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We present a theory of electronic transport in graphene in the presence of randomly placed adsor-
bates. Our analysis predicts a marked asymmetry of the conductivity about the Dirac point, as well
as a negative weak-localization magnetoresistivity. In the region of strong scattering, renormaliza-
tion group corrections drive the system further towards insulating behavior. These results explain
key features of recent experiments, and are validated by numerical transport computations.
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Graphene (the two-dimensional allotrope of carbon [1])
offers a chemically stable platform to host various chemi-
cal adsorbates [2–7]. Their presence strongly affects elec-
tronic transport, making graphene based devices suit-
able for chemical sensoring. A key observation in exper-
iments on chemically functionalized samples is a marked
asymmetry of the conductivity as a function of a back
gate voltage, which is used to steer the system across
the charge neutrality point (the Dirac point, which sep-
arates the valence band from the conduction band). The
conductivity becomes symmetric only when the sample
is annealed by a strong bias current which dislodges the
adsorbates.

In this paper we provide a theory, supported by numer-
ical simulations, that explains this experimental feature.
Our model is based on the tight-binding description of
electrons in graphene [8]. Chemisorbed molecules are in-
corporated into this description as laterally attached ad-
ditional sites, where the onsite and coupling energies are
extracted from the band structure of a graphene sheet
with regularly placed adsorbates. Each type of adsor-
bate introduces a characteristic local energy dependent
scattering potential in the graphene, and suppresses the
conductivity on one side of the Dirac point, with only a
weak effect on the other. For example, adsorbed H+

yields almost insulating behavior in n-type graphene,
while in p-type structures the conductivity is close to
that of clean material. For OH− the role of the bands
is reversed. When combined with scattering from a ran-
dom Coulomb potential [9, 10], the resulting conductivity
traces (shown in Fig. 1) are consistent with the findings
in experiments [5, 6]. For a small adsorbate concentra-
tion, these conclusions can be drawn from kinetic theory.
For larger concentrations, we implement a recently pro-
posed renormalization group (RG) analysis [12, 13] to
account for systematic quantum corrections to the con-
ductivity resulting from multi-adsorbate scattering. Our
predictions are in good quantitative agreement with the
results of the numerical transport computations.

In a graphene sheet, the carbon atoms are held to-
gether via sp2-hybridized covalent bonds, while the elec-
tronic transport takes place by hopping along π orbitals
which can participate in covalent bonding with adsor-
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FIG. 1: (Color online) Conductivity of graphene in the pres-
ence of adsorbates (concentration ni) and Coulomb impurities
(concentration nl) as a function of charge carrier concentra-
tion ne (carrier density ne/Ac with Ac = 3

√
3a2/4 the area

per carbon atom), for various ratios ni/nl = (β/2π)x where
the dimensionless parameter β ' 1 characterizes the scatter-
ing strength of the Coulomb impurities [9–11]. (a) H+, (b)
OH−, with parameters from first-principle computations (the
insets illustrate sample segments). The results are based on
Eq. (7).

bates. The electrons in the π-band of graphene with ad-
ditional adsorbed atoms can be described using a tight-
binding Hamiltonian

H = −γ
∑
〈l,m〉

c†l cm +
∑
n

Hn, (1a)

Hn = εid
†
ndn + γi(c†αn

dn + cαn
d†n). (1b)
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The first term of Eq. (1a) corresponds to the Hamilto-
nian of clean graphene, where cl are annihilation opera-
tors on sites of the honeycomb lattice, and the nearest-
neighbor coupling strength γ = 2~vD/3a (with bond
length a = 1.42 Å) determines the Fermi velocity vD at
the Dirac point. Each adsorbed molecule contributes a
term of the form (1b), where dn is the annihilation oper-
ator on the adsorbate site and αn is the host position on
the honeycomb lattice. The adsorbate density is param-
eterized by ni/Ac, where ni is the adsorbate-to-carbon
ratio, and Ac = 3

