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Robust estimation of the Hurst parameter

and selection of an onset scaling
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Abstract: We consider the problem of estimating the Hurst parameter for long-range

dependent processes using wavelets. Wavelet techniques have shown to effectively

exploit the asymptotic linear relationship that forms the basis of constructing an

estimator. However, it has been noticed that the commonly adopted standard

wavelet estimator is vulnerable to various non-stationary phenomena that increas-

ingly occur in practice and thus leads to unreliable results. In this paper, we

propose a new wavelet method for estimating the Hurst parameter that is robust

to non-stationarities such as peaks, valleys, and trends. We point out that the

new estimator arises as a simple alternative to the standard estimator and does

not require an additional correction term, which is subject to distributional as-

sumptions. Additionally, we address the issue of selecting scales for the wavelet

estimator, which is critical to properly exploit the asymptotic relationship. We

propose a new method based on standard regression diagnostic tools, which is easy

to implement and useful to provide informative goodness-of-fit measures. Several

simulated examples are used for illustration and comparison. The proposed method

is also applied to the estimation of the Hurst parameter of Internet traffic packet

counts data.

Key words and phrases: Hurst parameter, Long-range dependence, Non-stationarities,

Robustness, Wavelet spectrum.

1. Introduction

The Internet has brought major changes to the work places, and even the

lifestyles, of many people. It also provides a rich source for research problems at

several levels of interest to engineers, computer scientists, statisticians and prob-

abilists. The Internet is often compared to the telephone network since there are

interesting parallels between the two. Both are gigantic networks transporting

large amounts of information between very diverse locations. Both are a concate-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/69859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 JUHYUN PARK AND CHEOLWOO PARK

nation of many pieces of equipment. But there are some important differences,

which seriously affects traffic modeling.

An important statistical difference between the telephone network and the

Internet comes in the distribution of the length of connections. The exponential

distribution has provided a useful model for the telephone network. But it has

been shown in a number of places, see e.g. Paxon and Floyd (1995), Crovella

and Bestavros (1996) and Hernández-Campos et al. (2004), that the exponential

distribution is very inappropriate for durations of Internet connections since some

of them are very short (in milliseconds) and some are very long (in hours). Models

for aggregated traffic are quite different from standard queueing theory when the

distribution of the lengths are heavy tailed. Appropriate levels of heavy tails can

induce long-range dependence as shown by the above authors.

Because of the widely accepted long-range dependent self-similar properties

of network traffic, Hurst parameter estimation provides a natural approach to

studying such models. Many approaches for estimating the Hurst parameter

have been proposed including the aggregated variance (Beran, 1994), the local

Whittle (Robinson, 1995), and the wavelet (Abry and Veitch, 1998) methods.

Among various approaches, the wavelet method has attracted the interest owing

to its robustness to non-stationarity and decorrelation property. Park et al.

(2007b) thoroughly compared the three Hurst parameter estimators by using

simulated, synthetic and real Internet traffic data sets. It reveals a number of

important challenges which one faces when estimating the long-range dependence

parameter in Internet data traffic traces. Stoev et al. (2005) explored some of

these challenges in more detail by using the wavelet spectrum method. While the

wavelet method is reliable in practice and quite robust with respect to smooth

polynomial trends in the data, it can mislead the practitioner. For example, a

traffic trace with a number of deterministic shifts in the mean rate results in a

steep wavelet spectrum which leads to overestimating the Hurst parameter. We

will come back to this issue in Section 4.

As an illustration we introduce a time series of packet counts (the numbers

of packets arriving in consecutive 1 millisecond intervals) coming into the Uni-

versity of North Carolina, Chapel Hill (UNC) from outside. Figure 1 displays a

packet count time series measured at the main internet link of UNC on April 13,
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Figure 1: Sat1300: packet count time series of aggregated traffic at 1 second.

Saturday, from 1 p.m. to 3 p.m., 2002 (Sat1300). They were originally measured

every 1 millisecond (7.2 million data points) but aggregated by a factor of 1000

(that is at 1 second) for a better display of trends. The time series plot shows a

huge spike for about 6 minutes in the middle.

Figure 2 (a) shows the wavelet spectrum and the estimated Hurst parameter

of the Sat1300 time series using the Abry and Veitch’s wavelet method. The

detail of the method is given in Section 2.2.1. Briefly the bottom panel plots

the log2 of the (estimated) variance of the wavelet coefficients at a scale (or

octave) value against j = log2(scale) (blue solid line). For processes that are

long-range dependent, the wavelet spectrum will exhibit a region in which there

is an approximately linear relationship with positive slope at the right (coarser

scale) side. One can estimate the Hurst parameter, H, along with confidence

intervals on the estimate by applying a weighted least squares (H=(slope+1)/2)

to a particular range of scales chosen from the top panel. In this case, the chosen

range is 16 ≤ j ≤ 20 . The spectrum roughly forms a linear line, which exhibits

long-range dependence. However, Ĥ = 1.48 (the estimated slope is overlaid),

which cannot happen in theory for a stationary process and it suggests that the

time series contains a non-stationary segment(s). Note that there is a bump at

j = 11. Park et al. (2004) verified that the high-frequency behavior inside the

big spike shown in Figure 1 causes this bump, which is a reflection of scaling

behavior. We will revisit this issue in Section 4.
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(a) Abry and Veitch method (b) Proposed method

