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Abstract

The statistical identification of isochore structure, the variation in large scale GC

composition, of mammalian genomes is a necessary requirement for understand-

ing both the evolution of base composition and the many genomic features such

as mutation and recombination rates which covary with base composition. We

have developed a Bayesian method for isochore analysis, which we demonstrate to

be more accurate than the commonly used binary segmentation approach imple-

mented within the program IsoFinder. The method accounts for both fine-scale

and large-scale structure. We adapt direct simulation methods to allow for iid

samples from the posterior distribution of our model, and provide an accurate

approximation to this which can analyse data from a chromosome in a matter of

seconds. We apply our method to human Chromosome 1. The resulting estimate

of how GC content varies across this region is shown to be a better predictor of

local recombination rates than IsoFinder; and we are able to detect regions con-

sistent with the classical definition of isochores that cover 85% of the chromosome.

We also show a measure of relative GC content to be particularly predictive of

local recombination rates.
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1 Background

The genomes of many eukaryotes display striking large scale heterogeneity in

base composition along their chromosomes. In particular, the distribution of

G+C content (hereafter GC) along the chromosomes of mammals is highly

variable (Bernardi 2000; Eyre-Walker and Hurst 2001). Initial analysis of these

compositional patterns was performed using centrifugation experiments, which

appeared to show discrete classes of different GC content. These results lead to

the isochore model for the genomes of warm-blooded vertebrates: such genomes

were thought to consist of a mosaic of isochores, defined as regions longer than

300 kilobases (kb) within which base composition is homogenous, and which

belong to a number of distinct families differing greatly in GC abundance

(Bernardi, 2000). The recent sequencing of many complete vertebrate genomes

has led to the re-evaluation of the isochore model using in silico analyses

(IHGSC, 2001). The precise meaning of the term ‘isochore’, particularly with

regard to the notion of homogeneity within isochores implied by the prefix “iso’,

has been the subject of dispute. What is abundantly clear from plots of GC

content across mammalian chromosomes (e.g. using UCSC Genome Browser

http://genome.cse.ucsc.edu) is that there is considerable variation in base

composition at large scales (hundreds of kb and above). It is the analysis of such

large scale variation which we address in this study.

What are the reasons for analysing patterns of base composition? The most

simple aim is descriptive: there is considerable large scale compositional
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variation in mammalian genomes, but the signal is obscured by small scale noise,

so we need computational tools to understand any underlying structure there

may be. The second reason is for practical and predictive purposes. It appears

that many features of the genome are correlated with GC content, such as gene

density (Venter et al., 2001), repeat density (IHGSC, 2001), substitution rates

(Hardison et al., 2003), and recombination rates (Kong et al., 2002). Much,

although not all, of the covariation can be explained by GC variation (Hardison

et al., 2003; Spencer et al., 2006). For example, if we are designing gene

prediction methods, it is more likely that a high GC region will contain genes

than a low GC region (Carpena et al., 2002), so utilising information about the

isochore structure is worthwhile. Finally, there is the ultimate aim of trying to

understand the evolution of genomes at the finest possible scale, that of the

single nucleotide (Eyre-Walker and Hurst, 2001). What are the evolutionary

forces which affect base composition? How and when were isochores created?

Why do some genomes have isochores while others show far less compositional

variation? To answer these sorts of questions we need to develop powerful

statistical methods to infer underlying patterns of base composition and to test

hypotheses concerning their evolution.

It seems clear that it is better to analyse patterns of base composition by using

the underlying structure in GC variation, i.e. what we term isochores, rather

than simply using windows based methods which are dependent on the choice of

window size (Li et al., 2002). Current methods for the identification of isochores

from sequence data can be divided into two main classes: highly efficient

methods for dealing with genomic sequences many megabases (Mb) long

(Nekruteno and Li, 2000; Oliver et al., 2004), and more sophisticated but slower

methods that are usually applied to much smaller sequences (reviewed in Braun
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and Muller, 1998). Methods for identifying isochores are segmentation methods:

the aim is to divide a sequence into a number of regions, termed segments, which

represent the hidden deterministic process which generates the observed

compositional variation. Only at the boundaries between segments, termed

changepoints, does the underlying process change, although stochastic effects

generate additional variation throughout the sequence. A fast heuristic method

for sequence analysis is recursive segmentation, in which binary segmentation is

repeatedly applied to the data (Braun and Muller, 1998; Li et al., 2002). Binary

segmentation involves choosing whether to cut a sequence into two sub-sequences

and where the cut should be made. The general approach is to first find the

changepoint which maximises some statistic measuring the difference in GC on

either side of the changepoint. The cut is then made, provided that the evidence

for segmentation is strong enough. If the sequence is cut, then binary

segmentation is independently repeated on the two sub-sequences. So the

recursive segmentation continues until no further changepoints can be found

within any of the sub-sequences. The final set of sub-sequences becomes the

identified segments. As an example, the program IsoFinder implement a binary

segmentation for GC content (Bernaola-Galvan et al., 1996; Oliver et al., 2004).

