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Abstract – A fundamental issue in real-world moni-

toring network systems is the choice of sensors to track

local events. Ideally, the sensors work together, in a dis-

tributed manner, to achieve a common mission-specific

task. This paper develops a framework for distributed

inference based on dynamic clustering and belief propa-

gation in sensor networks with deficient links. We in-

vestigate this approach for dynamic clustering of sen-

sor nodes combined with belief propagation for the pur-

poses of object tracking in sensor networks with and

without deficient links. We demonstrate the efficiency

of our approach over an example of hundreds randomly

deployed sensors.
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1 Introduction
Wireless sensor networks have been recently subject to
an enormous interest. They consist of a large amount
of small sensor nodes equipped with cheap devices dis-
tributed in the environment. The devices gather data in
real time, process it and the result serves for different
purposes: situation assessment, wild life monitoring,
e-health monitoring of people, “health monitoring” of
aircraft wings, fire monitoring, and others.

Recent works are focused on distributed data pro-
cessing [3] which will make the network robust to sen-
sor failures, and is feasible for large networks and areas.
Belief propagation [12, 11, 5] is a promising theoretical
framework that has a high potential to solve inference
problems in a distributed way.

Target tracking in sensor networks based on cluster
formations has been widely investigated (e.g., [4], [7,
8]). By organising sensors in clusters, any event in the
network can be tackled locally. This allows activating
only a reduced number of necessary sensors and, then,
saving energy. A common approach is the election of a
leading node (head) for each cluster. Each cluster head

is in charge to gather local information from the cluster
and to transmit it to another unit (for instance another
cluster head or a unit in a higher level).

However with randomly distributed sensors, the
tracking process and the cluster updating process
should integrate possibilities of coping with uncovered
regions (or even presence of obstructions). In this situ-
ation, the dynamic cluster updating process should be
able to activate strategic sensors in order to provide a
continuous tracking process (prediction only in uncov-
ered regions) and to transmit the relevant information.
In addition, many of the works are focused on energy
saving only, without studying how the cluster updating
process can ameliorate the tracking process. Realistic
cases such as temporary missing links, or communica-
tion failures need to be taken into account in the cluster
formation. In some applications [6], the collaboration
between sensors is a key issue to achieve a desirable
precision.

The approaches for clustering sensors in wireless sen-
sor networks can be classified into two big groups: 1)
Static clustering (the most studied case); 2) Dynamic

clustering for information transmission. The process of
clustering sensor nodes in sensor networks can be per-
formed according to different criteria such as communi-
cations, distance between sensors and energy efficiency.
Ji et al. [6] classify the existing clustering approaches
as: naive, scheduled monitoring, continuous monitor-
ing, dynamic clustering and prediction based.

In this paper we present a distributed approach, in
randomly distributed sensor network, for nonlinear dy-
namic systems and in the presence of deficient sensor
links. The distributed inference is based on dynamic
clustering and belief propagation. The main contribu-
tions of this work are: i) in the developed approach for
dynamic clustering taking into account several require-
ments, other than energy saving, such as uncovered re-
gions and missing messages, and ii) in the proposed
solution to a distributed inference problem with belief
propagation.
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The remaining part of this paper is organised as fol-
lows. Section 2 presents the proposed approach for
dynamic clustering. Section 3 describes concisely the
Markov random field approach for undirected graphi-
cal models. Section 4 formulates the problem of target
tracking based on distributed sensor networks and be-
lief propagation. Section 5 illustrates our approach over
a sensor network with hundreds of randomly dispersed
sensors. Finally, Section 6 provides the final discussion
of our work and of the results.

2 Dynamic Clustering
In this section we describe a dynamic clustering method
for the purposes of distributed detection and tracking
of an evolving object in a monitored area with ran-
domly distributed sensors, such as the example shown
in Figure 1. Performing a distributed inference in the
entire network is intractable and energy consuming. By
introducing dynamic clusters, the objective is to have
a good approximation of the joint probability density
function with a small number of sensors and with sig-
nificant energy savings. In the next section, rules are
introduced that allow us to describe the dynamic clus-
tering approach.
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Figure 1: This Figure shows a sensor network with 250 ran-
domly distributed sensors in 1 [km

2] two dimensional square
region, the sensing range of the sensors and the trajectory
of one moving object inside this square region.