Figure 2: Wavelet spectra and the Hurst parameter estimates by (a) Abry and Veitch
and (b) the proposed methods

As Stoev et al. (2005) pointed out, the wavelet spectrum can serve as a

diagnostic tool in this case since the unusual shape of the spectrum reveals the

local non-stationary behavior in the original time series. If the segment of the

time series where the spike occurs is taken out and the remaining parts are con-

catenated, then Ĥ is around 0.84, which is consistent with the Hurst parameter

estimates obtained from other UNC data sets. This implies that the time series

can be decomposed into a stationary long-range dependent process with H = 0.84

plus a local non-stationary behavior. The Hurst exponent of interest in this case

is H = 0.84 but the 6-minute long spike dramatically changes the global Hurst

parameter. While the bump is an indication of a non-stationary behavior, it

affects the method to select the range of the scale j differently, which causes the

estimation of H unreliable. In other words, the selected range of the scale is

narrow (16 ≤ j ≤ 20) due to the bump, which makes Ĥ higher and its confidence

interval wider.

This motivates us to develop a robust Hurst parameter estimation method

that resists the effect of non-stationary behavior such as peaks, valleys, and
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trends. Figure 2 (b) shows the proposed wavelet spectrum and the estimate of H

of the Sat1300 times series. The spectrum shows no bump and Ĥ = 0.84 which

is consistent with the estimate when we exclude the non-stationary segment from

the time series. In addition, the range of the scale chosen from the top panel is

from j = 8 to 20, which makes the confidence interval narrower. Thus, it clearly

shows that the proposed method is robust to the spike in the middle and produce

the stable estimate of H.

We utilize a robust estimation for the finite variance case. We provide a brief

justification similar to Veitch and Abry (1999), showing that the robust regression

model arises as a natural alternative to the standard regression model. The same

regression model has been studied independently for the infinite variance case.

See Stoev et al. (2002), Stoev and Taqqu (2003), and Stoev and Taqqu (2005).

Therefore, it can be argued that the idea developed under the finite variance

assumption naturally extends to the infinite variance case and that the method

is not limited to finite assumption in the end.

We also extend the idea of the estimation to the problem of selection of an

onset scaling by formulating it as a model selection problem. Since the linear re-

lationship in a wavelet spectrum is asymptotic in nature, the restriction of scales

into proper subsets would result in a better estimate. The practical implication

is that one needs to detect a scaling phenomenon for a given data. This involves

the selection of the range based on the observation, where the asymptotic prop-

erty can be reasonably assumed to be true. Veitch et al. (2003) addressed the

issue by proposing a model selection based on a series of test statistics. With

an aid of visualization of a goodness-of-fit measure, the onset scale can be se-

lected automatically or interactively. However, for examples with non-standard

processes such as the Sat1300 time series, this goodness-of-fit measure tends to

show instability. Moreover, the measure is meaningful only for selection purposes

and the number itself is not interpretable (for example, refer to the Q statistic

(0.07) in Figure 2 (a)).

We reformulate the problem in hypothesis testing framework and propose an

improved goodness-of-fit measure using p-values, which are easy to understand

and which reflect the underlying behavior informatively.

The remainder of the paper is structured as follows. In Section 2, we define
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our robust wavelet estimator and make a comparison to the standard wavelet

estimator. The issue of selection of scales is discussed in Section 3. Some simu-

lations studies are given in Section 4, followed by real data examples in Section

5. We conclude in Section 6.

2. Hurst parameter estimation

This section introduces the proposed robust Hurst parameter estimator in

Section 2.1 and compares it with the Abry and Veitch’s estimator in Section 2.2.

2.1 Robust wavelet estimation

We consider an estimator constructed through the discrete wavelet trans-

form. Let ψ(t) be a square integrable function with M ∈ Z zero moments,

M ≥ 1, so that
∫

R
tmψ(t) dt = 0 , for all m = 0, . . . , M − 1 . (2.1)

Consider a family of functions

{ψj,k = 2−j/2ψ(2−jt− k), j, k ∈ Z}

obtained by dyadic dilations and translations of ψ, which forms a basis of mul-

tiresolution analysis. For a second order stationary stochastic process X =

{X(t)}, the discrete wavelet transform is defined as

D(j, k) =
∫

R
X(t)ψj,k(t) dt , j, k ∈ Z .

Suppose that {X(t), t ∈ R} is a self-similar process, with self-similarity pa-

rameter H. Then for fixed j ∈ Z,

D(j, k) d= 2j(H+1/2)D(0, k)

as a process in k ∈ Z (Abry et al., 2003). Thus, we have

E[log2 D(j, k)2] = E[log2(2
j(H+1/2)D(0, k))2]

= j(2H + 1) + E[log2 D(0, k)2] .

This also suggests that the Hurst parameter H can be estimated by a linear

regression model using a sample mean estimator for the left hand side against

the scale parameter j.
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Suppose that {D(j, k) : k = 1, . . . , nj}, j = 1, . . . , J are wavelet coefficients

from the process with a length of 2J . Here nj are the number of wavelet coeffi-

cients at scale j. Define

Yj =
1
nj

nj∑

k=1

log2 D(j, k)2.