We describe a Bayesian approach to inferring isochore structure. This approach

has numerous advantages over the binary segmentation procedure implemented

within IsoFinder: it jointly infers all changepoints, quantifies uncertainty in the

underlying isochore structure, and averages over this uncertainty when

producing estimates of GC content across the chromosome. It also appears to be

more robust in terms of the inferred isochore structure, whereas relatively minor

changes in the DNA sequence can cause comparatively large changes in the

inferred isochore structure using binary segmentation.
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The use of Bayesian methods for segmentation of genomic features is becoming

increasingly popular. There are methods for segmentation of the DNA sequence

(Liu and Lawrence, 1999; Boys et al., 2000) as well as methods for segmenting

the genome based on other features (Salmenkivi et al., 2002; Fearnhead and

Sherlock, 2006). Whilst our approach is based on segmenting the genome based

on the DNA sequence, we focus solely on the large-scale features of the sequence.

We first partition the chromosomal region of interest into 3kb windows (though

the approach is robust to the choice of window size of the order of 3–5kb) and

then summarise the data based on the GC content in these windows. This both

filters out very fine-scale variation in GC content (such as due to CpG islands,

which are ≈ 1kb regions of high GC content), and also leads to algorithms that

are computationally more efficient, and scalable to the whole genome. Our

approach is most similar to that described in Fearnhead and Liu (2007), but it is

based on a more realistic model, which directly models isochore families (see

Section 3) and allows for both fine and large scale structure though allowing for

dependence in GC content across isochores. While there are algorithms that

analyse either fine-scale variation in GC content (e.g. Fearnhead and Liu, 2007),

or large-scale variation (e.g. Cohen et al., 2005; Constantini et al., 2006), our

approach and that of IsoFinder are perhaps the only that try to infer both.

The outline of the paper is that we first give a more detailed description of the

problem, followed by details of the model we use. We then describe our

computational algorithm that enables us to generate samples from the posterior

distribution of our model. In Section 5 we show how our method is substantially

more accurate in estimating GC content than IsoFinder. We apply our method

to analysing the GC content of human chromosome 1 in Section 6, and look at

predicting local recombination rates from our estimates of the local GC content
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of the region. Our paper concludes with a discussion.

2 Problem Description

The raw data consists of a single contiguous stretch of DNA data, which can be

viewed as a long ‘word’ containing only four different ‘letters’: A, C, G and T.

Our aim is to infer how the GC content (the proportion of letters that are G or

C) varies across this contiguous region (‘word’). As an example Figure 1 shows

data from a 6.0 megabase (Mb) stretch of human chromosome 1. We have

summarised the DNA data by partitioning the 6.0Mb region into 2000 windows,

each of 3.0 kb long, and for each window plotting the proportion of letters

within that window that are G or C. Overlaid on the data in Figure 1 we show

the inferred isochore structure calculated by the IsoFinder computer program:

a series of segments of homogeneous (constant mean) GC content. Throughout

this paper we refer to each segment as an ‘isochore’, though the classical

definition of isochores is usually restricted to segments whose length is of the

order of 300kb or longer.

The program we used to calculate the isochore structure of the region of

chromosome 1 in Figure 1 is currently perhaps the most popular program for

inferring isochore structure. For example the Isochore structure detected by

IsoFinder is displayed on the human genome web browser

(http://genome.cse.ucsc.edu). IsoFinder uses a binary segmentation

approach as described in the introduction.

Whilst simple and quick to implement, there are several disadvantages to

IsoFinder. Firstly the user needs to specify a p-value to be used within the

segmentation approach, which governs the amount of evidence required for a
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Figure 1: Plot of GC content in 3kb windows for 6Mb of human chromosome

1 (black); and IsoFinder segmentation (red). Data comes from positions 6Mb–

12Mb of build hg17.

new breakpoint to be introduced. The results in Figure 1 were obtained with a

p-value of 0.95 and give an inferred structure which contains 116 isochores.

