5 HEEL, J.: 'Dynamic motion vision'. IFAC Symposia Series, Proc. of Trienial World Congress, Vol. 5, pp. 99-104, 1989

Crosscorrelations of Frank sequences and Chu sequences

P.Z. Fan, M. Darnell and B. Honary

> | Indexing terms: Core division multiple access, Binary sequences |
| :--- |
| Sets of Frank sequences and Chu sequences are two classes of |
| polyphase sequence with ideal periodic autocorrelation functions, |
| which at the same time have optimum crosscorrelation functions. |
| In the Letter, the crosscorrelations of sets of combined Frank/Chu |
| sequences, which contain a larger number of sequences than either |
| of the two constituent sets, are considered. It is shown analytically |
| that the crosscorrelations are similar to those of the original sets |
| with one exception, while the autocorrelations remain perfectiy |
| impulsive. |

Introduction: In code-division multiple-access (CDMA) communi cation systems, in order to permit unambiguous message synchro nisation, to minimise cochannel interference, and to support a large number of simultaneous users, large families of sequences with good autocorrelation functions (ACFs) and small crosscorrelation function (CCF) values, are required.

Frank sequences [1] and Chu sequences [2] are two classes of sequence with perfect ACFs and optimum CCFs. However, the number of Frank sequences and Chu sequences available for a given length L is relatively small. In this Letter we discuss the CCFs between any two sequences in combined Frank/Chu sequence sets which provides a larger family size.

Properties of Frank and Chu sequence sels: Frank sequences $F=$ $\left\{f^{(i)}, \ldots, f^{(r)}, \ldots, f^{(q-1)}\right\}$ are a class of polyphase sequence of length $L=q^{2}$, in which the q th roots of unity are the elements of the sequence $f^{(r)}=\left(f_{0}^{(r)}, f_{1}^{(r)}, \ldots, f_{L-1}{ }^{(r)}\right)$, i.e.

$$
\begin{equation*}
f_{n}^{(r)}=f_{j q+k}^{(r)}=e^{\frac{\mathrm{i} 2 \pi}{q} r k j} \quad 0 \leq k, j<q \quad(r, q)=1 \tag{1}
\end{equation*}
$$

where $0 \leq n \leq q^{2}-1$ and q is any integer.
For Chu sequences $C=\left(c^{(1)}, \ldots, c^{(r)}, \ldots, c^{(L-1)}\right)$, the elements of the sequence $c^{(r)}=\left(c_{0}^{(r)}, c_{1}^{(r)}, \ldots, c_{L-1}^{(r)}\right)$ of length L are given by

$$
\begin{equation*}
c_{n}^{(r)}=e^{i q^{r} r(n+1) n} \quad 0 \leq n<L \quad(r, L)=1 \tag{2}
\end{equation*}
$$

It has been shown that the periodic ACFs and CCFs of Frank sequences and Chu sequences are given by [1-4]:

$$
\left.\begin{array}{rl}
R_{f^{(r)}}(\tau) & =\sum_{n=0}^{L-1} f_{n}^{(r)} f_{n+\tau}^{*(r)}=\left\{\begin{array}{lll}
L & \tau=0 & (\bmod L) \\
0 & \tau \neq 0 & (\bmod L)
\end{array}\right. \\
\begin{array}{rl}
R_{f^{(r)}, f^{(s)}}(\tau) & =\sum_{n=0}^{L-1} f_{n}^{(r)} f_{n+\tau}^{*(s)}
\end{array} \\
& =\sqrt{L} \quad \forall \tau r \neq s \quad(r-s, q)=1 \quad q \text { is odd }
\end{array}\right\} \begin{aligned}
R_{c^{(r)}}(\tau) & =\sum_{n=0}^{L-1} c_{n}^{(r)} c_{n+\tau}^{*(r)}=\left\{\begin{array}{lll}
L & \tau=0 & (\bmod L) \\
0 & \tau \neq 0 & (\bmod L)
\end{array}\right. \tag{4}\\
R_{c^{(r)}, c^{(s)}}(\tau) & =\sum_{n=0}^{L-1} c_{n}^{(r)} c_{n+\tau}^{*(s)} \\
& =\sqrt{L} \forall \tau r \neq s \quad(r-s, L)=1 \quad L \text { is odd }
\end{aligned}
$$