2.1 Notations and Assumptions

Assume that there are N sensor nodes randomly dis-
tributed within a square region Λ (see Figure 1). Each
sensor has a communication range rc and a sensing
range rs (in general rc ≪ rs). Using the communi-
cation range of each sensor, a graphical model can be
introduced. Each node of the graph corresponds to a
sensor. An undirected edge between two nodes means
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Figure 2: A sensor network with 250 randomly distributed
sensors in 1 [km

2] two dimensional square region. The mov-
ing object trajectory is shown only at these places where
there is at least one sensor containing the object in its range.

that the communication range for one selected node
contains the other corresponding node. In this study,
a directed edge is also possible since it allows to take
into account the realistic case with different values for
the sensors’ communication range. It is then possible
that, one node vi can communicate with another node
vj and that, the reverse link is not possible due to the
inferior communication range of vj .

2.2 Cluster Model Requirements

At each time instant t, let define Ct ⊂ {1, . . . , N}
a cluster representing a group of sensors that are in
charge to exchange information and track the object.
In order to establish a way of choosing Ct, at time
instant t, we propose, in this section, to define desired
properties for the clusters in terms of 4 primordial rules.

1. The first rule is trivial. Ct must contains all sen-
sors detecting the target. The set of sensor detect-
ing the object at time t is denoted by CM

t .

2. In randomly distributed sensor networks the first
rule is not sufficient since during the evolution of
the object, the set CM

t might be empty (for ex-
ample see Figure 2). There is no prediction in this
case and the information from the previous steps is
lost. The second rule means that at each time in-
stant the clusters should contain nodes that ensure
the cluster is not an empty set. At each time step,
in some nodes of the network, an approximation of
the object position exists.

3. The third rule means that two successive clusters
in time, Ct and Ct−1, must have an intersection
Ct ∩Ct+1 = ∅. This rule ensures that there is no
loss of information between two time steps.
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4. A fourth rule can be introduced related with the
viability of the communication network. Due to
various reasons such as obstacles, sensor age, bugs,
sensors quality, the network links can have diverse
probabilities of failure. Additional nodes are added
to cluster Ct that provides redundancy or simply
establishes new links and replaces faulty links.

2.3 The Clustering Model

This Section presents a dynamic clustering model. A
cluster Ct at time t, is decomposed as follows:

Ct = CM
t ∪ CE

t ∪ CP
t ∪ CR

t , (1)

where CM
t represents the set of nodes detecting the tar-

get at time t (as previously defined in Section 2.2); CE
t

(E for empty) consists of the set of nodes added to the
cluster Ct determined with respect to the second rule;
CP

t (P stands for the previous time step) represents a
set of nodes added to the cluster Ct, with a procedure
determined from the third rule. Finally, CR

t (R stands
for redundancy) represents a set of nodes added to the
cluster Ct, determined based on the fourth rule. Addi-
tionally, in order to make difference between CM

t and
all other components of Ct appearing in the union in
equation (1), we introduce C+

t as following:

C+
t =CE

t−1 ∪ CP
t−1 ∪ CR

t−1. (2)

In the next sections, models and algorithms for these
cluster components are presented.

2.3.1 How to Construct the Model for CE
t

The set CE
t is designed to model nodes added to the

cluster Ct in order to ensure that Ct is not empty. At
time instant t− 1, we propose, in our model, that each
node in the previous cluster Ct−1 is able to activate
neighbouring nodes. The objective is, in case of predic-
tion only (the target position is not measured by any
sensor), to add in cluster CE

t sensors that are likely to
detect the target in the near future.