√
3a2/4 is the area per carbon atom in

graphene.
The model Hamiltonian (1) can be justified by first-

principle calculations. Here we consider the adsorbates
H+ and OH−, chosen because of the presence of ambi-
ent water in many experiments, and which also can be
selectively driven towards the graphene via electric fields
[3]. Using the SIESTA algorithm [14], we find that H+

is described by εi = 0.66 γ, γi = 2.2 γ, while for OH−

εi = −2.9 γ, γi = 2.3 γ. These energies are comparable
to the graphene hopping energy γ = 2.6 eV, which neces-
sitates the nonperturbative approaches employed in this
paper. Our DFT calculations also confirm that the ad-
sorbates form covalent bonds to well-defined host sites.
In the fully relaxed configuration, both adsorbates are
aligned in the vertical direction of the graphene sheet
(for illustration, see insets of Fig. 1). Other energy scales
(such as shifts of the graphene onsite energies and next-
to-nearest neighbor couplings) are small and can be safely
neglected [15, 16].

The main building block of our analytical considera-
tions is the derivation of the scattering amplitude due to
individual adsorbates, which enters the collision term of
kinetic theory and also features as input into the renor-
malization group analysis that captures quantum correc-
tions due to multiple scattering.

In the first step we self-consistently eliminate the ad-
sorbate sites from the Hamiltonian (1) via a decimation
procedure. The electron wavefunction can be written as
|Ψ〉 =

∑
l ψl |l〉 +

∑
n φn |n〉ad ≡ |ψ〉 ⊕ |φ〉, where the

amplitudes ψl and states |l〉 refer to the carbon sites,
while φn and |n〉ad refer to the adsorbate sites. We
now project the Schrödinger equation onto an adsorbate
site, 〈n|ad (ε − H) |Ψ〉 = 0 and find that the amplitude
φn = ψαn

γi/(ε− εi) on the adsorbate is related to the
amplitude of its host carbon site. The amplitudes φn
hence can be eliminated, which results in the reduced
Hamiltonian

H̃ = −γ
∑
〈l,m〉

c†l cm +
∑
n

V c†αn
cαn , V =

γ2
i

ε− εi
, (2)

where the energy-dependent effective potential V corre-
sponds to the self-energy which an adsorbate induces for
electrons in graphene.

While the effective potential V displays a distinct res-
onant energy dependence, the analysis of the resulting

conductivity properties requires combining this with the
specific energetics of the graphene sample, and in partic-
ular, with the existence of the conical point at which the
density of states drops to zero. We therefore now turn to
the analysis for the Green’s function G = (ε−H+ i0+)−1

of the system.
For a single, well isolated adsorbate, the Green’s func-

tion can be obtained exactly over the entire energy range
by utilizing the T -matrix representation

G = G0 + G0T G0, T ≡ (1− V c†αcαG0)−1V c†αcα, (3)

where G0 is the Green’s function of the clean graphitic
system and T characterizes the scattering strength [17].
Expanding T in powers of V G0, and utilizing the trans-
lational and crystalline symmetries of graphene (so that
〈n|G0|n〉 ≡ g0 for all n), the resulting series for G can be
resummed yielding

T = t0(ε)c†αcα, t0(ε) =
γ2
i

ε− εi − γ2
i g0(ε)

. (4)

In the latter expression, t0(ε) describes resonant scat-
tering of electrons in graphene from an adsorbate level
renormalized by hybridization with states in the π-band.
This hybridization always shifts the effective resonance
level towards the Dirac point, which can be understood
as a consequence of level repulsion which pushes addi-
tional states towards the region with the lowest density
of states. The real part of γ2

i g0(ε) [with Re g0(ε) =
−Re g0(−ε) ≈ (Ac/2π~2v2

D)ε ln(|ε|/∆), and ∆ a high-
energy cut-off] gives a formal description of this sys-
tematic shift, while the imaginary part [with Im g0 =
−πν0(ε), and ν0(ε) the density of states per carbon atom]
indicates a decrease of the resonance width near the Dirac
point.