Changing the p-value to 0.99 would have produced a different structure with

fewer isochores. Secondly, the method produces a single estimate of the Isochore

structure, and we get no measure of the underlying uncertainty with the position

of the breakpoints in this structure. The number and position of changepoints it

infers can vary quite noticeably even with only minor changes to the underlying

DNA sequence (see Section 5). Finally, there is also evidence that binary

segmentation procedures are inferior to methods that jointly infer all

changepoints (Braun et al., 2000).

Here we propose a Bayesian, model-based approach for inferring isochores. We

apply our method to DNA data which is summarised by the proportion of GC

content in a series of consecutive, non-overlapping windows (such as the data
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presented in Figure 1). This filters out the fine-scale structure in the DNA

sequence, and by summarising the data in this way we can produce a method

that can scale to analysing genomewide data. The former is important in terms

of the aim of analysing structure in GC content, and IsoFinder also filters out

the structure at the 3kb–5kb level.

3 Model

Before describing the model that we chose for detecting Isochore structure, we

first describe the results of some preliminary analysis and some prior knowledge

of the GC structure that guided our choice of model. Throughout, we assume

our data is described by y1, y2, . . . , yn, the average GC content in consecutive

windows.

Both for simplicity and because it is known to capture the main large-scale

structure in the data, we are going to assume a piecewise constant model for the

underlying isochore structure. Thus a single realisation of this process will look

like the output of IsoFinder as shown in Figure 1. This realisation can be

described by changepoints and mean levels.

To specify a model we will need to describe (i) the marginal distribution of the

mean level, µ, for each Isochore; (ii) the dependence structure in these mean

levels across Isochores; (iii) the joint distribution of the number and position of

the changepoints; (iv) the distribution of the data conditional on the Isochore

structure.

It has been suggested by Bernardi (2000), that the isochore organisation of the

human genome can be partitioned into four families, and the GC content for

8



0.30 0.35 0.40 0.45 0.50 0.55 0.60

0
1

2
3

4
5

6
7

C+G content

Re
lat

ive
 A

m
ou

nt
s

H3

H2

H1

 L

Figure 2: The Isochore Organisation into four Families according to the GC con-

tent level, one GC poor the L ( ) and three GC rich, namely the H1 ( ), H2

( ), H3 ( )

isochores within each family can be described by a normal distribution, as shown

in Figure 2 (alternatively five family models have been suggested, e.g.

Constantini et al., 2006). Therefore this motivates fitting a normal mixture

model for the marginal distribution of mean GC content of the isochores, with

each component associated with a different family.

While previous models have assumed independence of the mean GC content of

different isochores (e.g. Fearnhead and Liu, 2007), this assumption is unrealistic.

Smith and Lercher (2002) documents the long range correlation that exists in

the human genome, and Bernaola-Galvan et al. (2002) showed that there is

structure inside long relatively homogeneous regions. We allow for dependence

through a hidden Markov model, where the hidden state relates to the family of

the isochore. This enables us to capture some degree of dependency, whilst

remaining within a computationally tractable framework.
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We model the joint distribution of the number and position of changepoints

through a probabilistic model for the length of each isochore. For the results

that are presented, we chose an geometric distribution for the isochore length –

as the results from IsoFinder has a range of very short to long lengths in the

isochore structure that it finds (see Figure 1), though the computational

methodology below can be extended to any distribution for this length.

Finally, analysing the residuals of the chromosome 1 dataset after we run

IsoFinder, suggests that conditional on the isochore mean, the data is, at least

approximately, normally distributied and is close to being independent

(autocorrelation at lag 1 is 0.25; and no significant autocorrelation at lags > 2.).

3.1 Mathematical Description of Model

The specific model we use has a hierarchical structure. Firstly, denote the

number of isochores by m, and the changepoint positions by τ0 < τ1 < · · · < τm

with τ0 = 0, τm = n and the ith isochore containing observations

yτi−1+1:τi
= (yτi−1+1, yτi−1+2, . . . , yτi

). For each isochore we associate an isochore

family. We allow for K different isochore families, and let ζi ∈ {1, . . . , K} denote

the family of the ith isochore.

The distribution of m and the position of the changepoints is specified through a

model for the isochore lengths. We let this distribution depend on the family of

the isochore. We assume a Markov model for the isochore families. Thus the

joint probability of the number and position of the changepoints, and the

families of the isochores can be factorised as

Pr(m, τ1, . . . , τm−1, ζ1, . . . , ζm) = Pr(ζ1)

(

m−1
∏

i=1

Pr(τi|τi−1, ζi) Pr(ζi+1|ζi)

)

Pr(τm|τm−1, ζm).

