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Does Gibrat’s law hold amongst dairy farmers in Northern Ireland?

Abstract

This paper tests whether the Law of Proportionate EffectsrGil931), which states
that farms grow at a rate that is independent of thee, diplds for the dairy farms in
Northern Ireland. Previous studies have tended to concentraestong whether the law
holds for all farms. The methodology used in this study permitstigation of whether the
law holds for some farms or all farms according to their silee approach used avoids the
subjective splitting of samples, which tends to bias results. tidddlly we control for the
possible sample selection bias. The findings show that the Gilratoes hold except in the
case of small farms. This is in accordance with previmaings that Gibrat's law tends to
hold when only larger farms are considered, but tends to fail sinafler farms are included
in the analysis. Implications and further extensions, as weloase alternatives to the

proposed methodology are discussed.
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1. Introduction

Farm structural change and the inter-related issue of feomitly continue to attract the
interest of agricultural economists, academics and policy malkecause of the wide-ranging
implications for agricultural output, efficiency and inevitably #enomic welfare of rural
communities. Given the sweeping changes that have occuritbe mecent round of CAP
Reform it is important that the factors affecting structwadnge in the farm sector are
understood. This study will examine some of these factors datiagirom the period 1997 to
2003. During this period, farm incomes reached very low lggels Figure 1) and this has
certainly put pressure on the structure of the farm sector.

Two inter-related components of farm structural change arg/exit to the farm sector
and growth/decline in continuing farms (Weiss, 1999). Historicaltigre has been a
tendency for academics to consider these two components shpar8tedies that have
investigated the factors influencing farm exit include Kimhd Bollman (1999) and Glauben
et al (2003). A large number of studies have examined the factedtiag farm growth
(e.g. Upton and Haworth, 1987; Shapatoal, 1987; Clarkeet al, 1992; and, Bremmat al,
2002). However, it has been argued that examining the growth ahwiogt farms only,
whilst ignoring exiting farms in the analysis, runs the riskiafsing results (Weiss, 1999).
Consequently, several more recent studies have considered notufaival (the opposite of
exiting) and farm growth (see Weiss, 1998 and 1999; and, KeRabelrts, 2003).

In a seminal paper that describes the Law of Proportionatet&ff&ibrat (1931)
provides the starting point for most previous studies of farm frovte proposed that the
growth rate of firms is independent of their initial sizetia¢ beginning of the period
examined. Gibrat's law proposes that growth is a stochasticegs resulting from the
random operation of many independent factors. This stochastic preasibs generates

theoretical farm size distributions (log-normal) that are skieamd similar in shape to the



farm size distributions that are observed empirically. Heunmhore, this stochastic process
also means the variance of the distribution increases ioverrhirroring observed increases
in empirical concentration measures. It is unsurprising, fitrerethat Gibrat's Law, which is
not inconsistent with the assumption of constant returns to smaiénues to provide the
basic foundation for most studies of farm growth.

Gibrat’s law, however, has been subject to some criticism feswtdtical justifications
for its rejection can be found in the literature, e.g. rettonscale among smaller farms
(Weiss, 1999). A number of studies have identified a range aoérsgsic factors that
influence farm growth and these should be explicitly considered imanagl of farm growth,
rather than being subsumed within the random stochastic proqgagsditny Gibrat’s law. In
light of these recent considerations this paper test Gibetsusing some determinants of
farm growth and survival using farm census data for dairydanrNorthern Ireland. The
analysis permits examination of Gibrat's law and considesirifluence of such factors as
profitability, farm type and farmer associated charactesistin farm growth and survival. An
outline of the paper is as follows. A review of previous &sids presented in the next
section. The data set and the methodology used in the anatgsoutlined in Section 3.
Model results are presented in Section 4. These resultisaressed in Section 5 and some

conclusions are drawn in Section 6.

2. Literature review

There is a wide and extensive literature investigating tbetprof firms (for a review
see Sutton, 1997; and, Lotti et al., 2003). In comparison the nwhiardies focusing on
farm growth is more limited. The approach used in most studitzsrafgrowth has been to
test Gibrat's law. Many of these studies appear to hasehed different conclusions.