Ignoring (for the moment) the effects of phase-coherent
multiple scattering off the adsorbates, the conductivity of
a disordered sample with a finite adsorbate concentration
ni can now be obtained in kinetic transport theory. Due
to C6 rotational symmetry of graphene, the conductivity
is isotropic. Using the scattering rate obtained from (4),

τ−1
k =

(
2π
~

)
ni|t0(εk)|2ν0(εk), (5)

where εk is the graphene dispersion relation, we find the
conductivity of graphene in presence of the adsorbates,

σ =
(
gse

2

h

)
~2

Acni|t0(εF)|2
〈vk〉εF
〈v−1

k 〉εF
, (6)

where 〈. . .〉εF denotes integration along the Fermi line,
vk ≡ |∇kεk|/~, and gs = 2 accounts for spin degeneracy.

Motivated by recent experimental findings for selec-
tively adsorbed H+ and OH− [3], we show in Fig. 2 the
corresponding dependence of the conductivity in Eq. (6)
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FIG. 2: (Color online) Conductivity of graphene in the pres-
ence of adsorbates of variable concentration ni. (a) H+, (b)
OH−. The dashed thick curve is the prediction (6) of kinetic
transport theory with energy-dependent T -matrix (4). The
solid curves in the left panels show the expected quantum
corrections based on the renormalization group analysis [Eqs.
(10)]. In the right panels, the solid curves show the results of
numerical transport computations. The inset in the left panel
of (b) shows the RG flow (10) of the dimensionless scattering
parameters for OH− at ε = −0.15γ and ni = 0.01.

on the Fermi energy (thick dashed curve). A key fea-
ture is the marked asymmetry of the conductivity about
the Dirac point caused by the energy dependence of the
T matrix (4). For H+, over a range of energies in the
conduction band the conductivity is small, while it rises
linearly as one moves into the valence band, or far into
the conduction band. For OH− the role of the bands is
reversed.

In actual devices, adsorbate scattering is supplemented
by scattering off localized charges. These contribute to
the scattering rate a term τ−1

l = nlβγ
2/(~|ε|), where nl

is the number of localized charges per carbon atom, and
β ' 1 is a dimensionless numerical factor [9, 10]. For en-
ergies in the linear part of the clean graphene dispersion
relation, the resulting conductivity can be written in the
form

σ =
2π
√

3
nlβ

gse
2

h

(
x|t0(ne)/γ|2 + n−1

e

)−1
, (7)

where x = (2π/β)(ni/nl) characterizes the relative
amount of the two types of disorder, and ne =
gsε

2
F/(2
√

3πγ2) is the number of charge carriers per car-
bon atom. Figure 1 shows the charge carrier dependence
of the conductivity for various values of x. For x = 0 the
conductivity shows the symmetric linear charge-carrier
dependence characteristic for charged impurity scatter-
ing. For an increasing adsorbate concentration, the

conductivity develops the marked asymmetry discussed
above, while the Coulomb scattering only dominates very
close to the Dirac point, where it results in an additional
dip.

Different types of disorder can also be discriminated
via mesoscopic corrections to the conductivity, which
originate in phase-coherent multiple scattering. In gen-
eral, disorder in graphene can be characterized in terms
of five dimensionless parameters Γ = {α0, β⊥, βz, γ⊥, γz},
which classify the breaking of the symmetries of the hon-
eycomb lattice [18]. Three of these parameters describe
intravalley scattering preserving the C6v symmetry (α0),
the C3v symmetry (γz), or no point symmetry (γ⊥),
respectively. Analogously, intervalley scattering is de-
scribed by the parameters βz and β⊥. In terms of these
parameters, the conductivity of graphene in kinetic the-
ory takes the form

σ =
gse

2

~π2

(
α0

2
+ β⊥ + γ⊥ +

3
2
βz +

3
2
γz

)−1

. (8)

The scattering potential for adsorbates is such that

α0 = γz = β⊥/2 =
Acni|t0(εF)|2

2π〈vk〉εF/〈v−1
k 〉εF

, βz = γ⊥ = 0.

