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Abstract

We discuss the results of recent studies of acoustic turbulence in a system of

nonlinear second sound waves in a high-quality resonator filled with superfluid

4He. It was found that, when the driving amplitude was sufficiently increased,

a steady-state direct wave cascade is formed involving a flux of energy towards

high frequencies. The wave amplitude distribution follows a power law over a

wide range of frequencies. Development of a decay instability at high driving

amplitudes results in the formation of subharmonics of the driving frequency,

and to a backflow of energy towards the low-frequency spectral domain, in

addition to the direct cascade.

Keywords: Superfluid helium, second sound, acoustic turbulence, Kolmogorov

spectrum
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1 Introduction

First, we are much indebted to the Editorial Board of the Low Temperature Physics

journal for their invitation to report the results of our recent studies in this special

issue to mark the 100th anniversary of the liquefaction of helium.

In what follows, we review our experimental investigations of the acoustic turbu-

lence created in a system of nonlinear second sound standing waves in a high-quality

resonator filled with He II, the superfluid phase of 4He.

It is well-known that He II supports two quite separate sound propagation

modes: first sound (conventional pressure/density waves) and second sound (tem-

perature/entropy waves) [1, 2]. Second sound waves of infinitely small amplitude

running in bulk superfluid He II are characterized by a linear dispersion relation

between frequency ω and wave vector k [2]

ωk = u20k, (1)

which is also typical of acoustic waves in condensed matter and in gases. Here u20 is

the second sound velocity, which depends on the temperature of the helium sample.

At temperatures close to that of the superfluid-to-normal transition at Tλ = 2.177 K,

the velocity u20 tends to zero. At temperatures down to T ∼ 1 K, the second sound

velocity is u20 ≤ 20 m/s, which is much smaller than the velocity of conventional

sound in condensed media, u10 ≥ 3 × 102 m/s. We emphasize that in contrast to

ordinary (classical) media, where a temperature wave is damped over a distance

of the order of its wavelength [1], the second sound wave mode has very small

dissipation within the experimentally convenient temperature range T ∼ 1.5−2.1 K:

typically, a second sound pulse of duration τ ∼ 1 µs (i.e. of wavelength λ ∼ 2×10−3

cm) can propagate through the superfluid over a distance of metres before being

damped by viscous losses.

Second sound is characterized by rather strong nonlinear properties [2, 3, 4]. For

example, a traveling second sound pulse of amplitude δT ∼ 1 mK (i.e. with relative

amplitude δT/T ∼ 10−3) transforms into a shock wave over a distance L < 1 cm
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from the source [5, 6, 7]. To a first approximation, the velocity of a second sound

wave of finite amplitude depends on the wave amplitude δT as

u2 = u20 (1 + αδT ) .

Here

α =
∂

∂T
ln

(

u3

20

C

T

)

is the nonlinearity coefficient of second sound and C is the specific heat per unit

mass at constant pressure. Under the saturated vapor pressure, in the region of

roton second sound, T > 0.9 K, the nonlinearity coefficient is positive (α > 0) for

temperatures T < Tα = 1.88 K (like the nonlinearity coefficient of conventional

sound waves in ordinary media); but it is negative in the range Tα < T < Tλ (and

many times larger than the nonlinearity coefficient of first sound) [4]. At T = Tα

the nonlinearity coefficient passes through zero.

In the studies reported below, we exploit these special properties of second sound

in He II for an investigation of turbulence in a system of nonlinear acoustic waves

(acoustic turbulence). This is a state in which a large number of acoustic wave

modes are excited and interacting strongly with each other. It is is characterized by

a directed energy flux through frequency scales [8, 9, 10, 11].

Acoustic turbulence has been at the focus of numerous investigations during the

last few decades because of its importance for basic nonlinear physics and in view

of numerous applications in engineering and fundamental science [8]. Well known

examples of acoustic turbulence include the turbulence of sound waves in oceanic

waveguides [12], magnetic turbulence in interstellar gases [13], and shock waves in

the solar wind and their coupling with the Earth’s magnetosphere [14].