We then assume that the distribution of the length of an isochore has a
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geometric distribution, with mean 1/λk for an isochore in family k:

Pr(τi = s|τi−1 = t − 1, ζi = k) = λk(1 − λk)
t−s,

for s = t, t + 1, . . . , n − 1. The probability of no further changepoints (i.e.

s = n), conditional on an isochore in family k, is (1 − λk)
n−t. We further

introduce a K × K transition matrix P so that Pr(ζi+1 = l|ζi = k) = Pkl. The

distribution Pr(ζ1) is defined to be the stationary distribution of P .

Conditional on ζi = k, the isochore family of the ith isochore, the mean and

variance of the GC content of that isochore is drawn from the standard

conjugate normal-variance prior, with

σ2
j ∼ IG(ν/2, γ/2), and µj|σ

2
j ∼ N(ξk, σ

2
j /δk),

where IG(·, ·) denotes the inverse gamma distribution and N(·, ·) the normal

distribution.

Finally, conditional on the changepoints, the hidden states of the Markov chain

and parameters associated with the segments, the observations are considered to

be independent, and normally distributed. For observation yj that belongs to

the ith isochore:

yj ∼ N(µi, σ
2
i ), where j ∈ {τi−1 + 1, . . . , τi}.

This model has an important feature which makes it computational tractabile. If

we condition on the hyperparameters of the model, then given a changepoint at

time s and the isochore family of the isochore starting at time s + 1, the data

y1:s and ys+1:n are independent of one another.
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4 Bayesian Inference

We perform Bayesian inference for this model, conditional on the values of

hyper-parameters: K, the number of isochore families; λk for k = 1, . . . , K for

the distribution of the isochore length; P , the transition matrix of the isochore

families; ξk, and δk for k = 1, . . . , K for the prior distribution of the isochore

means; and ν and γ for the prior distribution of the segment variances.

Conditional on these values we can obtain iid samples from the joint distribution

of the number and position of changepoints, the family of each isochore, and the

GC content of each isochore using an algorithm related to the

Forward-Backward algorithm Baum et al. (1970). The algorithm we present here

is a new extension of previous algorithms for changepoint models (Yao, 1984;

Barry and Hartigan, 1992, 1993; Liu and Lawrence, 1999; Fearnhead, 2005; Lai

et al., 2005; Fearnhead, 2006) to allow for the HMM component of the model. In

particular we adapt the method of Fearnhead and Liu (2007) due to its

computational efficiency (see Section 4.2). Details of how we choose the

hyperparameters is given in Section 4.3

4.1 Exact Inference

Our choice of conjugate priors means that we can integrate out the parameters

associated with a given isochore (conditional on the isochore family). This means

that given a sample from the joint distribution of the number and position of the

changepoints, and the family of each isochore, it is straightforward to sample the

isochore means. We thus focus on how to simulate from the posterior

distribution of the changepoint positions and isochore families.

Firstly define the marginal likelihood of observations yt:s conditional on them
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belonging to a single isochore, and the isochore belongs to family k by R(t, s, k).

We allow for missing data in one or more windows. For notational simplicity

define yi = 0 if there is no observation for window i, so that
∑s

i=t yi is the sum of

observations for windows t to s inclusive; and let nt be the cumulative sum of

observations up to an including window t (so nt = t if there is no missing data).

Then the marginal likelihood is

R(t, s, k) =

∫

µ

∫

σ2

(

s
∏

i=t

f(yi|µ, σ)

)

p(µ|σ, ζ = k)p(σ) dσ dµ.

=
π−(ns−nt+1)/2 γν/2

(

γ +
∑s

i=t y
2
i + ξ2

kδk −
P

s

i=t
yi +ξ2

k
δk

ns−nt+1+δk

)(ns−nt+1+ν)/2

Γ
(

(ns − nt + 1 + ν)/2
)

Γ(ν/2)
.

(1)

We introduce a 2-dimensional state at time t, (Ct, Zt), where Ct is defined as the

time of the most recent changepoint prior to time t, and Zt is the family of the

current isochore at time t. Under our model (Ct, Zt) is a Markov chain with

transition probabilities:

Pr(Ct+1 = j, Zt+1 = l|Ct = i, Zt = k) =







(1 − λk) if j = i and l = k,

λkPkl if j = t,

with all other transitions having zero probability.