Because nj varies with j, it is natural to use a weighted least squares approach

with weights proportional to nj . An estimator of H can be constructed using a

weighted linear regression as

Ĥ =
1
2

∑

j

wjYj − 1
2

,

where
∑

j wj = 0 and
∑

j jwj = 1. Note that although the estimator is written

in terms of second order statistic of D(j, k), because of logarithm, it only requires

the existence of E[log2 |D(j, k)|].
To understand the behavior of the estimator, we may need more assumptions

about the sequence {Yj : j ∈ Z}. For example if the sequence {D(j, k) : k ∈ Z}
is stationary, we would have

Yj
a.s.→ (2H + 1)j + E[log2 D(0, k)2] ,

as j →∞. Then, the estimator is consistent. A weaker assumption that warrants

consistency is that the logarithm of the sequence, {log2 D(j, k)2 : k ∈ Z}, is

stationary and this is where robustness stems from. See also Stoev et al. (2002).

Because of similarity in behavior of wavelet coefficients to long-range depen-

dent processes, the same idea applies to long-range dependent processes such

as Fractional Gaussian Noise (FGN) or Fractional Auto-Regressive Integrated

Moving Average (FARIMA). For example, the cumulative sum processes of FGN

recovers Fractional Brownian Motion (FBM) that satisfies self-similar property.

We formulate the problem for self-similar processes because the argument is more

transparent with self-similar processes in several aspects. When the process has

an infinite variance, the same idea of self-similarity can be easily extended, as in

Stoev et al. (2002), Stoev and Taqqu (2003), and Stoev and Taqqu (2005).

In the next section, we go back to second order stationary long-range depen-

dent processes and make some comparison to the standard wavelet estimator. In
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particular, the robust estimator can be seen as a simplified alternative derivation

that justified the standard estimator.

2.2 Comparison under long-range dependent processes

2.2.1 Standard regression model

We briefly review the standard wavelet estimator defined in Abry and Veitch

(1998), and Veitch and Abry (1999) under second order stationary long-range

dependent processes. We are mainly interested in the relationship between the

robust estimator and the standard estimator arising from linear regression mod-

els.

For a long-range dependent process X(t), it has been shown that, as j →∞,

E[D2(j, ·)] ∼ 2jγC , 0 < γ < 1 ,

where C is the constant defined in Veitch and Abry (1999). The last relationship

suggests that the long-range dependent parameter γ (or H = (γ + 1)/2) can be

estimated from

log2

(
E[D2(j, ·)]) = jγ + constant , as j →∞.

This linear relationship popularizes wavelet-based techniques for estimating γ (or

H). The idea is to replace the expected value E[D2(j, ·)] by the corresponding

sample quantity calculated at each scale j,

µj =
1
nj

nj∑

k=1

D(j, k)2,

where nj is the number of wavelet coefficients at scale j.

Veitch and Abry (1999) provided distributional justification for a linear re-

gression approach under an ideal situation, by noting that under the above set-

ting the D(j, k) is a collection of zero mean random variables which are quasi-

decorrelated. Hence, if we assume that D(j, k)s are independent and identically

distributed Gaussian variables and that D(j, ·) and D(j′, ·) are independent when

j 6= j′, then

µj
d∼ σ2

j

nj
χ2(nj)
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where σ2
j = 2jγC and χ2(ν) is a chi-square random variable with ν degrees of

freedom. It follows that

log2(µj)
d∼ log2 σ2

j − log2(nj) + log2 χ2(nj) (2.2)
d∼ jγ + log2(C)− log2(nj) + lnχ2(nj)/ ln 2 .

From the following result,

E[lnχ2(ν)] = ψ(ν/2) + ln 2 , Var[lnχ2(ν)] = ζ(2, ν/2) , (2.3)

where ψ(z) = Γ′(z)/Γ(z) is the Psi function and ζ(z, ν) is a generalized Riemann

Zeta function (Gradshteyn and Ryzhik, 2000), it follows that

E[log2(µj)] = jγ + log2(C) + gj , Var[log2(µj)] = ζ(2, nj/2)/(ln 2)2 ,

where

gj = ψ(nj/2)/ ln 2− log2(nj/2) . (2.4)

Let Ỹj ≡ log2(µj) − gj . Here gj is a bias correction factor that compensates for

the difference between E[log2(µj)] and log2(E[d2(j, ·)]), to make Ỹj an asymptot-

ically unbiased estimator of log2(E[d2(j, ·)]). The parameter is then estimated by

applying a weighted least squares method based on the model

Ỹj = jγ + constant + ε̃j ,

where ε̃j has mean 0 and variance ζ(2, nj/2)/(ln 2)2. Consequently, the Hurst

parameter H can be obtained from the relationship γ = 2H − 1.

2.2.2 Robust regression model

As a motivation for the robust estimation, we begin with the same assump-

tions as above. Instead of directly focusing on the estimator µj , we may treat

each individual coefficient D(j, k) equally as a possible response. Then, from (2.2)

with nj = 1, we have

log2 D(j, k)2 d∼ log2 σ2
j + log2 χ2(1) (2.5)

d∼ jγ + log2(C) + lnχ2(1)/ ln 2 .

Let Yj,k = log2 D(j, k)2. Then it can be shown from (2.3) that

E[Yj,k] = jγ + γ0 , V ar[Yj,k] = σ2 ,
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where γ0 = log2 C + ψ(1/2)/ ln 2 + 1 and σ2 = ζ(2, 1/2)/(ln 2)2. This leads to

a simple linear regression model with constant variance σ2. The least squares

estimates are defined by

argminγ,γ0

J∑

j=1

nj∑

k=1

(Yj,k − jγ − γ0)2 .