Periodic CCFs of sets of combined Frank/Chu sequences: To obtain a larger set of sequences, we define the following combined sets of Frank/Chu sequence:

$$
\begin{align*}
& F C=\left\{f^{(1)}, \cdots, f^{(s)}, \cdots, f^{\left(s^{\prime}\right)}, \cdots, f^{(q-1)}\right. \\
& \left.c^{(1)}, \cdots, c^{(r)}, \cdots, c^{\left(r^{\prime}\right)}, \cdots, c^{(L-1)}\right\} \tag{7}
\end{align*}
$$

where $L=q^{2},(s, q)=1,\left(s^{\prime}, q\right)=1,\left(s-s^{\prime}, q\right)=1$, and $(r, L)=1$, $\left(r^{\prime}, L\right)=1,\left(r-r^{\prime}, L\right)=1$.
Obviously the ACFs of the sequences in the set are exactly the same as those of the original Frank sequences and Chu sequences The CCF is equal to $V L$ if both the sequences to be correlated are Frank sequences or both the sequences are Chu sequences. When one sequence is a Frank sequence and the other is a Chu sequence, one sequence is a Frank sequence and the ot
then the CCF is calculated as shown below.
Let $n=j q+k$ and $\tau=u q+v, 0 \leq j, k, u, v \leq q-1$, then the integer $n+\tau$ can be represented as

$$
\begin{equation*}
n+\tau=(j+u+\epsilon) q+(k+v-\epsilon q) \tag{8}
\end{equation*}
$$

where $\varepsilon=0$, if $k+v \leq q-1$, and $\in=1$, if $k+v \geq q-1$. Let $\alpha=$ $e^{i 2 \tau v q}$, then $f_{n}^{(s)}=f_{j q+k^{(s)}}=\alpha^{s k j}, c_{n}^{(r)}=\alpha^{r(n+1) w 2 q}$. Thus

$$
\begin{aligned}
& R_{c^{(r)}, f^{(s)}}(\tau) \\
& =\sum_{n=0}^{L-1} c_{n}^{(r)} f_{n+r}^{*(s)}=\sum_{n=0}^{q^{2}-1} c_{j q+k}^{(r)} f_{(j+u+\epsilon) q+(k+v-\epsilon q)}^{*(s)} \\
& =\sum_{k=0}^{q-1} \sum_{j=0}^{q-1} \alpha^{r(j q+k)(j q+k+1) / 2 q} \alpha^{-s(j+u+\epsilon)(k+v-\epsilon q)} \\
& =\sum_{k=0}^{q-1} \alpha^{r k(k+1) / 2 q-s(u+\epsilon)(k+v-\epsilon q)} \\
& \quad \times \sum_{j=0}^{q-1} \alpha^{j r(j q+2 k+1) / 2-j s(k+v-\epsilon q)} \\
& =\sum_{k=0}^{q-1} \alpha^{r k(k+1) / 2 q-s(u+\epsilon)(k+v)} \sum_{j=0}^{q-1} \alpha^{j\left(\frac{\tau q}{2}+r k+\frac{r}{2}-s k-s v\right)}
\end{aligned}
$$

(9)

The last equality is valid because $\alpha^{ \pm c q}=1, c$ is any integer, and
 $s v$; the above inner sum is equal to zero, if $l \neq 0$, and is equal to q, if $l=0$. The equation $l=0(\bmod q)$ has a unique solution $k_{0}=[s v$ if $l=0$. The equation $l=0(\bmod q)$ has a un
$-r(1+q) / 2 \eta(r-s)$ if $r \neq s(\bmod q)$. That is

$$
\sum_{j=0}^{q-1} \alpha^{j\left(\frac{r q}{2}+r k+\frac{r}{2}-s k-s v\right)}= \begin{cases}0 & k \neq k_{0}=\frac{s v-r(1+q) / 2}{r-s} \tag{10}\\ q & k=k_{0}=\frac{s v-r(1+q) / 2}{r-s}\end{cases}
$$

Therefore, if $r \neq s(\bmod q)$, we have
$\left|R_{c^{(r)}, f^{(s)}}(\tau)\right|=\left|\alpha^{\tau k_{0}\left(k_{0}+1\right) / 2 q-s(u+\varepsilon)\left(k_{0}+v\right)} q\right|=q=\sqrt{L}$
For $r=s(\bmod q)$, the CCFs between Frank sequences and Chu sequences are given by

$$
R_{c^{(s+}+\chi_{q)}, f^{(s)}}(\tau)
$$

$$
\begin{aligned}
& =\sum_{n=0}^{L-1} c_{n}^{(s+h q)} f_{n+\tau}^{*(s)} \\
& =\sum_{k=0}^{q-1} \alpha^{(s+h q) k(k+1) / 2 q-s(u+\epsilon)(k+v)} \sum_{j=0}^{q-1} \alpha^{j s\left(\frac{q}{2}+\frac{1}{2}-v\right)}
\end{aligned}
$$

where $h=0,1, \ldots, q-1$ and

$$
\sum_{j=0}^{q-1} \alpha^{j s\left(\frac{q}{2}+\frac{1}{2}-v\right)}= \begin{cases}0 & v \neq v_{0}=\frac{q+1}{2} \\ q & v=v_{0}=\frac{q+1}{2}\end{cases}
$$