We can then write down recursions for the filtering probabilities Pr(Ct, Zt|y1:t)

(See Appendix A for derivation). For j < t we have

Pr(Ct+1 = j, Zt+1 = l|y1:t+1) ∝
R(j + 1, t + 1, l)

R(j + 1, t, l)
Pr(Ct = j, Zt = l|y1:t)(1 − λk),

(2)

while

Pr(Ct+1 = t, Zt+1 = l|y1:t+1) ∝ R(t+1, t+1, l)
t−1
∑

i=0

K
∑

k=1

Pr(Ct = i, Zt = k|y1:t)λkPkl.

(3)
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The recursions are initalised with P (C1 = 0, Zt+1 = l|y1) = Pr(ζ1 = l)R(1, 1, l)

for l = 1, ldots,K. Note that the normalising constant of these equations is

Pr(yt+1|y1:t) and thus a by-product of solving them is that we can calculate the

likelihood Pr(y1:n) (see Fearnhead, 2008).

These recursions can be solved for t = 1, . . . , n. Once calculated, the last

changepoint and isochore family can be simulated directly from Pr(Cn, Zn|y1:n).

Then if we condition on a changepoint at t with isochore family l (Ct+1 = t,

Zt+1 = l) we have that

Pr(Ct = i, Zt = k|y1:n, Ct+1 = t, Zt+1 = l) ∝ Pr(Ct = i, Zt = k|y1:t)λkPkl,

for i = 0, . . . , t − 1 and k = 1, . . . , K. Simulating from this distribution gives us

both the family and the position of the beginning of the isochore that ends at t.

Thus we can recursively simulate the changepoints and isochores backwards in

time.

4.2 A Computationally Efficient Algorithm

The above algorithm enables iid samples to be drawn from the posterior

distribution of the number and position of the changepoints and the families of

the isochores. Once these have been sampled, it is trivial to sample the

parameters (mean GC content, and variance) for each isochore. However, the

algorithm suffers from the disadvantage that its computational and storage costs

is quadratic in the number of observations, n.

To have an algorithm that scales linearly with n, and can be applied to data

from whole chromosomes, we applied resampling ideas from Fearnhead and Liu

(2007). Their idea is to approximate Pr(Ct, Zt|y1:t) by a discrete distribution

with fewer than tK support points: by stochastically removing support points
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that have small probability. We used their Stratified Rejection Control

algorithm (see also Liu et al., 1998), which was shown to perform well both

theoretically and in simulation studies. The basic idea is as follows. Assume

that we have a discrete distribution with N support points (c
(i)
t , z

(i)
t and

associated probabilities w
(i)
t (for i = 1, . . . , N) that approximate Pr(Ct, Zt|y1:t).

We can produce an approximation with fewer support points using the following

resampling algorithm:

(i) Choose an arbitrary cut-off α. Order the support points so that if i < j

then either c
(i)
t < c

(j)
t or c

(i)
t = c

(j)
t and z

(i)
t < z

(j)
t .

(ii) Simulate u a realisation of a uniform random variable on [0, α]. Set i = 1.

(iii) If w
(i)
t ≥ α goto (iv); else let u = u − w

(i)
t . If u ≤ 0 then let u = u + α and

set w
(i)
t = α, otherwise set w

(i)
t = 0.

(iv) Let i = i + 1; if i < N return to (ii); otherwise remove all support points

for which w
(i)
t = 0, and renormalise the probabilities of the remaining

support points.

The idea is that support points with probability, w
(i)
t less than α are

probabilistically removed. The probability of removing a support point is w
(i)
t /α.

Those support points that are kept have their probabilities increased in step (iii)

so that the algorithm is unbiased (before normalisation, expected probability of

a support point after resampling is equal to its probability before). The ordering

in step (i) ensures that the support points removed are evenly spread over the

support of Pr(Ct, Zt|y1:t). Note that α governs the trade-off between smaller

approximation (smaller α) and speed (larger α).

In practice we have found α = 10−6 introduces negligible error, but can greatly
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increase the speed of the overall algorithm. In the application in Section 6, the

resulting algorithm approximated the filtering densities, Pr(Ct, Zt|y1:t), by

distributions with an average of around 200 support points. The true

distributions had an average of 80,000 support points, so this led to a 400-fold

reduction in CPU and memory cost.

4.3 Choosing the Hyper-parameters

The above exact simulation method requires the specification of the

hyper-parameters. Based on Figure 2, in our analysis below we specify the

number of isochore families to be 4, and the mean GC content to be

(ξ1, ξ2, ξ3, ξ4) = (0.39, 0.44, 0.48, 0.53). The other hyper-parameters were

estimated via maximum likelihood using a Monte Carlo EM algorithm. Details

of this are given in Appendix B.