It is easy to check that this approach is equivalent to weighted least squares

criterion as

argminγ,γ0

J∑

j=1

nj(Ȳj· − jγ − γ0)2 ,

where Ȳj· = 1
nj

∑nj

k=1 Yj,k. We will replace Ȳj· with Yj from now on, so Yj =
1
nj

∑nj

k=1 log2

(
D(j, k)2

)
. Therefore, an equivalent formulation can be made as

Yj = jγ + γ0 + εj ,

where εj has mean 0 and variance σ2/nj , for which the weighted least squares

method is used. Soltani et al. (2004) proposed Y ∗
j = (Yj + Ynj/2)/2, which is

shown to follow a Gumbel distribution for FBM processes but still suggested to

use least squares approach for practical consideration.

While the Gaussian assumption of D(j, k) does not guarantee a Gaussian

distribution for the error term, the least squares approach in general is not sen-

sitive to distributional assumption and the standard estimator is shown to be

asymptotically unbiased and efficient. For more detailed analysis with correlated

errors in the standard wavelet estimator, see Bardet et al. (2000). Some dis-

cussions on the comparison of these two regression models are given in Section

3.5.1.

Both estimators fall in a general class of linear estimators in linear regression

models and thus statistical properties are similar. Below we summarize a well

known property of least squares estimators as a reference.

Proposition 1 (Example 1, p.27, Ferguson, 1996) Suppose that

Yj = α + βzj + εj j = 1, . . . ,

where zj’s are known numbers that are not all equal and the εj’s are i.i.d. random

variables all with mean zero and share a common variance σ2. Then, the least

squares estimate, β̂n is consistent provided that as n →∞,
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(a)
∑n

j=1(zj − z̄n)2 →∞

(b) maxj≤n(zj − z̄n)2/
∑n

j=1(zj − z̄n)2 → 0 .

Moreover, β̂n is asymptotically normal with

√
nsn(β̂n − β) d→ N(0, σ2) ,

where s2
n =

∑n
j=1(zj − z̄n)2/n.

3. Model selection

When these estimators are computed with a finite number of observations

N , there is a more delicate issue than justification of distributional assumptions.

Because of its asymptotic nature in approximation, performance of the estimator

is heavily dependent on the choice of regime where the relationship is reasonably

justifiable. In theory, Bardet et al. (2000) showed that the standard wavelet

estimator Ĥ[j1, j2] is consistent, as j1 and N/2j2 → ∞, where Ĥ[j1, j2] means

that the estimator is constructed based on selected scales of j1, . . . , j2. In prac-

tice, it has been observed that the choice of the onset parameter has a stronger

influence on the estimation than on the distributional assumption (Abry et al.,

2003). Although this issue has been rightly acknowledged, there are few discus-

sions in the current practice beyond heuristically trimming scales at both ends.

One exception is the work of Veitch et al. (2003), where they propose an auto-

matic procedure based on sequential testing, assuming second order long-range

dependent processes. It was motivated that the exact value of log2 E[D(j, ·)]
can be computed or well approximated by a sample statistic, closely related to

the fact that the standard wavelet estimator is constructed based on the same

quantity. However, when the robust estimator is used, it is not clear whether the

same argument would apply or is necessary.

We develop a general approach borrowed from ideas of regression diagnostics.

A usual aim of regression diagnostics is to examine deviations from assumed linear

models through outliers and influential points. Improvements in estimation are

made when those points are removed or downweighted. A similar story can be

told with wavelet estimators. We want to exclude scales that pull them away from

linearity and the magnitude of influence can be measured by various diagnostic
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measures. Alternatively, we are expecting linearity to start to appear at a certain

scale, which means there is a change point. Again the phenomena will be reflected

in the estimation and some type of diagnostic measures will pick them up. There

is huge literature on those topics, depending on possible scenarios. Our aim is

to draw attention to the relevance of these topics and provide some simple yet

useful strategies that can be easily adapted to the selection of onset scaling. For

further references, a summary of regression diagnostics can be found in Belsley

et al. (1980) and more development on change point analysis is given in Csörgő

and Horváth (1997), Chen and Gupta (2000) and Wu (2005).

In view of asymptotics, we fix j2 = J , say, the largest possible value and

focus on the selection of j1. This is not a serious restriction as the proposed

method below can easily be extended to search both ends.

Consider a regression model given by

Ỹj = β0 + β1x̃j + ε̃j , j = 1, · · · , J

where Var(ε̃j) = σ2/nj . This can be written as

ỹ = X̃β + ε̃ , (3.1)

where X̃ is an J × p matrix. Let W = diag{w1, · · · , wJ}, where wj = nj and

define

y = W 1/2ỹ , X = W 1/2X̃ , ε = W 1/2ε̃ .

Then

y = Xβ + ε (3.2)

where ε ∼ (0, σ2I). Hence, the weighted least squares estimates from model (3.1)

is equivalent to the ordinary least squares estimates from model (3.2). From now

on, our formulation will be given based on model (3.2).