Let consider vi a node in Ct−1 and the set of all
neighbours of vi including the node vi itself. Any node,
in this neighbourhood set, containing the predicted tar-
get position in its sensing range (or more practically,
which intersects the estimated predicted position and
error according to a certain criterion, for instance the
Mahalanobis distance) can be activated. If, the predic-
tion is outside the sensing zone of vi’s neighbour, the
closest node to the predicted target position can be cho-
sen. Algorithm 1, given below, summarises the proce-
dure for activation of nodes in CE

t by a node vi ∈ Ct−1.
This way of generating CE

t can be refined by restrict-
ing the nodes that are allowed to activate other nodes.
In fact two cases can be distinguished:

1. If CM
t−1 is not empty, the position of the target

is at least known with a precision better than rs.

Algorithm 1. Activation of nodes in CE
t

by a node vi in Ct−1

EVALUATE xi,t|t−1, state prediction in node vi

EVALUATE P i,t|t−1, the corresponding
covariance matrix of xi,t|t−1

FOR k ∈ {i} ∪ N (i)
IF the sensor range intersects the ellipsoid

formed with (xi,t|t−1,P i,t|t−1)

ADD k in CE
t

END

IF CE
t = ∅

EVALUATE l ∈ {i} ∪ N (i) the closest node
to the target predictions (xi,t|t−1,P i,t|t−1)

ADD l in CE
t

END

Activating nodes in CE
t only by using nodes in

CM
t−1 affords tracking the target with a convenient

number of sensors. Without this restriction, the
cluster size keeps growing since each node in Ct−1

is able to generate at least on node in CE
t .

2. On the contrary, when CM
t−1 is empty, the target

position uncertainty is higher and it is desired to
activate more nodes for CE

t . In this case, all nodes
in Ct−1 can be used (except for nodes in CR

t−1 that
are dedicated only for redundancy and for amelio-
rating communication links in cluster Ct−1). Al-
gorithm 2 describes the proposed procedure for ac-
tivation of nodes in CE

t using nodes in Ct−1.

Algorithm 2. Activation of nodes in CE
t using

nodes in Ct−1

IF CM
t−1 6= ∅

FOR k ∈ CM
t−1

APPLY Algorithm 1 to k

ADD news elements in CE
t

END
ELSE

FOR k ∈ CE
t−1 ∪ CP

t−1

APPLY Algorithm 1 to k

ADD news elements in CE
t

END
END

2.3.2 The Model for CP
t

The set CP
t is added to the cluster Ct to ensure that

information from the previous cluster Ct−1 is continu-
ously propagated. A natural solution is to have nodes
in common, i.e., CP

t−1 ∪ CP
t = ∅. The difficulty is to

determine which particular nodes to add in order to
satisfy this rule. Similarly to the previous section, we
propose to distinguish two cases:

1. if CM
t−1 is not an empty set, then the nodes in CM

t−1

give a good representation of information at time
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t−1. A simple solution is to consider nodes in CM
t−1

to be activated in the next step i.e., CP
t = CM

t−1.

2. if CM
t−1 is empty, the target position uncertainty is

higher and in order to have the continuity between
the cluster, CE

t−1 ∪ CP
t−1 is a good representation

of the past (the set CR
t−1 is not added in CP

t

since CR
t−1 is dedicated for redundancy and

for ameliorating communication links in cluster
Ct−1). Table 3 describes the proposed algorithm.

Algorithm 3. Activation of nodes in CP
t using

nodes in Ct−1

IF CM
t−1 6= ∅

CP
t = CM

t−1

ELSE

CP
t = CE

t−1 ∪ CP
t−1

END

2.3.3 The Model for CR
t

The set CR
t is added to the cluster Ct in order to solve

communications and failure issues. Therefore, the way
of activating nodes in CR

t is very dependent on the ap-
plication. For example, in one application, nodes can be
activated in order to create a path between two nodes
in CM

t . In this case, creating this path can ameliorate
the estimations. Another application can be seen in the
case where, for each link in the network, an estimation
of the link quality can be obtained. Then, optimisa-
tion algorithms can be introduced in order to choose
supplementary nodes CR

t that will ameliorate the com-
munication in the cluster CM

t ∪ CE
t ∪ CP

t .