5 Comparison with IsoFinder

We compared our new Bayesian approach with that of IsoFinder on a series of

simulated data sets. In order to simulate data that captures the structure we

observe in real data, we based all simulated data sets around the inferred

isochore structure in the region of chromosome 1 that is shown in Figure 1. This

inferred structure was taken to be the underlying truth that we wish to estimate.

Our three simulated data sets differed in how the observations relate to the

underlying isochore structure:

(A) Observations are independent and normally distributed with common

variance; isochore mean given by the sample mean of the observations
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within that isochore.

(B) Same as (A) except that we introduce extra changepoints within the longer

isochores (greater than 90kb), and recalculate the mean of the observations

based on these. Extra changepoints were added approximately every 60kb.

(C) Same marginal distribution as (A), but we introduce dependence into the

observations through an AR(1) model for the observation, with 1-lag

correlation of 0.25.

The idea of (B) and (C) is to introduce extra structure in the observation

process within each isochore; (C) allows for dependencies that are greater than

those inferred in the true data (see Section 3).

We compare the results of our method and IsoFinder in terms of estimating the

underlying GC content. For our method we estimate the GC content for any 3kb

window via the posterior mean of the GC content for that window. We measure

the accuracy of a method by averaging the square error of its estimated GC

content from the true GC content across the 2000 3kb windows.

To run IsoFinder on the simulated data, we had to simulate sequence data. We

did this by simulating the order of nucleotides for each window at random

subject to the constraint on the number of GC nucleotides for that window.

Whilst this approach does not adequately reflect the true fine-scale structure in

DNA sequences, this should not affect IsoFinder much as it filters out fine-scale

structure at less than the 3kb level. However we did run IsoFinder on two

simulated sequences for each data set, and found a noticeable difference in the

segmentation and hence the performance of the method, which suggests the

segmentation approach is relatively sensitive to minor changes in the DNA

sequence being analysed. The reason for this is that IsoFinder gives a single
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Data Bayesian Approach IsoFinder p = 0.95 IsoFinder p = 0.99

MSE MSE MSE MSE MSE

(A) 1.7×10−4 3.1×10−4 3.0×10−4 3.6 × 10−4 3.4 × 10−4

(B) 2.0×10−4 2.5×10−4 2.7×10−4 3.4 × 10−4 3.7 × 10−4

(C) 2.6×10−4 4.5 ×10−4 4.1×10−4 3.7 × 10−4 3.7 × 10−4

Table 1: Results of our method (Bayesian Approach) and IsoFinder, for two

different significance levels, at inferring GC structure for 3 different simulation

scenarios (see text for details). We give mean square error (MSE) for our method,

and MSE for two sequences (simulated for same GC content per 3kb window) for

each scenario for the IsoFinder analyses.

segmentation of the data. As there are often a range of segmentations that are

plausible for a given data-set, minor changes can mean that IsoFinder jumps

between two relatively dissimilar segmentations. One of advantage of the

Bayesian approach we take is that we average over possible segmentations, and

thus our algorithm is much more robust to minor changes in the sequence data

(which for the Bayesian approach correspond to small changes in the GC content

of each window).

Our results are given in Table 1. Our method is substantially more accurate at

inferring GC content that IsoFinder, regardless of whether IsoFinder is run

with a significance value of p = 0.95 or p = 0.99. Mean square error is reduced

by between 40% and 50% for data set (A); between 20% and 40% for (B); and

between 30% and 40% for (C).
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6 Analysis of Chromosome 1 DNA sequence

We applied our method to data from human Chromosome 1, with the DNA

sequence taken from build hg17 (available from

http://hgdownload.cse.ucsc.edu/goldenPath/hg17). There was substantial

missing data around the centromere of the chromosome, and so we analysed the

two arms of the chromosome separately: the first 120,408kb; and positions

146,328kb–245,217kb. In total this accounts for over 219MB of sequence (approx

7% of the human genome), with over 73,000 3kb windows. We counted as

missing data any window for which the complete DNA sequence was not known,

and this resulted in 431 missing data points.

Analysis of the data for a given set of hyper-parameters took substantially less

than a minute on a desktop PC. Convergence of the EM algorithm was achieved

within around 30 iterations. Figure 3 shows the estimates of mean GC content.

The estimated parameters suggest that there is less heterogeneity within the L

isochore family (mean number of windows between changepoints is 18 for the L

family, and 5 for each of H1–H3). For all isochore families we expect between 15

and 25 consecutive isochores from that family. For each family, the modal

transition is to a neighbouring isochore family.