(9)
This puts chemically functionalized graphene into the so-
called orthogonal symmetry class, for which one expects
a negative weak-localization magnetoresistance [18], as
well as strong Anderson localization when the adsorbate
concentration increases [12].

These corrections to kinetic theory can be studied sys-
tematically via a renormalization group analysis [19],
which provides effective scattering parameters Γ̃ that re-
place the bare values in Eq. (8). For disorder represen-
tative of the symmetries in graphene, the flow equations
were derived in Ref. [12]. An equivalent formulation in
terms of the parameters Γ given above can be found in
Ref. [13], and takes the form

α̇0 = 2α0(α0 + β⊥ + γ⊥ + βz + γz) + β⊥βz + 2γ⊥γz,
˙β⊥ = 4(α0βz + β⊥γ⊥ + βzγz),
β̇z = 2(α0β⊥ − βzα0 + β⊥γz + βzγz),
˙γ⊥ = 4α0γz + β2

⊥ + β2
z ,

γ̇z = 2γz(−α0 − β⊥ + βz + γ⊥ − γz) + 2α0γ⊥ + β⊥βz,

ε̇ = ε(1 + α0 + β⊥ + γ⊥ + βz + γz), (10)

where Ẋ ≡ dX/d ln(L/a) and L is a running length.
This RG flow is integrated using the bare parameters Γ
and ε = εF as initial conditions and terminated when ε
reaches a high-energy cutoff εc. We here implement this
procedure for the energy-dependent initial conditions (9).
A typical solution of the flow equations as a function of
ln(L/a) is shown in the inset in Fig. 2(b) (left panel).
The dominance of β⊥ over γz and γ⊥ demonstrates that
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chemically functionalized graphene stays in the orthogo-
nal symmetry class when the adsorbate concentration is
increased. As shown by the curves in the left panels of
Fig. 2, over the whole energy range and for both types of
adsorbates (H+ and OH−) the renormalization leads to
a suppression of the conductivity and drives the system
towards insulating behavior.

In order to verify these expectations we carried out nu-
merical transport computations, which are directly based
on the model Hamiltonian (1). The conductivity σ is ob-
tained by finite-size scaling of the Landauer conductance
G = σW/L of graphene ribbons with respect to width (in
the range 50 < W/

√
3a < 100) and length (in an adap-

tively chosen range that avoids the onset of Anderson
localization [20]). For each geometry the conductance
is computed in an efficient recursive Green’s functions
algorithm [21], and averaged over 104 disorder realiza-
tions. The resulting dependence of the conductivity on
the Fermi energy (right panels of Fig. 2) is in good agree-
ment with the expectations based on the RG analysis
(left panels of Fig. 2). In particular, the numerical re-
sults clearly confirm the suppression of the conductivity
due to quantum corrections.

In summary, we have presented a theory of electronic
transport for graphene in the presence of chemisorbed
molecules. We find that each type of adsorbate results
in a characteristic Fermi-energy dependence of the con-
ductivity, which is asymmetric about the charge neu-
trality point and distinguishes p- and n-type transport.
In a range of energies, the conductivity is strongly sup-
pressed, which could be used to increase the on-off ratio
in graphene-based field-effect transistors. These effects
are further enhanced by quantum corrections driving the
system towards the localized state at higher adsorbate
concentrations. In experiments, the adsorbate concen-
tration can be increased by variable deposition times,
or by driving adsorbates to the sample using top gates
[3, 5, 6], while the localization effects can be probed via
magnetoresistivity experiments on graphene flakes at low
temperatures [22].
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