Algorithm 4. Activation of nodes in CR
t using

nodes in CM
t ∪ CE

t ∪ CP
t

FOR all existing links (i, j) in CM
t ∪ CE

t ∪ CP
t

IF pi,j > ǫ
FIND max(pi,k ∗ pk,j) for nodes k

having link both with i and j
IF max(pi,k ∗ pk,j)≤ ǫ

CHOOSE one k(i,j)

maximising the path probability

ADD k(i,j) to CR
t

DEACTIVATE the link (i, j)
in the corresponding graph of Ct

END
END

END

In this paper, we are focused on the second case with
missing messages between nodes in the clusters. Let as-
sume that, in order to simulate deficient links, for each
direct link (i, j), a probability pi,j of missing messages

from i to j is associated. A simple model for CR
t , is

presented as Algorithm 4. A threshold ǫ is introduced
and an alternative path is searched if the probability

pi,j of one link (i, j) is above the threshold ǫ. Algo-
rithm 4 is able to cope with sensor deficient links when
the sensor communication coverage of the sensor net-
work allows finding common neighbourhood between
any two nodes.

2.4 Clustering Evolution Model

This section resumes the clustering models in one evo-
lution model Ct = f(Ct−1,C

M
t ,Xt−1). The matrix

Xt−1 contains the state vectors of the targets at time
instant t−1 and f denotes the desired evolution model.

The evolution model for the selected sensors can be
described by the expression

{

t = 0,C0 = CM
0 ∪ CR

0 ,

t > 0,Ct = CM
t ∪ C+

t ,where
(3)

C+
t =fR(fE(Ct−1,Xt−1) ∪ f

P (Ct−1,Xt−1)) (4)

and the four distinctive rules (Algorithms 1-4) are taken
into account. Additionally, fE is the clustering predic-
tion model defined in subsection 2.3.1 for CE

t ; fP is
the model defined in subsection 2.3.2 for CP

t ; fR is the
model defined in subsection 2.3.3 for CR

t .
For t = 0, C0 contains CM

0 the set of sensors mea-
suring the target union CR

0 a set of nodes added for
communication issues. For any other time t > 0, Ct

is built using four sets satisfying the desired rules de-
scribed in Section 2.2.

3 Markov Random Fields and

Belief Propagation

3.1 Markov Random Fields

In Markov Random Fields (MRFs), the conditional
probability density function (pdf) for the set X =
{x1, . . . ,xN} of latent variables given the set ZC =
{z1, . . . , zM} of observed variables can be expressed as
follows:

p(x1, . . . ,xN |Z) =
1

κ

∏

i,j∈V

ψi(xi,xj)
∏

C∈C

ψC(ZC |xi),

(5)
where κ is a normalisation constant, V is the set of ver-
tices’ indices; C denotes the set of cliques (a clique is
defined as a subset of the nodes in a graph such that
there exists a link between all pairs of nodes in the sub-
set [2]), ψi(xi,xj) is a compatibility function between
nodes i and j and ψC(ZC |xi) represents the effect of the
local sensors on the belief in node i, i.e., this is the like-
lihood function of the ith sensor. This representation
will be used in the remaining of the paper.

3.2 Belief Propagation

An ultimate goal for inference problems is to compute
the posterior marginal probability density functions

p(xi|Z) =

∫

x\xi

p(x|Z)dx\xi
(6)
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for each xi. Using these marginal pdfs, estimates of
the state vector xi, given all the observations Z, can be
calculated on each node i.

For MRFs with a tree structured graph, a tractable
exact inference can be computed using the belief prop-
agation (BP) algorithm [10, 12] also called the sum-
product algorithm. The idea of BP is to compute the
marginal p(xi|Z) at each node using a message passing
process between nodes. In the case of tree structures,
the implementation of the BP follows a two-pass form:
first sending messages from the leaves to the node con-
sidered as the root, and then downwards from the root
to the leaves. A message mj,i from a node j to a node
i can be expressed as follows

mj,i(xi) ∝

∫

xj

ψj,i(xj ,xi)ψj(xj)
∏

k∈N (j)\i

mk,j . (7)