For comparison we also analysed the data using the method of Fearnhead and

Liu (2007), which corresponds to the special case of K = 1 in our model (i.e. it

ignores isochore families). We compared the models based on the change in

log-likelihood. There was an increase of 1,530 for the K = 4 model; while the

number of estimated hyper-parameters increased by only 16. Thus using either

information criteria such as AIC or BIC, or a chi-squared test based on the

likelihood ratio statistic, there is over-whelming evidence in favour of choosing
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the model with K = 4.

6.1 Detecting Classical Isochores

One ongoing question is to what extent “classical isochores” exist within the

human chromosome, and whether they are detectable. Cohen et al. (2005) define

a classical isochore as a region of a chromosome which is (i) longer than 300kb;

(ii) is more homogeneous in its composition than the chromosome on which it

resides; and (iii) can be classified into an isochore family . They suggest testing

(ii) for an isochore based on whether there is significant evidence for the variance

in GC content within a segment is smaller than the variance in GC content

across the whole chromosome. Results based on the method of Cohen et al.

(2005) suggest that only 41% of the human genome lies within such classical

isochores.

We considered whether our analysis enables us to detect classical isochores more

effectively. Our idea was to use the posterior distribution on the isochore family

for each window. We first calculated the modal isochore family for each window,

and then partitioned the chromosome into contiguous regions of the same modal

family. For each contiguous region we then tested whether they satisfied

conditions (i) and (ii) above (by definition they trivially satisfy (iii)). The

regions that satisfied these conditions are shown in Figure 3. In total these

covered 85% of the chromosome.

By comparison, applying the same method to the isochores detected by

IsoFinder, gave only 60% coverage of the chromosome. Our results are

comparable with those of Constantini et al. (2006), who also found classical

isochores that cover 85% of the genome, though they were using a somewhat
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Figure 3: Results of our model on the Human Chromosome 1 dataset: the raw

data is given by black dots; the inferred GC content is given by the red line. At

the bottom of the plots we show the regions of contiguous modal isochore family

that are consistent with the features of classical isochores (different levels of the

lines correspond to different families; from highest to lowest: H3, H2, H1 and L.
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adhoc algorithm specifically designed to detect such classical isochores.

6.2 Fine-Scale Correlation with Recombination Rates

One motivation for inferring GC content is to look for correlation with other

genomic features. Galtiera et al. (2001) have established a causal relationship

between recombination and GC content by examining the variation on the levels

of polymorphism in the genome, and we decided to investigate this relationship

on chromosome 1. We downloaded the fine-scale recombination map (Myers

et al., 2005) from phase II of the HapMap project (available from

http://www.hapmap.org/) and analysed the correlation between these

estimates of recombination (for each 3kb window) and GC content. Our

rationale is that a better method at estimating the local variation in GC content

is likely to have greater correlation with local recombination rate.

We first log-transformed the recombination rate estimates, so that their

marginal distribution was close to normal. We then calculated the correlation

between log-recombination and GC content as inferred by (i) GC content within

the 3kb window; (ii) IsoFinder; and (iii) our method. The resulting correlations

were (i) 0.30, (ii) 0.30, and (iii) 0.32. An alternative approach is to infer GC

content using a larger region centered on each window. If we implement this,

and choose the optimal size of region (27kb), we obtain correlation that is

almost identical to that obtained by our method (0.32).

To gain a greater insight into the correlation between GC content and

recombination rate, we repeated the analysis for overlapping 5Mb windows

across chromosome 1 (see Figure 4). The correlation of recombination rate with

the estimates from our method is greater than that with the estimate of
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Figure 4: Correlation of GC content with log recombination rate for 5Mb windows

of chromosome 1. The lines correspond to 3 different measurements of GC content:

raw 3kb data (black dashed-line); IsoFinder estimate (blue, dotted-line); our

estimate (red, full-line).

IsoFinder in over 80% of the windows (and greater than correlation with raw

GC in 95% of the windows). However more striking is the fact that correlation

between GC content and recombination rate varies considerably across the

chromosome, from < 0 to > 0.6.

