unit circle.
Theorem 1 is proved.

2. Construction of superoptimal approximants

The question arises as to whether the above proof shows how to construct a
superoptimal approximation Q to a given G. In a sense it does: in principle, if we can
follow the steps of the proof then we can compute the desired Q. In practice there
may be difficulties in carrying out some of the steps. Nevertheless, we can give a high
level algorithm for the calculation of superoptimal approximations, and in the next
section we illustrate by an example that it can indeed be implemented, at least in
simple cases.

Algorithm

Suppose given a n u i x n matrix function GeH^ + C and assume S^^HQ) > sk(HG)
and m ^ n, where HG is the Hankel operator with symbol G. Then the superoptimal
approximation QeH^ to G can be calculated as follows.

1. Find the &th singular value t0 of HG and a corresponding Schmidt pair
veH2(Cn), we{H\£m))L. If n = 1 then the desired Q is G-tow/v and the algorithm
terminates.

2. If n > 1 then perform the inner-outer factorizations

v = v{h, zw = wth,

with h a scalar outer function.
3. Find inner co-outer functions a,/? of types nx (n—1), mx (m— 1) respectively

such that
def def _

V = [v, a], WT = K P\
are unitary-valued.

4. Find Q^R™k){Mmn) such that

Qxv = Gv — tov, iv*Q1 = w*G — tov*.
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5. Let O be a minimal m x m inner function such that <J)Q1vieH'x(Mm<n)vt, and
pick KeHm(Mm „) such that 4>Q1 vt = Kvv Let

6. Let (p)

be the inner-outer factorization of (<t>/?)T, so that T is (m— l)-square and y is inner
and co-outer of type TO x (TO — 1).

7. Let Y be a minimal (n— l)-square inner function such that

wf (adj O) A, Tew?1 (adj 4>)#°°(ifm, „_,),

and pick .4 e #°° (Mmn_1) such that

wf (adj O) Aj T = wf (adj *) 4 .
Let

8. Let Gx of type (m — 1) x (»i— 1) be defined by

Then G1eHco + C. Let Z be the (unique) superoptimal approximation to G1 in
^S)(^m-i.»-i). where

p = K — degree 0> — degree T.

Then the desired superoptimal approximation QeH^.)(Mniin) to (? is
z'). (18)

End of algorithm

The justification of this algorithm simply consists in following the steps through
the proof of Theorem 1. The algorithm gives a recursive procedure for calculating Q
since the computation in step 8 is a superoptimal Nehari-Takagi problem of type
(m — 1) x (n — 1), and at the nth pass a problem of type (TO — n +1) x 1 will be reached,
so that the algorithm will terminate at step 1.

If the constant singular values of G1 — Z are tltt2,..., then the constant singular
values of G — Q are t0, tlt... .

The formula (18) for Q is obtained by combining (11) with the parametrization
(15).

If it happens that degree <I> + degree W = k then p = 0 in Step 7 and the
approximation problem reduces to the superoptimal Nehari problem studied in
[PY1].

In [PY3, Sec. 2, remark 4] it is shown how a and /? can be calculated.

3. An example

We illustrate the algorithm of the preceding section by outlining a worked
example. Let G = B-1A where

?]• «•>£[? _
In [PY3] we found the superoptimal approximation to G in H^; here we calculate

the superoptimal approximation in H^ (a more difficult problem). It is a simple
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exercise to show that the singular values of the rank 2 Hankel operator HG are \ /6
and 1. A Schmidt pair corresponding to the singular value 1 is

[ - 1 + V3Z1 2 r -V32 + 2l
L l J V £ L — V o j

The outer factor of v and zw is
h(z)=c(l+yz),

5-V13
Where C = V L ^ J' 7 = ~ 2 V 3 •
Inner co-outer functions a, /? as in step 3 are

If 1 1 n 1 [ - V 3

It may be verified that

satisfies the requirements of step 4. This Q1 belongs to Hm, not merely to H^ as
required by the algorithm, and in consequence steps 5-7 become very simple — we
take

$ = / , K = Q1, Ax = 0, T = /, y = fi, W=I, A=0, Z1 = 0.

Then in step 8 we have
& ! = P * ( G - Q x ) a i , p = l .

On calculating the scalar function G1 we find that a cancellation occurs, and Gx

has only a simple pole in D, at z = — y. Thus G1eH^), and so the optimal
(= superoptimal) approximation Z to G1 is G1 itself. It follows from (17) that the
superoptimal approximation QeH^ to G satisfies

Substitution of the known values of t0, w etc., gives

- 9 + 2V32
- 2

In this example the calculation was greatly simplified by the fact that we found
a Q1eS' which belongs to H™. It would be pleasant if this were always possible, but
unfortunately it is not: consider G = diag {g1,g2} where g1 has Hankel singular values
4,2,0, . . . . and g2 has values 3,1,0,.. . . Then, for k = 2, we have s2(HG) = 2 and any
QeS has at least one pole in D.

4. Parametrization of solutions of a Nehari-Takagi problem

Although we are primarily concerned with the superoptimal Nehari—Takagi
problem, the calculations carried out in the proof of Theorem 1 yield a result of
interest for the usual 'optimal' Nehari—Takagi problem. We give a recursive
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parametrization of all solutions of a matrix Nehari-Takagi problem. That is, we can
describe all optimal solutions of an m x n matrix problem in terms of the set of all
solutions of a (possibly suboptimal) Nehari-Takagi problem for (m-l)x(n-l)
matrix functions.

THEOREM 2. Let kbea positive integer and let GeHco + C beanmxn matrix function
on the circle such that sk{HG) < sk_1(HG). Suppose m, n ^ 2. There exist Hx functions
A,K of types mxn and m x (n— 1) respectively, finite Blaschke-Potapov products <t>, T
of types m-square and (n— l)-square and degrees I, r respectively where l + r < k, inner
co-outer functions <x,y of types nx(n—l) and mx(m—l), and a function G^eH^ + C
of type (m — 1) x (n — 1) such that the set of all optimal solutions of the Nehari—Takagi
problem for G with k poles, or in other words the set

is equal to

{^(K+iA+yZ^a^-.ZeH^^M^^), WG^ZW^^s^Hc)}. (19)

Indeed, K, A, O, W, a, y and G1 may be chosen as in the Algorithm above.

Proof. This is just a repetition of part of the proof of Theorem 1. We retain the
notation of that proof. We showed that all optimal Qs satisfy (G — Q)v = HG v and
hence that

where i/ei>0O(Mm_1 n_1) satisfies conditions (i) and (ii) above. Lemma 4 gives the
parametrization (8) of H satisfying (i), in terms of functions h satisfying conditions
(i') and (ii'). Lemma 5 then applies to give us the parametrization (15) of h in (ii').
Retracing our steps we find

H =

where Z varies over H^_t_r) subject to 11^+ W(H1—H)\\00 ^ t0, or equivalently

II^-ZIL = P I + T ^ - Z ^ I L < t0,

so that the parameter Z varies as described. To express Q in terms of Z, we combine
equations (11) and (15) to get the stated formula (19) for Q.

A different parametrization, in terms of a linear fractional map, was given by Ball
and Helton in [BH1, theorem 3-9; corrected proof in BH2].

I t should be mentioned that in the case of rational matrix functions G there is a
well known parametrization of all optimal solutions of the matrix Nehari-Takagi
problem in state space terms [Gl].
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