Write xj to be the jth row vector of X. Let b be the estimate of β from the

full model (3.2) and b(j) be the estimate from a reduced model with the jth row

removed. Then

b = (XT X)−1XTy ≡ Hy ,

where H is the hat matrix with hij being the (i, j)th element of H. Denote the

jth residual by ej , which is given by

ej = Yj − Ŷj = Yj − xT
j b .
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The relationship between estimates b and b(j) is summarized in Lemma 1.

Lemma 1

b− b(j) =
(XT X)−1xjej

1− hjj

This quantity, along with many others, are used as regression diagnostic tools

to check whether the jth observation is influential in the estimation. A similar

idea can be applied to the selection of onset scaling. When the selection region

is controlled by j1, we are looking for a stable region where the estimates do not

vary much. When j1 moves one step ahead, the estimates on which the decision

will be based change from b to b(1), as scales are fixed and ordered. If the

difference is dramatic, we move forward. Lemma 1 shows how those sequential

estimates are related and suggests an alternative goodness-of-fit measure.

A usual strategy in testing nested models is to compare relative improvement

in the fit. For linear models, this is often measured by sum of squared residuals

(SSR), defined by

SSR =
∑

i

(Yi − Ŷi)2 .

Let s2 be the usual estimate of σ2, which is obtained by dividing SSR by an

appropriate degrees of freedom;

s2 =
SSR

n− p
=

1
n− p

J∑

i=1

(Yi − xT
i b)2 .

Similarly s2(j) is defined by

s2(j) =
1

n− p− 1

∑

i6=j

{Yi − xT
i b(j)}2 .

The relationship between s2 and s2(j) is given in Lemma 2.

Lemma 2

(n− p− 1)s2(j) = (n− p)s2 − e2
j

1− hjj

Combined with the idea of Lemma 1, this forms the basis to construct a test

statistic in Section 3.3.

For derivation and proofs we refer to Belsley et al. (1980).



14 JUHYUN PARK AND CHEOLWOO PARK

3.1 Alternative formulation of the problem

The procedure can be viewed as sequential hypotheses testing problem. Sup-

pose that

Yj =

{
f(xj) + εj , j < j∗1
xT

j β0 + εj , j ≥ j∗1
(3.3)

where f(xj) 6= xT
j β0 is unspecified.

H0 : j∗1 = 1 H1(j) : j∗1 = j, j ≥ 2 . (3.4)

Because of generality of the framework in (3.3), it is possible to come up

with many different types of test statistic that would be considered appropriate.

When there are several competing test statistics, it might be of interest to com-

pare powers. Though related, our main interest is not so much of constructing

a best test statistic that tells us that there occurs a change as estimating the

change point directly through behavior of test statistics. A desirable property

of test statistics is thus to reflect the change in noticeable way in the sequential

comparison.

3.2 Selection of onset scaling by Veitch et al. (2003)

We review the main features of the approach presented in Veitch et al.

(2003). For each j, fit the regression model with {(i, Yi) : i = j, . . . , J} only.

Define

T0(j) =
J∑

i=j

(Yi − Ŷi)2/σ2 .

Here Ŷi = Ŷi(j), are estimates under the restricted model. Under the assumption

that Yjs are Gaussian, the test statistic follows a chi-square distribution with

degrees of freedom N(j)−2, where N(j) = J−j+1 is the number of observations

included.

Veitch et al. (2003) proposed to search among candidate models by compar-

ing the test statistic {T0(j), j = 1, . . . , J−2}. Let p0(j) be the p-value calculated

at the observed value at T0(j). This has been used as an indication of change

and a best model is defined as one that has the largest change in p-value. For

a given j, under the null hypothesis, the test statistic T0(j) follows a chi-square
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distribution with degrees of freedom N(j) − 2. They argue that the procedure

can be viewed as a bias-variance tradeoff. The algorithm implemented in the

paper searches for a point at which a dramatic increase in the p-value occurs as

an indication of stabilization. In other words, the change point j∗0 is estimated

by

ĵ∗0 = arg max
j≥2

p0(j)
p0(j − 1)

.

The chi-square statistic was aimed at utilizing estimation of log2(E[D(j, k)]),

which is possible to obtain for some well-known processes such as FARIMA and

FGN processes. To extend the idea to unknown processes, we propose a general

strategy of model selection using linear models.

3.3 F statistic for linearity

Another disadvantage of using the chi-square statistic in the sequential linear

model is that it does not directly account for linearity in the comparison. We are

mainly interested in the linear model with a significant slope. Therefore, for the

selection of an onset scale, we can view this problem as selection of a submodel

that shows the strongest linearity. For each submodel indexed by j, we compare

H0(j) : EY = constant , H1(j) : EY = linear . (3.5)

By including all the linear models in the alternative, we don’t presume that there

is any linearity in the model. If any, it is more likely that the null hypothesis will

be rejected, which would result in a smaller p-value. Contrary to the previous

case, the decision of rejecting the null hypothesis as strong as possible will be

desirable. Denote the sum of squared residuals under the null model at step j

by SSRj(old) and that under the alternative model by SSRj(new). To test the

significance of the nested models, we adopt a commonly used F test statistic,

defined as

T1(j) =
(SSRj(old)− SSRj(new))/1

SSRj(new)/(N(j)− 2)
=

∑J
i=j(Ȳ − Ŷi)2∑J

i=j(Yi − Ŷi)2/(N(j)− 2)
,

which follows a F distribution with degrees of freedom (1, N(j)− 2). We select

one that has the smallest p-value. Let p1(j) be the p-value evaluated at the

observed T1(j). Define

ĵ∗1 = arg min
j≥1

{p1(j)} .
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Now p-values can be interpreted as a measure of how strong the linearity

holds. This utilization of p-values, which conforms to common sense of interpre-

tation, also allows to employ a direct search method for maximum in implemen-

tation. In addition, the magnitude of a p-value is closely related to goodness-of-fit

and thus can be used as an indication of violation of linearity assumption. When

all the p-values are relatively large, we suspect that there is no significant linear

relationship. This is a noticeable feature because in practice presence of linearity

itself may be in doubt, in which case the selected model would clearly indicate a

large p-value.