Hence

$$
\begin{align*}
& R_{c^{(s+h q)}, f^{(s)}(\tau)} \\
& = \begin{cases}0 & v \neq v_{0}=\frac{q+1}{2} \\
q \sum_{k=0}^{\frac{q-1}{2}-1} \alpha^{(s+h q) k(k+1) / 2 q-s u\left(k+v_{0}\right)}+ & \\
q \sum_{k=\frac{q-1}{2}}^{q-1} \alpha^{(s+h q) k(k+1) / 2 q-s(u+1)\left(k+v_{0}\right)} & v=v_{0}=\frac{q+1}{2}\end{cases} \tag{14}
\end{align*}
$$

As an example, the combined Frank/Chu sequences of length 25

$$
\begin{equation*}
\bar{F} C=\left\{\hat{f}^{(1)}, f^{(2)}, f^{(3)}, f^{(4)} ; c^{(1)}, c^{(2)}, c^{(3)}, c^{(4)}\right\} \tag{15}
\end{equation*}
$$

The CCFs between any two sequences, $R_{c}(r),{ }_{c}(s)(\tau), R_{f^{(r)}}, R_{f^{(s)}}(\tau)$ and $R_{c}(r), f^{(s)}(\tau)(r \neq s \bmod 5)$, are constant and equal to 5 . For r $=s \bmod 5$, the CCFs, $R_{c}(s), f^{(s)}(\tau)$, are listed in Table 1 .

Table 1: CCFs of combined Frank/Chu sequences ($L=25, r=s$ $\bmod 5$)

τ	01	\cdots	2324			
$R_{\text {(1) }}(\mathbf{1)}(\tau) \mid$	0002400004.400001 .800001 .800004 .400				$\left\|R_{c}(1), f^{(1)}(\tau)\right\|$	0002400004.400001 .800001 .800004 .400
:---	:---	:---				
$\left\|R_{c}(2), f^{(2)}(\tau)\right\|$	0002100003.800008 .200008 .200003 .800	$\left	R_{c}{ }^{(3)}, f^{(3)}(\tau)\right	0001800006.2000011 .000011 .00006 .200$	$R_{c}(4), f(4)(\tau) \mid$	00014000012.00008 .800008 .8000012 .00
:---	:---	:---				

Conclusions: The CCFs between Frank sequences and Chu sequences are considered in this Letter. It is proved that $R_{f(r)},_{c^{(s)}}$ $(\tau)=\sqrt{ } L$ when $r \neq s(\bmod q)$. Although there exist some time shift where the CCF values are relatively large (when $r=s(\bmod q)$), in this case, the CCFs are zero for all other time shifts include those around the zero time shift position.

It should be noted that the methods presented here can also apply to generalised Frank sequences [3] and generalised Chu sequences [4]

© IEE 199

17 January 1994
Electronic Engineering University of Hull, Hull HU6 7RX, United Kingdom)
B. Honary (Department of Engineering, Lancaster University, Lancaster LAI 4 YW, United Kingdom)

References

1 FRANK, R.L., and ZADOFF, S.A.: 'Phase shift pulse codes with good periodic correlation properties', IRE Trans. Inform. Theory, 1962 T-8, pp. 381-382
2 CHU, D.C.: 'Polyphase codes with good periodic correlation properties', IEEE Trans. Inform. Theory, 1972, IT-18, pp. 531-533 suehiro, n., and hatori, m.: 'Modulatable orthogonal sequences and their application to SSMA systems', IEEE Trans. Inform Theory, 1988, IT-34, pp. 93-100
4 POPOVIC, B.M: 'Generalized chirp-like polyphase sequences with optimum correlation properties', IEEE Trans., 1992, IT-38, pp. 1406-1409

Comment

Improved identity-based key sharing system for multiaddress communication

C.-S. Laih and W.-C. Kuo

ndexing terms: Information theory, Cryptosystems, Discrete logarithm problem, El-Gamal's public-key cryptosystem

Introduction: Since Shamir [1] proposed the concept of identitybased (ID-based) cryptosystems, many realisable schemes for ID based cryptosystems and key sharing systems have been proposed One of the earliest concrete ID-based cryptosystems using the discrete logarithm problem was proposed by Tsujii et al. [2]. However, if n entities conspire then the n secret pieces of information of the trusted centre (TC) in their scheme can be disclosed. To improve the security, a modified version of the above scheme was developed by Laih and Lee [3]. However, it was shown that the modified version can be completely broken by the conspiracy of (n +1) entities with overwhelming probability [4]. In 1990, Chika zawa and Inoue proposed an ID-based key sharing system [5] whose key preparation in TC is an improvement of [2]. Shimbo

Eqn. 4 can be rewritten as

$$
\left[\begin{array}{ccccc}
y_{11} & y_{12} & \cdots & y_{1 n} & u_{1} \tag{5}\\
y_{21} & y_{22} & \cdots & y_{2 n} & u_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
y_{n+1,1} & y_{n+1,2} & \cdots & y_{n+1, n} & u_{n+1}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n} \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right](\bmod L)
$$

