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Abstract. We consider a variation of the standard Hastings-
Levitov model HL(0), in which growth is anisotropic. Two natural
scaling limits are established and we give precise descriptions of
the effects of the anisotropy. We show that the limit shapes can be
realised as Loewner hulls and that the evolution of harmonic mea-
sure on the cluster boundary can be described by the solution to a
deterministic ordinary differential equation related to the Loewner
equation. We also characterise the stochastic fluctuations around
the deterministic limit flow.

1. Introduction

1.1. Generalized HL(0) clusters. In this paper we consider growing
sequences of compact sets in the complex plane C obtained by com-
posing random conformal mappings. Let D0 denote the exterior unit
disk

D0 = {z ∈ C∞ : |z| > 1},
and let K0 = C \ D0 be the closed unit disk. We consider a simply
connected set D1 ⊂ D0, such that P = Dc

1 \K0 has diameter d ∈ (0, 1]
and 1 ∈ P . The set P models an incoming particle, which is attached
to the unit disk at 1. There exists a unique conformal mapping

(1) fP : D0 → D1

with expansion at infinity of the form fP (z) = C(P )z + o(z) for some
C(P ) > 0. The value C(P ) = cap(K0 ∪ P ) is called the logarithmic
capacity.
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Suppose P1, P2, . . . is a sequence of particles (or, equivalently, let
fP1 , fP2 , . . . be the sequence of associated conformal mappings) with
diam(Pj) = dj. Let θ1, θ2, . . . be a sequence of angles. Define rotated
copies of the maps {fPj

} by setting

f
θj

Pj
(z) = eiθjfPj

(e−iθjz), j = 1, 2, . . . .

Take Φ0(z) = z, and recursively define

(2) Φn(z) = Φn−1 ◦ f θn
Pn

(z), n = 1, 2, . . . .

This generates a sequence of conformal maps Φn : D0 → Dn = C \
Kn, where Kn−1 ⊂ Kn are growing compact sets, which we usually
call clusters. Loosely speaking we add, at the nth step, a particle
of diameter dn|Φ′

n−1(e
iθn)| to the previous cluster Kn−1 at the point

Φn−1(e
iθn).

By constructing the sequences {θj} and {dj} in different ways, it is
possible to describe a wide class of growth models. The most well-
known are the Hastings-Levitov family of models HL(α), indexed by a
parameter α ∈ [0, 2]. Here the θj are chosen to be independent random
variables distributed uniformly on the unit circle which, by conformal
invariance, corresponds to the attachment point being distributed ac-
cording to harmonic measure at infinity. The particle diameters are
taken as dj = d/|Φ′

j−1(e
iθj)|α/2.

In this paper, we study a variant of the HL(0) model in which
θ1, θ2, . . . are independent identically distributed random variables on
the unit circle T with common law ν and dj = d. We shall refer to
this growth model as anisotropic Hastings-Levitov, AHL(ν). Our limit
results are not sensitive to the shapes of particles Pj and, in fact, we
are even able to relax the restraint dj = d, to allow for P1, P2, . . .
to be chosen so that d1, d2, . . . are independent identically distributed
random variables (independent of {θj}) with law σ, satisfying certain
conditions to be stated later. 1

1.2. Background and motivation. The motivation behind study-
ing these clusters comes from growth processes that arise in physics,
such as diffusion-limited aggregation (DLA) [27], anisotropic diffusion-
limited aggregation [15] and the Eden model [10]. In 1998, Hastings
and Levitov [13] formulated a conformal mapping approach to mod-
elling Laplacian growth of which DLA and the Eden model are special

1One way of constructing such a sequence is by fixing a deterministic measurable
mapping d 7→ fP (d), such that diam(P (d)) = d, and then choosing an independent
identically distributed sequence d1, d2, . . . with law σ.
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cases. They defined the family of growth models, HL(α), whose con-
struction is described in the previous section. The α = 2 version is a
candidate for off-lattice DLA. In this case, the diameters of the mapped
particles are (more or less) the same.

The Hastings-Levitov model has been widely discussed in the physics
literature. In the original paper [13], Hastings and Levitov studied the
model numerically and found evidence for a phase transition in the
growth behaviour at α = 1. Further numerical investigations can be
seen in, for example, the papers [7] and [20].