Then the belief function at node i that represents an
approximation to the marginal distribution is given by

bi(xi) ∝ ψi(xi)
∏

k∈N (i)

mj,i(xi). (8)

For graphs with cycles, exact algorithms solving the
MRF inference do exist but unfortunately they are
intractable and their real-time applications are ques-
tionable. However, approximated algorithms can be
implemented in the form of loopy belief propagation
(LBP) [10, 12]. Using the same messages passing ideas,
the messages can be computed in parallel in a loop until

reaching convergence. A message m
(n+1)
j,i from a node j

to a node i and the belief bn+1
i at node i, at the (n+ 1)

iteration, similarly to (7), can be expressed as follows

m
(n+1)
j,i (xi) ∝

∫

xj

ψj,i(xj,xi)ψj(xj)
∏

k∈N (j)\i

m
(n)
k,j ,

(9)

bn+1
i (xi) ∝ ψi(xi)

∏

k∈N (i)

mn+1
j,i (xi). (10)

4 Target Tracking Based on Dis-

tributed Sensor Networks
Consider the problem of tracking the motion of a target
moving in the sensor network area. Each node i is char-
acterised by its state vector xt,i = (xt,i, ẋt,i, yt,i, ẏt,i)

′

(comprising the target positions xt,i, yt,i and veloc-
ities ẋt,i, ẏt,i in x and y directions, respectively); ′

denotes the transpose operation. The state associ-
ated with all nodes in the network is denoted by
Xt = (xt,1, . . . ,xt,N ). At time instant t, a set of Nt

sensors denoted previously CM
t (in Section 2.2), pos-

sibly empty, produces a measurement matrix Zt =
(zt,1, . . . ,zt,Nt

) of the evolving target. Assuming that
measurement likelihood functions p(zt,i|xt,i) can be
calculated in each node vi belonging to CM

t , the pur-
pose is to compute sequentially the state pdf in each

node contained in a dynamically estimated cluster Ct.
An augmented state vector is introduced constituted of
the nodes state Xt and the cluster Ct at time instant t.

In the next Section, the joint pdfs resulting from dy-
namic clustering are studied.

4.1 Probability Density Functions for

Clusters in Sensor Network

The process of dynamic clustering of the sensor nodes
necessitates to estimate different joint pdfs. Sensors
outside a cluster at time t are assumed to contain uni-
form distribution of the target position over a region.
In other words, instead of the pairwise MRF expression
(5), the aim is to estimate an approximated joint pdf
which has the following expression:

p(Xt|Ct) =
1

κ

∏

i∈Ct

ψi(xi)
∏

(i,j)∈ECt

ψi,j(xi,xj)
∏

i6∈Ct

U(xi),

(11)
where κ denotes a normalisation constant; ECt

is the
subset of edges linking nodes in Ct; U(xi) represents a
uniform distribution of the target position over the con-
sidered region (a sufficiently wide region is equivalent
to a lack of any information about the target).

4.2 Bayesian Formulation

Under the Markovian assumption for the state transi-
tion, the Bayesian prediction and filtering steps can be
written respectively as follows:

p(Xt,Ct|Z1:t−1) =
∫

p(Xt,Ct|Xt−1,Ct−1) ×

p(Xt−1,Ct−1|Z1:t−1)dXt−1

=
∫

p(Xt|Xt−1,Ct) × p(Ct|Xt−1,Ct−1) ×

p(Xt−1,Ct−1|Z1:t−1)dXt−1 (12)

p(Xt,Ct|Z1:t) =
p(Zt|Xt,Ct) × p(Xt,Ct|Z1:t−1)

p(Zt|Z1:t−1)
, (13)

where Z1:t is the set of measurements up to time t.