Second sound is ideal for modelling the dynamics of nonlinear waves because

of the way in which its nonlinearity coefficient, which determines the strength of

the wave interactions, can be tuned over a wide range simply by changing the bath

temperature. It allows one to study the dynamics of both nearly linear and strongly

nonlinear waves, with both positive (like conventional sound) and negative non-
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linearity, while using exactly the same experimental techniques. Such possibilities

are unavailable in conventional experiments. The fact that the velocity of second

sound u20 is relatively small permits one to increase time resolution of the measure-

ments. Note that the acoustic turbulent state is radically different from quantum

turbulence (QT) [15], which is also formed in He II, because the density of quantized

vortices is close to zero. Furthermore, the motions of both the normal and superfluid

components can be considered as being to a first approximation potential.

Based on measurements of nonlinear second sound waves in a high-quality res-

onator, we observed formation of a steady-state wave-energy cascade in He II in-

volving a flux of energy through the spectral range towards high frequencies. Initial

results of the studies were published in Ref. [11]. Since then, we have found that,

under some circumstances, wave energy in the acoustic system can also flow in the

reverse direction. Below we discuss these observations in more detail.

2 Experimental techniques

The experimental arrangements were similar to those used in our earlier studies of

nonlinear second sound waves [16, 17]. The cryoacoustical resonator was made of a

cylindrical quartz tube of nominal length L = 7 cm and internal diameter D = 1.5

cm, filled with superfluid helium. The low-inertial film heater and bolometer were

deposited on the surfaces of flat glass plates capping the ends of the tube. The heater

was driven by a harmonic voltage generator in the frequency range 0.1 – 100 kHz.

The frequency of the second sound (twice the frequency of the voltage generator)

was set close to the frequency of a longitudinal resonance in the resonator. The

amplitude of the standing wave δT could be changed from 0.05 mK up to a few

mK by adjustment of the power to the heater. The measured heat flux density W

into the liquid is subject to systematic uncertainties of up to ±10% associated with

estimation of the resonator cross-section and the resistances of the leads, and possible

small inhomogeneities in the heater film thickness. The Q-factor of the resonator
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determined from the widths of longitudinal resonances at small heat fluxes W ≤ 4

mW/cm2 (nearly linear regime) was Q ∼ 3000 for resonance numbers 20 < p < 100

and decreased to about 500 at frequencies below 500 Hz. A typical resonance curve

is shown in Fig. 1 (the 32nd resonance).

Use of a high-Q resonator enables us to create nonlinear second sound standing

waves of high amplitude (δT ∼ 1 mK) accompanied by only small heat input at

the source W < 55 mW/cm2, thus avoiding possible complications [18] due to

vortex creation in the bulk He II and nonlinear phenomena at the heater/superfluid

interface. The second sound waveform registered by the bolometer was Fourier-

analyzed and its power spectrum was computed.

3 Results and discussion

Fig. 2 shows the evolution of the second sound wave spectrum with increasing AC

heat flux density W from the heater, measured at temperature close to 2.08 K

when driving at the frequency of the 31st resonance. For small W ≤ 4 mW/cm2

we observed a nearly linear regime of wave generation, where a small number of

harmonics of the driving frequency were excited due to nonlinearity (see Fig. 2(a)),

and the shape of the recorded signal was close to sinusoidal. An increase of the

excitation above 12 mW/cm2 led to visible deformation of the signal shape and to

the generation of a large number of harmonics in the second sound wave spectrum

as shown in Fig. 2(b).

It is evident from Fig. 2 that the main spectral peak (marked by the arrow) lies

at the driving frequency ωd, and that high-frequency peaks appear at its harmonics

ωn = n×ωd with n = 2, 3, . . .. It can be seen in Fig. 2(b) that a cascade of waves is

formed over the frequency range up to 80 kHz, i.e. up to a frequency 25 times higher

than the driving frequency. As also shown in Fig. 2(b), the dependence of peak height

on frequency may be described by a power-law-like function δTω = const × ω−s for

frequencies lower than some cut-off frequency ωb that increases with increasing W .
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Note there are systematic uncertainties of about ±10% in the values of s and ωb

extracted from plots of this kind, depending on the range of ω through which the

straight line is drawn. For sufficiently high AC heat flux densities W > 12 mW/cm2

(i.e. for the developed cascade), the scaling index tends towards s ≈ 1.5.