Unfortunately, the Hastings-Levitov model has proved difficult to
analyse rigourously, particularly in the α > 0 case. We give a brief
review of the known results. In 2005, Rohde and Zinsmeister [24] es-
tablished the existence of limit clusters for α = 0 when the aggregate
is scaled by capacity, and showed that the Hausdorff dimension of the
limit clusters is 1, almost surely. They also considered a regularised
version of HL(α) for α > 0 and estimated the growth rate of the ca-
pacity and length of the clusters. In 2009, Johansson and Sola [14]
studied Loewner chains driven by compound Poisson processes. Cer-
tain cases of these were found to correspond to HL(0) clusters with
random particle sizes, and the existence of (one-dimensional) limit clus-
ters was established. The 2009 paper of Norris and Turner explored
the evolution of harmonic measure on the boundary of HL(0) clusters
and showed that this converges to the coalescing Brownian flow. We
would finally like to mention the 2001 and 2002 papers of Carleson
and Makarov ([5], [6]), where the Loewner-Kufarev equation is used to
describe deterministic versions of Laplacian growth.

In this paper we have modified the setup of the Hastings-Levitov
model in the α = 0 case. The use of more general distributions for the
angles is a way of introducing anisotropy or localization in the growth.
This is similar in spirit to the work of Popescu, Hentschel, and Family
[22], who study numerically a variant of HL(2), where the angles are
distributed according to a certain density with m-fold symmetry. They
suggest that such anisotropic Hastings-Levitov models may provide a
description for the growth of bacterial colonies where the concentration
of nutrients is directional. We discuss their work further in the next
section.

Allowing for non-uniform angular distributions results in scaling lim-
its in which the anisotropy is reflected. We consider two different nat-
ural scaling limits where we scale the particle sizes. We prove a shape
theorem that describes the global macroscopic behaviour of the cluster:
in the case of uniformly distributed angles, the shape is a disk (as was
previously known [23]); but in the anisotropic case the limit shapes
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can be realised as non-trivial Loewner hulls. For the anisotropic case
we also show that the evolution of harmonic measure on the cluster
boundary is deterministic with small random fluctuations, unlike in
the uniform case where the behaviour is purely stochastic.

1.3. Outline of the paper. Our paper is organised as follows. In Sec-
tion 2, we review some background material concerning the Loewner
equation and the coalescing Brownian flow and describe the general
framework of our paper. We also discuss some examples of angular dis-
tributions that lead to interesting anisotropic behaviour in the growth.
In Section 3, we establish continuity properties of the Loewner-Kufarev
equation with respect to measures, and use this to prove a shape the-
orem for the limit clusters. In Section 4, we consider the evolution of
harmonic measure on the cluster boundary. For general measures, we
first prove that the flow on the boundary is described by an determin-
istic ordinary differential equation, and then obtain a description of
the stochastic fluctuations around this deterministic flow. Finally, we
show that uniformly chosen angles lead to purely stochastic behaviour,
even if the particle sizes are chosen randomly.

2. Preliminaries

In this section we review some background material that is needed
for our proofs.

2.1. Loewner chains driven by measures. A decreasing Loewner
chain is a family of conformal mappings

ft : D0 → C \ Kt, ∞ 7→ ∞, f ′
t(∞) > 0,

onto the complements of a growing family of compact sets, called hulls,
with

Kt1 ⊂ Kt2 for t1 < t2.

We always take K0 to be the closed unit disk. The logarithmic capacity
of each Kt is given by

cap(Kt) = lim
z→∞

ft(z)

z
.

Let P = P(T) denote the class of probability measures on T. Under
some natural assumptions on the function t 7→ cap(Kt), such a chain
can be parametrized in terms of families {µt}t≥0, µt ∈ P(T). More pre-
cisely, the conformal mappings ft satisfy the Loewner-Kufarev equation

(3) ∂tft(z) = zf ′
t(z)

∫
T

z + ζ

z − ζ
dµt(ζ),
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with initial condition f0(z) = z. Conversely, if t 7→ ‖µt‖ is locally inte-
grable (which is immediate for probability measures) then the solution
to (3) exists and is a Loewner chain. See [5] for a general discussion.

The classical example is the case of pure point masses

µt = δξ(t),

where ξ = ξ(t) is a unimodular function. The Loewner-Kufarev equa-
tion then reduces to the equation

(4) ∂tft(z) = zf ′
t(z)

z + ξ(t)

z − ξ(t)
,

originally introduced by Loewner in 1923. The function ξ(t) is usually
called the driving function. The particular choice ξ(t) = 1 produces as
solutions the basic slit mappings fd(t) : D0 → D0 \ [1, 1+d(t)], with slit
lengths d(t) given by the explicit formula

(5) d(t) = 2et(1 −
√

1 − e−t) − 2.