Where the estimates are stabilized, p-values tend to be close to zero and the

minimum is not more meaningful than the second minimum. Thus, the proposed

principle can be relaxed to allow small fluctuation within the range by setting

for a fixed α > 0

ĵ∗∗1 = min{j ≥ 1 : p1(j) < α} .

3.4 F statistic as diagnostics

We may view the selection of scales as regression diagnostics, where detecting

outliers and influential points are of main interests. If j1 has to move up one by

one, that means the first observation may be considered as an outlier in the

original regression and thus has to be removed. For submodels indexed by j,

consider

H0(j) : j∗1 = j H1(j) : j∗1 = j + 1 .

When this test is applied sequentially, we may expect that improvements made

by deleting one row will be most dramatic when j crosses the true change point

from j∗1−1 to j∗1 . Indeed, we show that a F test statistic can be constructed based

on this idea and p-values can be used to detect the change point. With slightly

different motivation, the statistic appears as part of the regression diagnostic

methods developed in Belsley et al. (1980). We borrow their arguments to

present here as Lemma and for derivation and proofs we refer to Belsley et al.

(1980).
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Lemma 3

T =
[SSR(old)− SSR(new)]/1

SSR(new)/(n− p− 1)

=
(n− p)s2 − (n− p− 1)s2(j)

s2(j)
=

e2
j

s2(j)(1− hjj)

where new model is one without the jth row. If y follows Gaussian distribution,

then

T ∼ F (1, n− p− 1).

Denote SSR(j) = SSRj(new), sum of squared residuals calculated with

(1, . . . , j) rows removed. Define

T2(j) =
SSR(j − 1)− SSR(j)
SSR(j)/(N(j + 1)− 2)

j = 1, . . . , J − 2

and let p2(j) be the p-value evaluated at the observed value of T2(j). Define

ĵ∗2 = arg max
j≥1

{
p2(j − 1)

p2(j)

}
.

One can also choose the scaling set based on this criterion but we do not imple-

ment this approach in our data analyses in Sections 4 and 5.

3.5 Comparison of regression models and selection criteria

We observe, within our limited experiences as shown in Sections 4 and 5, dra-

matic improvements in performance of estimators with the new regression model

and wonder where the robustness really comes from. However, when evaluating

estimators, it is not easy to single out the source between regression models and

model selection criteria. Here we separate the issues as an attempt to make some

comparisons to existing methods.

3.5.1 Comparison of regression models

For regression models, one way of measuring robustness would be to consider

the influence function of the estimator, which measures how sensitive the regres-

sion coefficients are to the outlier (Belsley et al., 1980 or McKean, 2004). For

the standard regression model with V ar(εi) = σ2, replacing V ar(εi) = σ2/wi for
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the specific ith observation only, differentiating with respect to wi evaluated at

wi = 1 gives
∂b(wi)
∂wi

∣∣∣∣
wi=1

= (XT X)−1xT
i ei ,

assuming the unified notation introduced earlier. Since the design matrices for

both regression models are identical, one might suspect that the effect of outlier

should be similar unless the variance of ei or εi is dramatically different.

Consider the ideal case of Gaussian assumptions discussed in Section 2. Let

Uk, k = 1, . . . , nj be i.i.d χ2 random variables with 1 degree of freedom. From

(2.2) and (2.5), we may write

ε̃j
d= log2

(
1
nj

nj∑

k=1

Uk

)
, and εj

d=
1
nj

nj∑

k=1

log2 Uk .

At first glance, taking the logarithm first seems to greatly reduce variability. This

would be the case if variables take values mostly greater than 1 but for the χ2

random variables Uk, with mean 1 and variance 2, the log-transformation can

amplify variability for values between 0 and 1. Also, observe that

ε̃j
d= log2

(
Γ(

nj

2
,
nj

2
)
)

,

with E[Γ(nj

2 ,
nj

2 )] = 1 and V ar[Γ(nj

2 ,
nj

2 )] = 2
nj

. Here Γ(r, a) represents a Gamma

random variable with a density fr,a(x) = ar

Γ(r)x
r−1e−ax. This is also reflected in

the variance. Recall that

V ar[ε̃j ] =
ζ(2, nj/2)

(ln 2)2
, and V ar[εj ] =

ζ(2, 1/2)
nj(ln 2)2

.

Veitch and Abry (1999) derived an asymptotic form as ζ(2, nj/2) ∼ 2/nj for

large nj , which shows asymptotic equivalence in order of magnitude. Moreover,

assuming nj = 2k, k ≥ 1, it can be shown that

ζ

(
2,

2k

2

)
= ζ(2)−

{
1
12

+ . . . +
1

(k − 1)2

}
=

π2

6
−

{
1
12

+ . . . +
1

(k − 1)2

}

and
ζ(2, 1/2)

nj
=

3ζ(2)
nj

=
π2

4k
.