Formation of the spectra observed in the experiments is evidently attributable to

the cascade transfer of wave energy through the frequency scales due to nonlinearity,

thus establishing an energy flux in K space directed from the driving frequency

towards the high-frequency domain. In accordance with basic ideas formulated in

Refs. [8, 9, 10] we may infer that, at relatively high driving amplitudes, we are

observing acoustic turbulence formed in the system of second sound waves within

the inertial (nondissipative) range of frequencies. Formation of the observed direct

cascade is similar to creation of the Kolmogorov distribution of fluid velocity over

frequency in the bulk of a classical fluid [19].

We observed also that, when the AC heat flux density was raised above some

critical value at even resonance numbers p > 30, a spectral peak appeared at the

frequency equal to half the driving frequency (i.e. formed on the left of the funda-

mental peak) and at its harmonics. Fig. 3 shows the evolution of the wave spectrum

with increasing AC heat flux density when driving on the 32nd resonance. It is

evident that, at the relatively small heat flux density W = 4 mW/cm2, the wave

spectrum shown in Fig. 3(a) is quite similar to that observed under similar conditions

when driving at the 31st resonance (i.e. at the nearest odd numbered resonance),

see Fig. 2(a). Formation of the low-frequency harmonic (subharmonic) at ω = ωd/2

at W = 16 mW/cm2 is clearly seen in Fig. 3(b). It was found that the threshold

value for generation of subharmonics obtained in measurements with 30 < p < 95

was about 12 mW/cm2.

The formation of subharmonics may be attributed to development of a decay

instability of the periodic wave. In accordance with general theory [8, 20, 21], the

instability is controlled mainly by nonlinear decay of the wave into two waves of

lower frequency, and by the opposite process of the confluence of two waves to form
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one wave. The energy (or frequency) conservation law for this 3-wave process is

ω1 = ω2 + ω3, (2)

where ωi = u20ki is the frequency of a linear wave of wave vector ki. The case shown

in Fig. 3(b) evidently corresponds to generation of subharmonics with ω2 = ω3 =

ωd/2.

We also observed the high-frequency cutoff of the wave spectrum due to viscosity.

As shown in Fig. 2(a), it manifests itself as an abrupt decrease in the amplitudes

of the harmonics at W < 12 mW/cm2, and as a change in slope of the spectrum

at higher W (Fig. 2(b)) when plotted on double-log scales, which occurs at some

characteristic frequency ωb. At ω ∼ ωb the nonlinear mechanism for nearly nondis-

sipative transfer of the wave energy changes to viscous damping of the waves (cf.

observations of the high-frequency edge of the inertial range of frequencies of capil-

lary turbulence on the surface of liquid hydrogen [22]). It causes a faster reduction

of sound amplitudes at frequencies ω > ωb, as observed.

The dependence of the boundary frequency ωb/2π on the standing wave ampli-

tude δT is shown in Fig. 4. It is seen that the inertial range is extended towards

higher frequencies when the driving force is increased. When driving at resonant fre-

quencies with odd resonance numbers p, with sufficiently large driving amplitudes,

the boundary frequency depends linearly on wave amplitude

ωb/2π = const(T, ωd) × δT,

(the filled symbols in Fig. 4) in agreement with our numerical calculations [11].

When driving at even p (open symbols in Fig. 4) the boundary frequency is

noticeably lower than that measured for the nearest odd resonance number, with

W > 12 mW/cm2. This reduction may be connected with a change in the mechanism

of energy relaxation in the wave system caused by the generation of subharmonics

with frequencies lower than ωd.

One can see from Fig. 4 that the energy balance in the wave system is highly

nonlocal in K space: energy is pumped into the system in the low-frequency (long-
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wave) domain and it flows to the high frequency (short-wave) domain where it is

absorbed by dissipative mechanisms.

It was found that, when driving at sufficiently high AC heat flux densities W > 23

mW/cm2 and at resonance numbers p > 50, multiple subharmonics were generated

in the low-frequency spectral domain ω < ωd, see Fig. 5. Here we present the initial

results of our study of the decay instability in the acoustic system, a phenomenon

that promises to be of huge interest for nonlinear sound wave dynamics. The results

of the more detailed investigations now in progress will be published and discussed

elsewhere in due course.