5 Results
In this section, the dynamic clustering process is

combined with the belief propagation algorithm in or-
der to track a moving target in a network of randomly
distributed sensors. The main goal is to cope with the
deficient communication links between nodes (which
lead to missing messages). The performance of two fil-
ters is studied for three scenarios. In the first scenario,
we assume that there are no deficient links and we in-
vestigate the performance of the first filter. In the sec-
ond scenario, the same filter is validated with missing
messages. For the first filter, the dynamic clustering
update algorithm does not activate nodes in order to
cope with the missing messages, i.e. CR = ∅. Finally,
in the third scenario, the performance of the second fil-
ter is investigated with missing messages. In this case,
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the dynamic clustering process activates nodes in order
to tackle missing messages, i.e. CR 6= ∅. The evolution
and observation models of these filters are given respec-
tively in the next subsections 5.1 and 5.2. A Nonpara-
metric Loopy Belief Propagation (NPLBP) algorithm
based on particles is used in the two filters. Note that
the need of nonparametric message passing algorithm
is motivated by the nonlinear observation model.

At time instant t, for each node included in cluster
CP

t , a particle filtering algorithm is used to propagate
information from the previous time t − 1. In addition,
if a node i is in CP

t and also in CM
t (i.e., the node i has

the target on its sensor range), the particles on each
node are corrected and reweighted using a Metropolis-
Hastings (MH) Algorithm.

5.1 Evolution Model of the Target

The nearly constant velocity model [9, 1] is the target
model implemented on each node of the sensor network.
Then the state of the target of interest is given by:

xt,i = Axt−1,i + Γηt−1,i, (14)

where A = diag(A1,A1), A1 =

(

1 T
0 1

)

,

Γ =

(

T/2 1 0 0
0 0 T/2 1

)′

, T is the sampling interval

and ηt−1,i is the system dynamics noise. In order to
cover a wide range of motions, the velocity should be
approximately constant in a straight line and the ve-
locity change should be abrupt at each turn (especially
for the direction of the velocity). The system dynamics
noise ηt−1,i is represented as a sum of two Gaussian
components

p(ηt−1,i) = αN (0,Q1) + (1 − α)N (0,Q2), (15)

Q1 = diag(σ2, σ2
1), Q2 = diag(σ2, σ2

2); σ is a standard
deviation assumed common and constant for x and y;
σ1 ≪ σ2 are standard deviations allowing to model re-
spectively smooth and abrupt changes in the velocity.
The fixed coefficient α has values in the interval [0, 1].

5.2 Observation Model

Range and bearing observations are considered as mea-
surements, i.e., the measurement vector zt,i for the
moving target contains the range rt,i and the bearing
βt,i. The measurement equation is of the form:

zt,i = h(xt,i) + wt,i, (16)

where h is the nonlinear function

h(xt,i) =

(

√

x2
t,i + y2

t,i, tan−1 yt,i

xt,i

)

(17)

and the measurement noise wt,i is supposed to be Gaus-
sian, with known covariance matrix R.

5.3 Description of the Simulated Sensor

Network

For simplicity, the communication and sensing ranges
are assumed to be the same for each node in the net-
work. In order to simulate deficient links, for each direct
link (i, j), we associate a probability pi,j of a missing
message from i to j. We simulated randomly 30% of
links having pi,j = 0.7 and 70% of links having pi,j = 0.
Figure 3 gives the resulting graph of the sensor network.
Table 1 contains the parameter values of the simulation.

Table 1: Simulation parameters

Parameters Settings

Grid 1000m×1000m
Number of nodes 150
rs 50m
rc 100m
Simulation duration 120s
Sampling period 1s
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Figure 3: This Figure shows the simulated sensor network
graph. The undirected links in bold are assumed to have a
probability of missing message equal to 0. The others undi-
rected links are deficient and have, at least, in one direction
a probability of missing message equal to 0.7.

5.4 Filters and Simulation Results

In this section, first, the algorithm of the designed filters
is given in Table 2. Then the performance of the filters
is shown for one moving target, with changing velocity,
evolving in the sensor network in Figure 3.

The algorithm in Table 2 combines the dynamic
clustering model presented in Section 2.4 and uses a
NPLBP for collaboration between the nodes in each
cluster. The first step is to generate a cluster Ct at
time t. Then, each node belonging to both CP

t and
CM

t (i.e., the node that belongs to the cluster from the
previous step, has a cloud of particles and contains the
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Table 2: Combination of the dynamic clustering process
and nonparametric loopy belief propagation algorithm
(NPLBP)
INITIALISATION.

t = 0, C0 = CM
0 ,

FOR all i ∈ C0,
DRAW samples from the measurement model in

node i
END

LOOP.