Studies by Weiss (1998, 1999) and Shapiral (1987), based on farm census data, rejected



Gibrat's law of proportionate effects for farm growth. Thegelies found that small farms
tend to grow faster than larger farms. However, Upton and Hawb®87) and Bremmaesat
al. (2002) using FBS data collected in Great Britain and FADRK dmllected in the
Netherlands, respectively, found no evidence to reject Gibieat's The data sets used in
these two studies exclude very small farms (i.e. farms w®@ean Size Units). This may
have affected the results obtained because small rapidlyimgrofarms may have been
excluded from the analysis. Claek al. (1992) also find no evidence to reject Gibrat’'s law
based on analysis using aggregated data.

An important aspect of the study of farm (size) growth isdéfnition of farm size.
Previous studies have used a variety of different measuresnofsize (changes in farm size
indicate growth/decline). Measures of farm size proposebeiterature include: acreage
farmed, livestock numbers (cow equivalents), total capitaleyanet worth, gross sales, total
gross margins and net income (Allanson, 1992; Céarkl. 1992; and, Shapiret al 1987).
Output value measures such as gross farm sales and input valseresesuch as net worth
may be unsatisfactory due to the impact of inflation and changedative prices (Weiss,
1998). Physical input measures, such as acres under cultivatiommber of livestock, are
also problematic since farms are characterised by a non-jpmeduction technology and
changes in farm size typically involve changes in factor prapwtiand changes in
technology. Weiss (1998), however, argues that the disadagantdgphysical input
measures are less that those associated with the valueuts br outputs and as a result the
former should be preferred.

A review of empirical studies indicates that most find evé#eto conclude that a range
of variables other than size influence farm growth (e.g.s¥/ei999; and, Bremmet al,
2002). These other explanatory variables that have been idemifibd literature can be

divided into two sub-groups, namely, farmer-associated chasdicierand farm specific



factors. Weiss (1999) identified the following farmer-asgediacharacteristics: off-farm
employment, age, gender, level of education, family sge paofile of the family, succession
information and attitude to risk. Farm (or firm) specificizbles that have been suggested as
factors influencing growth include: size, solvency, profitahilpyyoductivity, farm income,
structure, financial performance, input costs, output mix, faype, mechanisation and

location (Bremmeet al 2002; Hardwick and Adams, 2002; Weiss, 1999).

3. Problem characterisation

As with the vast majority of studies of farm growth, Gibrddw of proportionate effect
is used as a starting point for the analysis carried outsnptper. The law states that firm
(or farm) growth is determined by random factors, independesizef This may be tested

using the following formula:

INSy) = A+ BIn(Se1) + U (1)

where S; denotes the size of the individual holding in time&nd u; is a random
disturbance term independent of current or past values of the depgadehle. If3 =1,
then growth rate and initial size are independent and this nibanh$ibrat's Law is not
rejected. Iff < 1, small farms tend to grow faster than larger farms. the effects of
randomness are offset by negative correlation between growth znd Kis > 1, larger
farms tend to grow faster than smaller farms. The abogassy illustrated if one subtracts
In(S+1) from both sides of equation (1) above. Then the left hand side logarithffierence
is an approximation of the growth. The right hand side will theneither a random walk,

whenf, = 1, or a dependent process otherwise.



Equation (1) can be generalised augmenting it by farmer assbcia&eacteristics and
farm specific variables, e.g. profitability, denoted by klexplanatory variableX, below as

follows:

k+3

I”(S,t):ﬁl+ﬁ2|n(3,t—1)+2ﬁjxj—2+Ut (2)
=

There are two problems with using linear regression representationsas equation (2).

The first is the assumed linear effect of the additiorplamatory variables<, . Weiss (1999)

for example applied non-linear functional form for these andctidesignificant non-
linearities. Specifying an ad-hoc non-linear functional form howes/@ot a viable strategy,
since it may impact on the final results in an unpredictableama often there is little or no
information on the way these additional variables may impad¢arm growth.

This consideration aside, even in the simple model (1), thereusderlying assumption
that the Gibrat’'s law holds (or is violated) globally. It iffidult to ascertain whether for
example small farms obey this law as opposed to large férimsn principle possible to split
the sample into smaller subsamples and locally estimateretaéonships. This would
however involve some subjective criteria about how to do ther lptigitioning further
casting doubt on the final results. If we want to test wére@ibrat’s law holds for some
farms and not for others, the linear regression frameworoigdstrictive. Such a test can
nevertheless be designed using quantile regression methods, imigldnie this paper.
Alternatives and extensions to the adopted approach are stsskd.