The formation of subharmonics in the wave spectrum is evidently attributable to

further development of the decay instability, when not only a wave with frequency

ωd/2 is created due to nonlinearity, but a number of waves with frequencies obeying

the conservation law (2) are generated. This regime is quite similar to the kinetic

instability known for weak turbulent systems [21]. It is seen from Fig. 5 that, when

the instability develops, the wave spectrum becomes almost continuous: all possible

modes seem to be excited.

We may interpret the generation of waves of frequency lower than the driving fre-

quency as the establishment of an energy backflow towards low frequencies. Inverse

energy cascades are known in 2-dimensional incompressible liquids [23] and Bose

gases [24] but, to our knowledge, this phenomena has not been observed earlier for

nonlinear acoustic waves. Absorption of the wave energy at low frequencies is prob-

ably attributable to viscous drag of the normal fluid component on the resonator

walls, given that bulk second sound damping is negligibly small in this frequency

range: this would be consistent with the observed strong decrease of the resonator

Q-factor below 2 kHz. We have also observed that formation of the inverse energy

cascade is accompanied by a reduction of wave amplitude in the high frequency

spectral domain, and by a contraction of the inertial range. This observation is

consistent with our inference that, after onset of the instability, the energy flux is

shared between the direct and inverse energy cascades.
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4 Conclusions

We have demonstrated that the system of second sound waves in a high-Q resonator

filled with He II can be used as an effective tool for the detailed modelling and

investigation of acoustic turbulence. We observed a smooth crossover in the system

of second sound waves from a nearly linear regime at low driving amplitudes to a

nonlinear regime at moderate driving amplitudes, and, further, to developed turbu-

lence at high driving amplitudes (a Kolmogorov-like cascade). In the high frequency

domain a cutoff of the cascade is observed, caused by a change in the mechanism

of energy transfer, from nonlinear wave transformation to viscous damping. When

driving at moderate amplitudes at resonances of even resonance number, a decay

instability develops in the system due to 3-wave interactions. It results in the gener-

ation of a subharmonic of frequency equal to half the driving frequency. At relatively

high driving amplitudes multiple subharmonics are generated in the wave spectrum,

corresponding to the formation of an inverse energy cascade directed towards the

low-frequency spectral domain.
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Figure Captions

Fig. 1. Second sound resonance curve measured in the He II filled resonator at a

temperature close to 2.08 K. The system was driven at a frequency close to its 32nd

resonance with an AC heat flux density of W = 4 mW/cm2.

Fig. 2. Evolution in the power spectrum of second sound standing waves as the

AC heat flux density is increased from (a) W = 4 mW/cm2 to (b) 25 mW/cm2.

The dashed line in (a) is a guide to the eye, whereas that in (b) corresponds to

δT ∝ ω−1.7. The arrows indicate the positions of the fundamental spectral peak

formed at the driving frequency ωd and of the high-frequency edge ωb of the inertial

frequency range. The system was driven at its 31st resonance, at a temperature

close to 2.08 K.

Fig. 3. Second sound wave spectra measured when driving on the frequency of

the 32nd resonance with (a) W = 4 mW/cm2 and (b) W = 16 mW/cm2. The arrows

indicate the fundamental peaks at the driving frequency ω = ωd and a subharmonic

formed at ω = ωd/2. The temperature was close to 2.08 K.

Fig. 4. Dependence of the viscous cutoff frequency ωb/2π on the amplitude δT of

the standing wave for different temperatures T and resonance numbers p. Dashed

lines indicate the results of our numerical computations [11]; data points represent

experimental measurements.

Fig. 5. A second sound wave spectrum measured when driving at the frequency

of the 96th resonance with an AC heat flux density W = 25 mW/cm2. The tem-

perature was close to 2.08 K. The arrow marks the fundamental peak at the driving

frequency ω = ωd.
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Figure 2: Ganshin et al, “Formation of acoustic turbulence...”
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Figure 3: Ganshin et al, “Formation of acoustic turbulence...”
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