Thus, both variances converge to zero, as nj grows, with no strict inequality on

either direction and thus the impact of taking logarithm first is not as dramatic

as it appears.
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What makes the new model more appealing is that by taking the logarithm

first it removes the need of correcting bias by subtracting gj in (2.4), which is

highly dependent on distributional assumptions. Therefore, for processes close to

the ideal Gaussian processes, performance of both estimators should be similar.

When the processes show departure from the assumption, the new estimator is

expected to perform more effectively and thus robustly.

3.5.2 Comparison of model selection criteria

In general when the model selection criteria is concerned, the chi-square sta-

tistic appears as an estimate of the error variance, often termed as σ̂2. Although

it is a best unbiased estimate of σ2 for linear models, the statistic alone may not

be adequate to detect a true model when the number of parameters or obser-

vations vary. Here we have a fixed number of parameters with varying sample

size. Most model selection criteria such as AIC or BIC were introduced to take

into account the varying size by an adding additional penalty term, controlling

the number of parameters estimated against the number of observations used.

In a slightly different context, BIC was used to select a best model in Shen, Zhu,

and Lee (2007). Although it would be possible to consider AIC or BIC type

model selection criteria for the situation considered here, we consider the F type

statistic because it arises as a natural choice for linear models.

It is worth mentioning the difference in the formulation of hypotheses testing.

When these test statistics are computed sequentially, in the first case with (3.4),

emphasis lies in how consistent the estimate of the slope would be when reducing

the region of interest. In contrast, the second formulation in (3.5) allows the

possibility of having no clear linear relationship and thus the bias and variance

trade off comes into play only after linearity becomes effective.

4. Simulation study

In this section, we test the robustness of the proposed wavelet spectrum by

using four simulated examples analyzed in Stoev et al. (2005). The examples are

displayed in Figure 3. Each example has 100 realizations of N = 30000 time series

points. Using the examples we compare Abry and Veitch’s method (AV) and the

proposed method (New). As explained Section 3, there are two important dif-
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Figure 3: Simulated examples. True signals are overlaid onto FGN.
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ferences between the existing and the proposed methods. The proposed method

takes the logarithm of wavelet coefficients first and averages them later, and uses

the F statistic, instead of χ2, for model selection. It would be interesting to see

an effect of each difference. Thus, we add another version of wavelet estimator

(Ad-hoc) to the comparison, which takes the logarithm first but utilizes the χ2

test statistic for model selection. We use the Daubechies wavelet with M = 3 for

constructing wavelet spectra as Veitch and Abry (1999) suggested.

Example 1: Fractional Gaussian Noise (FGN)

Consider first an ideal situation when the data is a sample of FGN with

H = 0.9. Figure 4 compares the three wavelet estimators. The top panels

show the 100 H estimates of each method (solid lines) along with pointwise 95%

confidence intervals (dotted lines). While all the three methods contain the true

H = 0.9 in most of their confidence intervals, the AV tends to underestimate the

true value compared to the other two. The Ad-hoc estimation has the highest

variation since its confidence intervals are the widest.

The middle panels show the selected j1 of each method. The proposed

method impressively chooses j1 = 1 for every repetition, which can be regarded

as the true value since long-range dependence should appear at all scales for a

FGN process. The AV has a small variation between j1 = 1 and 2, and the

Ad-hoc has the highest variation. The bottom panels show the goodness-of-fit

measure of each method. For the New and Ad-hoc it is easier to understand

what this values mean (p-values are close to 0), but it is not meaningful to inter-

pret the goodness-of-fit measure value itself for the AV and it varies much from

one simulation to another. The overall performance of the proposed method is

satisfactory over the other two in this simulation.

Example 2: FGN plus a smooth trend

One major advantage of wavelet methods for estimating the Hurst parameter

is that it can ignore smooth polynomial trends in the data owing to the vanishing

moments in (2.1). This example has the setting of

Ỹ2(ti) = Y (ti) + Pl(ti), i = 1, 2, . . . , N,
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Figure 4: FGN (H = 0.9)
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Figure 5: FGN (H = 0.9) plus a smooth trend



24 JUHYUN PARK AND CHEOLWOO PARK

where Y (t) is a FGN with H = 0.9 and Pl(t) = a0t
l + · · ·+ al−1t + al, t ∈ R, is

a polynomial of degree l. Hence, theoretically, the estimators of H, based on the

wavelet coefficients of the perturbed process Ỹ , will be identical to those based

on the process Y as long as the vanishing moment M is sufficiently large. This

is true in the sense that Figure 5 is not much different from Figure 4. Therefore,

the lessons learned from Example 1 remain the same.

Example 3: FGN plus a high-frequency oscillating trend

Even though wavelet estimators are robust to a large class of smooth low-

frequency trends, they can be quite sensitive to high-frequency deterministic

oscillations. This example has the setting of

Ỹ3(ti) = Y (ti) + hν(ti), i = 1, 2, . . . , N,

where hν(t) = sin(2πνt/N), ν > 0. Here ν corresponds to the number of os-

cillations of hν in the interval [0, N ]. If ν << M , where M is the number of

zero moments of ψ, then the function hν(t) can be essentially interpolated by a

polynomial of degree l < M , and hence the wavelet estimator of H remains unaf-

fected as seen in Example 2. However, a large M is not practically recommended

(we use M = 3 in our analysis) and the high-frequency behavior then has a big

impact on the estimation.