In order to measure farm growth, farm size must be comparskdre two specific
points in time. However, measures of farm growth are mefniogly for surviving farms.

Farms exiting between the points in time over which growth émsured are normally



excluded from the sample (as non-surviving farms). Howekeretis a greater probability
that slower growing small farms will be non-survivors comparet sliower growing larger
farms (Weiss. 1999). Thus, if non-surviving (exiting) farms excluded from the sample,
the estimates off may be biased downward, which may result in incorrect rejeaf
Gibrat’s law, giving the impression that smaller farmsdt to grow faster than larger farms
(Hardwick and Adams, 2002; Lott al. 2003; Shapir@t al 1987; Sutton, 1997; and, Weiss,
1999). Ignoring exiting farms in the analysis is known as the problesample selection
bias. Various options are available to account for selectiosn &l these are briefly

discussed in the methodology section.

4. Data

The data set used in this study is based on the 1997 and 2003 farm cemsushiem
Ireland and a structural survey of farms in Northern Ireland thataonducted in 1997. The
farm census provided information for individual farms on farm tymeeage farmed and
stock numbers (total standard gross margin for each farm sambalinferred from this data).
The 1997 structural survey provided additional information on a rangemérfassociated
characteristics such as gender, age, management stattimargpent working on the farm
for a subset of the farms included in the farm census (31 % of fdams). The individual
farm information from the structural survey was matchethéinformation from the 1997
farm census.

Matching these data sets yielded a total of 1648 dairy fari@9n. Of these farms, 112
had exited farming by 2003. Of the remaining 1536 farms, 1290 redhiainkiry, while the
other 246 moved to cattle and sheep. In this study we are sgBcifitarested in farms

which remain in dairying and thus the latter farms are tileatefarms which exited the dairy



sector. Thus, in total 358 exited the dairy sector between 1997 andfa008 Which exited
farming altogether plus farms which switched from d#orgattle and sheep).

The measure of farm size used in this study is the livestaokers measured in cow
equivalents per farm. This measure (unlike e.g. land arel#eistly proportionate to the final
output of dairy farm. Using the dairy farm sector allows usviid complications associated
with farm entry and thus simplify the sample selection problem.

The following explanatory variables are employed: (logarithithef ) initial (i.e. in
1997) size - LNCE97; an indicator variable denoting whether dha holder is also a
manager of the farm — MSHOLD, indicator of other gainful diy — HAGA3 and a
variable showing the age of the farmer — HAGEL. Note thatuse a limited set of
conditioning variables, since our purpose is to test Gibrat's lratiher than provide a
comprehensive model of farm growth, which would have involved additibehavioural

assumptions and theoretical model.

5. Methodology

In the least-squares regression framework the conditional meaiofyne. the function
that describes how the meanyathanges with the covariatesis almost all we need to know
about the relationship betwegrandx. The crucial aspect about this view is that the error is
assumed to have exactly the same distribution irrespectofelpe values taken by the
components of the vector This can be viewed as a pure ‘location shift' model sithce i
assumes that affects only the location of the conditional distributionyphot its scale, or
any other aspect of its distributional shape. If this is the,sas can be fully satisfied with an

estimated model of the conditional mean function.
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The above described location shift model is however ratheictes. Covariates may
influence the conditional distribution of the response in many othes:wepanding its
dispersion (as in traditional models of heteroscedasticgyptching one tail of the
distribution, compressing the other tail (as in volatility mejeland even inducing
multimodality. Explicit investigation of these effects can jleva more nuanced view of the
stochastic relationship between variables, and therefore a mtomemative empirical

analysis. The quantile regression is a method that allowsdes 0.
Given a random variabMand its distribution functiof, we denote by
Q(r) =inf(y | F(y) 27) 3)

the 7th quantile ofY . The sample analogugof Q(7) is called ther th sample quantile.
It may be formulated as the solution of the following optimisation prablgiven a random

sample ¥,), n=1;...;N :

min{ Sy, -d+ Y (@-1)y, —q|}
{nly,=2q} {nly,<d (4)
There exist a number of alternative quantile regression estsndiere we will only
describe the linear programming type of estimator, sineeethre asymptotic theory results
for it (Koenker and Bassett, 1978). Just as we can define thdesaragn as the solution to
the problem of minimizing a sum of squared residuals, we caredénmedian (which is the

50% quantile, i.er =0.5) as the solution to the problem of minimizing a sum of absolute

residuals (which follows directly from (4) above).
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For any 0< 7 < 1, we denotep, (u)=u(r + I, ), wherel[] is the indicator function.