One reason for this is that the auto-correlation structure in GC content extends

much further than auto-correlation of recombination rates. Thus a relative

measure of GC content, which considers the difference between the local

estimate of GC content and the average GC content over a Mb scale may be a

better predictor of local recombination rate. For a 3kb window let ri denote the

log recombination-rate, Gi the inferred GC content from our method, and Ḡi the

average GC content for a 1Mb region centered on the region. Linear regression

suggests the predictor Gi − 0.65Ḡi for ri. This predictor has correlation 0.36

with recombination rate.
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7 Discussion

We have presented a novel Bayesian method for inferring isochore structure from

DNA sequence data. Both our simulation results, and the correlation analysis of

the chromosome 1 data suggest that it is a more accurate approach than the

binary segmentation procedure used by the program IsoFinder. We have

derived a new direct simulation algorithm that enables iid draws from the

posterior distribution, and shown how using resampling ideas we can implement

an approximate algorithm that can analysis data from a whole chromosome in a

matter of seconds.

Inference for the hyper-parameters of our model are possible using an EM

algorithm. For our analysis we fixed the number of isochore families, K, and

their mean GC content based on prior information (Bernardi, 2000). It would

have been possible to perform inference for the mean GC content of the families

within the EM algorithm, though maximisation becomes more difficult due to

multiple local maximum. Inference for the number of families is also possible

using our algorithm, as the algorithm calculates the marginal likelihood of the

data, which can then be used to compare models with different values of K.

An important feature of our model is that it captures both fine-scale variation in

GC content, which can be used to look at correlation of GC content with other

features; and also large-scale variation which helps define regions of the

chromosome that fit within the classical idea of isochores. Our analysis of GC

content on chromosome 1 demonstrated the accuracy of both the inferences for

fine-scale and large-scale variation in GC content. Furthermore we showed that

relative measures of GC content may be the most predictive of local

recombination-rates; something that has not been considered previously (see e.g.
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Spencer et al., 2006).

The program implementing our method is available from the first author.
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Appendix A: Derivation of Recursions (2) and (3)

By Bayes theorem

Pr(Ct+1 = j, Zt+1 = l|y1:t+1) ∝ Pr(yt+1|y1:t, Ct+1 = j, Zt+1 = l) Pr(Ct+1 = j, Zt+1 = l|y1:t)

For recursion (2) we use the fact that if j < t

Pr(Ct+1 = j, Zt+1 = l|y1:t) = Pr(Ct = j, Zt = l|y1:t)(1 − λk).

Furthermore by the conditional independence property of the model

Pr(yt+1|y1:t, Ct+1 = j, Zt+1 = l) = Pr(yt+1|yj+1:t, Ct+1 = j, Zt+1 = l)

=
Pr(yj+1:t+1|Ct+1 = j, Zt+1 = l)

Pr(yj+1:t|Ct+1 = j, Zt+1 = l)

=
R(j + 1, t + 1, l)

R(j + 1, t, l)
.

A similar derivation applies for (3), but here

Pr(Ct+1 = t, Zt+1 = l|y1:t) =
t−1
∑

i=0

K
∑

k=1

Pr(Ct = i, Zt = k|y1:t)λkPkl.

Appendix B: Monte Carlo EM Algorithm

Within the EM algorithm, the full data consists of the number and position of

the changepoints, the family of each isochore, and the mean GC content and
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variance associated with each isochore. From this we define summary statistics:

mk the number of complete isochores of family k (i.e. excluding the final

isochore); lk the number of windows contained in isochores of family k; nij the

number of transitions from family i to family j. Let Sk denote the set of

isochores from family k and µi and βi = 1/σ2
i be the mean and precision of

isochore i. Let m = 1 +
∑K

k=1 mk denote the number of isochores as before.

For analytical simplicity we drop the contribution to the likelihood from the

family of the first isochore. Due to the length of the data sets analysed, the

effect of this is negligible. The resulting full-data log-likelihood is:

K
∑

i=1

K
∑

j=1

nij log(Pij) +
K
∑

k=1

(mk log(λk) + (lk − mk) log(1 − λk))+

K
∑

i=1

(

−nk log(δk)/2 −
δk

2

∑

j∈Sk

βj(ξk − µj)
2

)

+

ν
m
∑

j=1

log(βj)/2 + mν log γ − γ
m
∑

j=1

βj/2 − m log(Γ(ν/2)).

The EM algorithm proceeds by taking expectation of the log-likelihood (with

respect to their conditional distribution given the current values of the

hyper-parameters). Within our Monte Calo EM algorithm we estimate this

expectation using the simulated realisations from the current posterior

distribution. Thus for example if we denote the Monte Carlo estimates of the

expectations of nij for i, j = 1, . . . , K by n̂ij, then our new estimates of Pij are

n̂ij/(
∑K

k=1 n̂ik). Updates for all hyper-parameters except ν can be performed

analytically; we maximise ν numerically.
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