FOR t ≥ 1
1. Cluster Updating.

Ct = f(Ct−1,C
M
t ,Xt−1) (see Section 2.4)

2. Particles Initialisation for nodes ∈ Ct.
FOR all i ∈ Ct,

IF i ∈ CP
t

PREDICT particles from the previous
cloud of node i

IF i ∈ CM
t

SAMPLE new particles and
CORRECT the weights using the

measurements and MH steps
END

ELSEIF i ∈ CM
t

DRAW samples from the measurement
available in node i

ELSE
The set of particles is empty

at initialisation
END

3. Message passing algorithm: NPLBP.
FOR a number of iteration = nbiter

RUN the message passing algorithm
COMPUTE beliefs and estimations

(see Section 3.2)
END

END

target in its sensing range) computes a cloud of parti-
cles by propagating its cloud of particles and correct-
ing them using MH steps. Next, nodes belonging to
CM

t draw samples only from the available current mea-
surement. Finally, all other nodes in Ct are initialised
without any particles. The last step is to use a NPLBP
for the collaboration between nodes and for computing
the estimates.

Two filters are developed which differ from each other
in the mechanism for activation of nodes in CR

t (see
Section 2.3.3. For the first filter, the objective is to run
an experiment without missing messages. Then a net-
work with missing messages is simulated and the per-
formance of the algorithms with and without missing
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Figure 4: The estimated trajectory
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Figure 5: Estimated trajectory when there are missing mes-
sages.

messages is compared. The second filter is simulated to
show the usefulness of adding nodes in CR

t .

Table 3: Parameters of the filters
Parameters Settings

α 0.5
ǫ 0
Number of particles 30
Number of iterations 5
of the MH algorithm
Number of iterations nbiter 5
of the NPLBP algorithm

Figures 4, 5 and 6 show the estimated trajectory of
the target (for each time instant, estimates from the
cluster are plotted). The estimated trajectory given
in Figure 4 corresponds to an idealistic case without
any missing message. Next, Figure 5 presents some
expected effects of missing messages with respect to the
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Figure 6: Estimated trajectory when there are missing mes-
sages. In order to tackle missing messages, a redundancy is
introduced in the cluster updating process.

convergence rate and to the quality of the estimates
(for example, around coordinates (400, 400)). Figure
6 shows that, simply by adding a rule in the cluster
updating process, the effect of missing messages can be
reduced.

6 Conclusions
In this paper we present an approach for dynamic clus-
tering for a network of sensors aimed at distributed in-
ference tasks. Dynamic clustering is combined jointly
with belief propagation for the purposes of object track-
ing. Most of the existing works in the literature are
not adapted to randomly distributed sensor networks.
Dynamic clustering is a crucial part of the estimation
process since, in addition to energy savings, it is tightly
related with the calculation of the desired joint proba-
bility distribution function.

At every time instant the set of sensors providing the
target state estimation are dynamically selected based
on desired rules. First, sensors providing measurements
are chosen. Then a groups of sensors from the previ-
ous time is also chosen in order to ensure that all the
information from the past is continuously taken into
account. Next a set of sensors is activated in order to
predict target appearance in the case where there is
no measurement. The last rule is related with existing
deficient links and therefore missing messages.

The originality of this work is the ability to take into
account the deficient links in the dynamic clustering
process. Instead of trying to adapt the NPLBP algo-
rithm, the objective is to change the joint probability
density function to be estimated by adapting the clus-
ters and their related graph.

Experiments with a challenging scenario prove
the feasibility of the introduced dynamic clustering
approach. In addition, by simulating an idealistic

case without missing messages and a realistic case
with missing messages, the experiments confirm the
efficiency of the approach. In case of missing messages
by adapting the cluster and hence adapting the joint
probability density function to be estimated, the same
performance as in the idealistic case is obtained.
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