Following Koenker and Bassett (1978)(u) is usually referred to asaheckfunction. The

problem may then be formulated as follows:

N
min> p,(y, - a)
n=1

(5)
which yields a natural generalization to the regressiorexant
. N
minY" o, (y, =¢(X. 5))
n=1 (6)

where &(X,8) is some parametric function of the covariates. When thia lmear

function, the above minimisation procedure is actually a lineargmoging problem. Then it
may be estimated using some form of simplex algorithm. Koearketid'Orey’s (1987, 1993)
adaptation of the Barrodale and Roberts (1974) median regressioithaigte general
guantile regression is particularly influential. The Barro@dald Roberts approach belongs to
the class of exterior point algorithms for solving linear progrargrproblems. Alternatively,
Portnoy and Koenker (1997) have shown that a combination of interior pethbds and
effective problem preprocessing is very well suited for lagme quantile regression
problems. This is the approach used in this paper (it is ofterredfto as Frisch- Newton
method), although the former (Barrodale-Roberts) method yield$asimisults, which are
available from the authors upon request.

It would be beneficial at this point to clarify a fundamental edéhce between the

guantile regression and the mean regression methods. Could we dbkiesame result by
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simply segmenting the response variable into subsets accordings tanconditional
distribution and then doing least squares fitting on these subgs@ls&rly, this form of
truncation on the dependent variable would yield disastrous resutis present example. In
general, such strategies are doomed to failure for all treomeaso carefully laid out in
Heckman (1979). It is thus worth emphasizing that even for the extoprantiles all the
sample observations are actively used in the process of lguagtiession fitting.

It is of course possible to construct local quantile regresstimates using some sort of
segmentation (see Knight et al., 2002). Some preliminary seaitiut the conditions where
local quantile regression is useful are outlined in Costinat €2000). However we will not
pursue this option for reasons given further below.

There are several useful properties of the quantile regreapmoach. Above we have
described the quantile regression for a given quantile. If havesmeetakes the whole range of
quantiles, a picture of the overall distribution emerges. Nhaie in the latter case we obtain a
variable coefficients model. In contrast to most variableffment methods which usually
assume coefficients independence however, in the quantile siegraeetting, the coefficients
are functionally dependent. In the light of the farm growth problémns, is evidently a
desirable property, The determinant of the farm growth fohtjiglifferent sizes of farms are
related in a quantile regression context, while paradoxicaliywliebe assumed independent
in most other variable coefficients models. Even the simpiesan quantile regression we
adopt here produces a rather flexible non-linear model. Note furtherthatethe non-
linearities are explicitly formulated with regard to the degemdariables, i.e. with regard to
the farm size, which is exactly what ids necessary fointe§ibrat’s law. Nevertheless, the
guantile regression has to be viewed as a workable approximatigrossi@ly more general

non-linear model. The availability of pointwise convergence resoittthe quantile regression
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estimates facilitates the analysis and inference comparether non and semi-parametric
methods.

The potential problem of bias due to sample attrition is known initém@ture as a
sample selection problem. Its initial description is due to Hack(®979) who devised a two
step procedure for controlling it. The Heckman procedure consistsiofating at step one a
survival model. This is typically a probit (although a logih ¢e used alternatively) equation
on the probability of farm survival from the complete sampiel(iding surviving and non-
surviving farms). This equation is subsequently used to obtainlditional variable, where
the values represent the inverse Mill's Ratio for each obtien: In step-two, the additional
variable is introduced as a correcting factor into the leastesjuagression that is based upon
a sample that excludes non-surviving farms. The probit maded in the first step typically
has the same explanatory variables as the main equation, thosigh tiot mandatory and
variables that are only relevant to the farm survival mayncluded, as well as some of the
variables included in the main equation may be dropped. The Hegkme&dure assumes
joint normality of the error terms in the two equations. HEteer distributional assumption,
which can also be employed to construct a more efficient Full I@fibom Maximum
Likelihood (FIML) estimator that jointly estimates both equatjdmsvever can have serious
implications on the robustness of the final results when itiakated. Therefore various
alternative estimators have been suggested to circumvent theerpraiifl inadequate
distributional assumptions. These can be broadly described aspaemetric model
selection methods.