The top panels of Figure 6 show that the New and Ad-hoc overestimate the

true H. Although they produce biased results, the estimates are stable through

the repetitions. However, the H estimates by the AV shoot up and down and

show big variations. This happens because the selected j1 in the AV is always

10 (middle panel), which results in only a couple of points for estimating H in a

regression setting. On the contrary, the New and Ad-hoc always choose j1 = 1

despite the appearance of high-frequency oscillation trends. This implies that the

robustness of the proposed method mainly comes from by taking the logarithm

first.

Park et al. (2004) shows that the Sat1300 time series shown in Figure 1

has a high-frequency behavior inside the big spike in the middle. This simulated

example clearly explains why the AV method does not work properly as shown

in Figure 2.
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Figure 6: FGN (H = 0.9) plus a high-frequency oscillating trend
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Example 4: FGN plus breaks

The wavelet spectrum of a time series can be influenced by breaks or shifts

in the mean. The last example has the form of

Ỹ4(ti) = Y (ti) + h(ti), i = 1, 2, . . . , N,

where the function h(t) is a linear combination of indicator functions. Since the

perturbation has a low degree of polynomial functions, all the three methods

perform well in this case. Again the AV tends to underestimate the true value

and the Ad-hoc has the highest variations. The proposed method has the least

bias and the variation in the estimation and also produces the consistent j1 = 1.

From the four simulations we can see that the robustness is achieved by

taking the logarithm of wavelet coefficients first. The F statistic provides more

stable estimation over the χ2 statistic.

5. Real data example

In this section, we analyze two more Internet traffic packet counts data sets

collected from the UNC link in 2002.

Figure 8 (a) displays a time series measured at the link of UNC on April 13

Saturday, from 7:30 p.m. to 9:30 p.m., 2002 (Sat1930). Figure 8 (b) displays a

time series measured at the link of UNC on April 11 Thursday, from 1 p.m. to 3

p.m., 2002 (Thu1300). Again, they were originally measured every 1 millisecond

but aggregated by a factor of 1000 (at 1 second) for better displays of trends.

The Sat1930 time series shows one peak in the middle but the time series looks

stationary in general. The Thu1300 time series shows a few spikes shooting up

and down. Especially, the first downward spike hits the zero, which means no

signal. This dropout lasts 8 seconds as shown in Park et al. (2007a).

Figures 9 (a) and (b) compare the Abry and Veitch’s and the proposed

methods using the Sat1930 time series. They produce similar estimates, Ĥ = 0.89

(with 95% confidence interval [0.86, 0.92]) and Ĥ = 0.88 (with 95% confidence

interval [0.86, 0.90]), respectively. Also, they choose similar ranges of the scale,

j1 = 12 and j1 = 10, respectively. We can see that the two methods produce

similar estimates in the case of a stationary process as seen in Example 1 of

Section 4.
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Figure 7: FGN (H = 0.9) plus breaks
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Figure 8: Packet count time series of aggregated traffic at 1 second: (a) Sat1930 and (b)
Thu1300.

Figures 9 (c) and (d) compare the Abry and Veitch’s and the proposed

methods using the Thu1300 time series. They produce very different estimates,

Ĥ = 0.79 (with 95% confidence interval [0.50, 1.09]) and Ĥ = 0.88 (with 95%

confidence interval [0.86, 0.89]), respectively. The wide confidence of the Abry

and Veitch’s method is caused by the selection of the scale range, j1 = 17. Note

that the proposed method has j1 = 9 and thus a narrower confidence band. The

wavelet spectrum in Figure 9 (c) shows two bumps which force the method to

choose the large j1. Park et al. (2007a) showed that these bumps were created

by the dropout. If this 8-second segment of the time series where the dropout

occurs is excluded and the remaining parts are concatenated, then Ĥ is around

0.9, which is close to our estimate. This example clearly shows the robustness of

the proposed method.

6. Concluding Remarks

We have shown that some issues with wavelet estimation of the Hurst para-

meter for long range dependent processes can be resolved by taking an alternative

regression model, on which the estimator is based. The proposed wavelet esti-

mator shows significant improvements in performance in various non-standard

scenarios that standard estimators fail to reconcile. In addition, we have pro-
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Figure 9: Wavelet spectra and the Hurst parameter estimates.
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posed a new method of selecting an onset scaling, by making the link to the idea of

regression diagnostics for linear models. These techniques are easy to implement

and provide informative goodness of fit measures. There is accumulating evi-

dence that the traffic exhibits much more versatile and dynamic behaviour than

that can be described by a single parameter model. Thus, it is likely that there

arises a situation where additional nonstationary phenomena need to be taken

into account before the robust estimator or any other estimator can be employed.

In the current framework, there may require different levels of preprocessing step

to be able to justify the use of the Hurst parameter. Alternatively, we may adopt

a view of modelling nonstationarity or local stationairy. Therefore it would be

useful to develop a general framework where various nonstationary features can

be incorporated so that the Hurst parameter itself can be a function of covariates

such as time or other factors. We leave this consideration as future work.
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