The problem of sample selection in mean regression model can beybdeéided as
problem of the distributional assumptions, which can be controlled is.ig basically done
by various methods to relax the parametric specificatiomslayed in the seminal work of

Heckman (1979).
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The sample selection for quantile regression however remaatelienging and still
under-researched problem. Buchinsky (1998, 2001) provided some importaiiutimms to
this issue. Unfortunately the method Buchinsky (1998,2001) used in teeticel step,
namely the Ishimura’s (1993) semiparametric least squaresragdthat the selection
equation includes at least one covariate that is not included im#ne equation. This
condition is difficult to ensure with the available data set.r@floee a different strategy is
followed in this paper. On the first step we estimate an ordipeokit selection equation
similarly to Heckman (1979) and from there derive the bias ctimgefactor (i.e. the inverse
Mill's ratio). In the second step a linear quantile regressigerformed instead of the mean
regression by additionally including the derived correcting factdhe resulting model is
tested for model correctness, which also validatesaimple selection step.

The last piece of the jigsaw is therefore to identify appropriaodel validity test,
applicable to the quantile regression. What is needed is arteslidity of the functional
form. Up to our knowledge there are only two appropriate candidatéisisoil he first is the
Zheng' (1998) approach based on weighted kernel regression estimatidre anter one is
an extension to the Bierens and Ploberger’s (1997) Integrated Coadioment (ICM) test
for the quantile regression case due to Bierens and Ginther (208).discuss explicitly
only the median case, but the necessary modifications fgetheral quantile regression case
are provided in an appendix. We have chosen the latter due to ssinabldeproperties, such
as boundness of the test statistic, good local power andveelainservatism of the test
statistic. We briefly describe the ICM test below:

Let us have the following expectation model:
E(y;1%)= o x.5) ()

then the ICM statistic
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G IRG)
Ticm —W (8)
with 2({):%Zn:0jw({'¢(>g)), G, =y, —g()g,[}) being weighted non-linear residuals,
=1

@()- bounded one to one mapping aaf) - appropriate weight function, can be used to test
the null hypothesis that the probability of the expectation givmvein (7) is one, against
the alternative of being the less than one. In simple wordsath@gints to testing that the
expectational model (7) is the right one. Practical implentientaf the ICM test involves
choice for the weight function and the bounded mapping as well asceonpritational issue
surrounding the computation of the two integrals in (8). For brevitiieoexposition we will
not discuss these here. Full details on the procedure, which ramggdking follows Bierens
and Ginther (2001) are available from the authors.

There is another point to note. Since we are computing a twoest#pator, the
confidence intervals obtained during the quantile regression estiraaithe second step will
not be valid even asymptotically. The reasons for this aréasita the instrumental variables
case and the endogeneity problems. In the sample —selectiomefs®zad here, in general

the quantile regression estimated at the second stefuédly
QD) =g(X.B.)+ k[ f()/(1-F()]+e 9
The additional regressof (.)/(1-F(.)) can be interpreted as a ‘non-selection hazard’,

that corrects for the effect of the sample selection Hiks.pdf f() and thecdf F(.) are

obtained from the auxiliary model estimated at step one. Not¢Xhest the expression when

the auxiliary model models non-selection. If the auxiliary modéhesone of selection the

! They do not provide sufficient information on #eact quantile regression estimation algorithm thesy or the
method of obtaining standard errors, thus fullicgtion was not possible.
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natural candidate for the non-selection hazard would ©QgF(.). In the case of symmetric

distributional assumptions used in the auxiliary model (such asatgss@n used in the probit
model), modelling selection or non-selection would be equivalentwidugd not however be
the case for semiparametric estimators, and thus it israbddeto use the non-lecetion model
in the first step for such cases. The “inverse Mill'sofais the representation of the above
non-selection hazard obtained from the normal distribution (or theitggfsa logit model
was estimated instead of probit). If one estimates a non-pairamedel at step one the
empiricalpdf andcdf, obtained from it could be used.

The Heckman type of procedure ignores the correlation betweeadideals in the first
and second step models. Since the first-step residuals are usmdpgote the non-selection
hazard, the latter would therefore be correlated with thduals in the second-step equation.
With a probit equation estimated in step one, the standard emrdlee ifollowing linear
regression can be adjusted (see Heckman, 1979) obtain asysaijytatadid standard errors.
An alternative (applicable with any pair of parametric moétmighe two steps) is to estimate
jointly both equations by Full Information Maximum Likelihood, which by acciognfior the
correlation between the error terms should yield consistentasthedors. Note however that
this is not applicable in this case because the quantileseegnes a semi-parametric method,
which does not make any distributional assumptions. To obtain vatidastherrors , which
are necessary for testing the Gibrat's law, we adopt ardiit approach. We consider both
equations as a whole and bootstrap the whole two-stage estinmstead of only the QR
estimates). An adapted quantile regression implementation &fftHalso known as pair, or

case) bootstrap is used for this purpose.
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6. Results.

The first-step estimates are presented in Table 1. Notesithge we use probit model,
and thus the choice of auxiliary criterion is not instrumemtalmodel selection (i.e. we use 1
for farms that remain in dairying)This leads to a more natural interpretation of the estimat
coefficients, if this is necessary. We use the sameblasaas in the subsequent quantile
regression model. The farm size is important determinant ofatime exits, in that larger
farms are more likely to remain in dairying. Owing to tHishe selection process was not

controlled for, one would have obtained biased estimaté®imain equation

Insert Table 1.

The discussion in the methodology section concentrated on estinaatiotesting of a
quantile regression model at a given quantile. It is cleathiaadopted framework for testing
the Gibrat's law involves estimating multiple quantile regi@s models. It is in principle
possible to estimate the whole quantile process (i.e. estinmtugntile regression for every
observation, in this case 1290 models). To simplify the process kowely a subset of
guantile regression models is estimated. This subset cahsdit percentiles excluding the
lower and the upper 9%. In other words the 81 regression models forlthed.07, ,0.89,
and the 0.90 quantiles were estimated. The reason we etbkiégtreme quantiles is that
the conventional quantile regression estimates for these akabte. Asymptotic theory and
estimation methods for extreme quantiles are developed in Chernozf2®@¥a,b) and
Chernozhukov and Umantsev (2001). The main interest of the cuajeet fes in the overall
distribution of the estimated on the logged size in the irpgaiod (1997) and thus we will

ignore the extreme quantiles.

2 Correspondingly the additional variable used mshbsequent quantile regressiorf§gF(x).
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Plotting the corresponding estimates for the same parametamsate quantile range
provides a useful graphical device to informally ascertainsttede invariance hypothesis.
Strict formal tests on this are available and results fsoich tests can be provided by the
authors upon request. The conventional approach to such tests (Kaahkéaa, 2000) uses
the Khmaladze (1981) transformation and introduces additional computabanden.
Although we omit it here for brevity and simplicity, rigorous mdidgl practices would
require one to implement such tests. Graphical representatiaimeofoverall quantile

regression is presented on Figure 2.

Insert Figure 2.

The main point of interest here however, is the way the atiof the logged lagged size
varies over the quantile range. For this reason we will not cortnomethe overall results and
will focus our attention to this particular coefficient. Thermates for the coefficient of the
initial farm size from the estimated set of quantile regiens are presented on Figure 3,
together with the associated 95% confidence intervals. Whereadrizontal line drawn at the
value of 1 falls within the range defined by these confidenesvials we may say with 95%
confidence level, that the Gibrat law holds. These resuligestighe following. The Gibrat's
law speaking holds except for the small (up to the 0.16 quaddle) farms. These smaller
farms grow slower than the rest of the sector. Interdgtithg coefficient estimate declines
for the largest farms, but this decline is not statidticalgnificant. If we also include the
extreme quantiles, the largest farms do show slower growthtliearest (results available
from the authors). Nevertheless such a result is difficuletdy since the ICM test statistic

is unreliable at the extreme quantiles.
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Insert Figure 3.

The smaller growth in the segment of smaller dairy faignis iconcordance with farm
growth results from Census and farm business surveys date, gieclatter are generally
based on larger farms, and thus will tend to support the Gibrat'adeopposed to the latter
where the peculiarity of the smaller farms would lead togjfsction. The use of dairy sector
data is advantageous in that it reduces the possibility f@rdgeneity problems due to
different production technologies and farm types being pooled togetlatriddn et al.
(2004) argue that this heterogeneity needs to be dealt with by #ypiiwbdelling the
different farm types instead of using dummies for them. Natetkte possible effects of such
heterogeneity will manifest themselves in terms of hetedssticity problems. The
distribution of the ICM test we use to test the model validity énew is not affected by
neglected heteroscedasticity (Bierens and Ploberger, 1997).

Due to the considerable computational burden of estimating the é&i\tatistic (details
on the exact procedure available upon request) we only estinfatehe quantiles from 0.1

through to 0.9 with 0.1 steps). The ICM test resultpaesented in Table 2

Insert Table 2

The reason for using several valuesdas as follows. The ICM statistic is a ratio of two
probability measures estimated over a hypercube whose dimensio2s. d(ee. in the
intervals [€, c]). In principle asymptotically any choice faris equivalent. In principle
however, this choice may have dramatic effects on the sianalple properties of the test. In
general too small or too large values will reduce the poWwedhe test. (see Bierens and

Ginther, 2001 for a more detailed discussion on this in the quanglesson case).
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Therefore a range of such values was used to estimate Metd€l. All test statistics
estimated fail to reject the null of validity of the esdited quantile regression. The results for
c=0.1 similarly to Bierens and Ginther (2001) are probably spuridagly Nevertheless the
range of values for the hypercube dimension is rather extensigec@aparison Bierens and
Ginther (2001) only use values of 1, 5 and 10) and everywhere the EIlgtagistic is well
below the critical values. This provides conclusive evideincsupport of the estimated

guantile regression model and its conclusions.

7. Conclusions and further research agenda

Previous studies show that Gibrat's law tends to hold when onlyrldages are
considered, but tends to fail when smaller farms are includéte analysis. This study is
based on a data set that covers the full range of dairy $em@s in Northern Ireland. The
analysis takes account of possible bias due to exiting farmge8ults indicate that the farm
growth does not depend on initial size, except for the smaheisfeSmall Northern Ireland
dairy farms relying on family labour, probably experience ressushortage and have
insufficient funds to expand under milk quota restrictions. On ther dtand the largest farms
seem to grow slower than the rest, hinting a possible a satueftect, but the latter is
inconclusive. The relatively small average dairy farae sn Northern Ireland may explain
such an effect.

The use of rather homogeneous data set consisting of only dairy feave prevented
some complications such as possible heterogeneity, but the gapprahch outlined in the
paper is readily applicable to more complex data sets. mcages the simple probit sample
selection step may not be appropriate and alternative semigtaiaformulations may be
used instead. The linear quantile regression proved to be suffioietgscribe the growth

process in the NI dairy sector. In some other cases howesdimear assumption may be
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inadequate. Then nonlinear and non-parametric versions of the queagtiéssion could be

employed instead
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Figure 1. Net farm income of Northern Ireland dairy farm
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Figure 2. Graphical representation of the overall quargdessssion results
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Figure 3. Quantile regression estimates on the laggedaséfficient
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Table 1.First-step equation estimates

Variable Coefficient Standard Error

Constant 0.197 0.092
LNCE97 0.180 0.013
MSHOLD -0.043 0.023
HAGA3 -0.009 0.050

HAGE1 -0.003 0.001
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Table 2. ICM test results

Quantile c=1 c=3 c=5 c=10 c=15 c=20

0.1 0.050 0.247 0.363 0.674 0.698 0.665
0.2 0.110 0.531 0.628 0.746 0.791 0.817
0.3 0.119 0.500 0.521 0.718 0.827 0.810
0.4 0.364 1.683 1.580 1.485 1.336 1.150
0.5 0.338 1.466 1.409 1.655 1.348 1.148
0.6 0.398 1.571 1.231 1.229 1.115 1.025
0.7 0.389 1.076 0.882 0.712 0.755 0.834
0.8 0.179 0.758 0.639 0.797 0.815 0.959
0.9 0.068 0.264 0.399 0.674 0.734 0.733

Critical values (Bierens and Ploberger, 1997):
10% 3.23

5% 4.26