We can recover (the slit version of) the HL(0) mappings Φn by driving
the Loewner equation with a non-constant point mass at

(6) ξ(t) = exp

(
i

n∑
j=1

θjχ[Tj−1,Tj ](t)

)
,

where the times Tj relate to the slit lengths d via the formula (5).
Choosing absolutely continuous driving measures

dµt = ht(ζ)|dζ|
results in the growth of the clusters no longer being concentrated at
a single point. In the simplest case dµt(ζ) = |dζ|/2π, the Loewner-
Kufarev equation reduces to

∂tft(z) = zf ′
t(z),

and we see that ft(z) = etz, so that Kt = etK0. We shall see that
absolutely continuous driving measures arise naturally in connection
with the anisotropic HL(0) clusters.

We can realize more general particles than slits using a driving func-
tion in the following way. Consider a particle P such that ∂P ∩D0 can
be described by a (sufficiently smooth) crosscut β of D0. We param-
etrize β(t) according to capacity, that is, cap(K0 ∪ β[0, t)) = et, t ∈
[0, TP ), where

TP = lcap(P ) := log(cap(K0 ∪ P )).

We can then find a driving function for the Loewner equation that
produces a family ft : D0 → D0 \ β[0, t). As t → TP , the conformal
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maps ft converge uniformly on compact subsets of D0 to the mapping
fP : D0 → D0 \ P . If ξ : [0, TP ) → T denotes the driving function for
a single particle, we obtain a driving function for the cluster similarly
to (6).

There is a useful relation between the diameter of the particle, its
capacity, and the driving function. Set R(P ) :=

√
TP +sup0≤t≤TP

|ξ(t)|.
Then, as is proved in [19, Lemma 2.1], we have

(7) d(P ) = diam(P ) ³ R(P ).

Moreover, one can prove that there exists a constant c < ∞ such that

c−1h2 ≤ lcap(P ) ≤ c hd

for small d, h, where h = sup{|z| : z ∈ P} − 1. Indeed, the first in-
equality follows by comparing with the slit map solution to the Loewner
equation. The second follows from a harmonic measure estimate and
the identity lcap(P ) = E[log |Bτ |], where Bt is a planar Brownian mo-
tion starded from ∞ and τ is the hitting time of K0∪P . In particular we
see that there are natural sequences of particles such that lcap(P ) ³ d2

as d → 0. We shall make this assumption in certain sections of this
paper.

We will sometimes need to consider the radial Loewner equation
lifted to the real line: let γt(x) = −i log gt(e

2πix)/2π, where gt = f−1
t

and ft is a solution to (3) and x ∈ R. Then γt satisfies the differential
equation

(8) ∂tγt(x) =
1

2π

∫ 1

0

cot (π(γt(x) − y)) dµt(e
2πiy),

with γ0(x) = x (see [18, Chapter 4]). This is well-defined as long
as γt(x) is outside the support of µt. However, we may interpret the
integral in the sense of principal values, that is, as a multiple of the
Hilbert transform of the measure µt (see [12, Chapter 3]),

H[νt](x) = p.v.
1

2π

∫ 1

0

cot(π(x − y))dµt(e
2πiy).

In this way, for nice enough measures, we obtain a differential equation
defining a flow on all of T.

2.2. Coalescing Brownian flow and harmonic measure on the
cluster boundary. The coalescing Brownian flow (also known as the
Arratia flow and the Brownian web) can loosely be defined as a family
of coalescing Brownian motions, starting at all possible points in con-
tinuous space-time. Arratia [1] first considered this object in 1979 as
a limit for discrete coalescing random walks. Since then it has been
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studied by, amongst others, Tóth and Werner [26], Fontes, Isopi, New-
man and Ravishankar [11] and recently Norris and Turner [21]. One of
the difficulties in studying the coalescing Brownian flow is construct-
ing a suitable topological space on which a unique measure with the
necessary properties exists. In this section we outline the construction
of Norris and Turner [21] and show how the coalescing Brownian flow
relates to the evolution of harmonic measure on the boundary of the
AHL(ν) clusters.

Let R be the set of non-decreasing, right-continuous functions f+ :
R → R that satisfy the property

f+(x + n) = f+(x) + n, x ∈ R, n ∈ Z.

Write L for the analogous set of left-continuous functions and let D
be the set of all pairs f = {f−, f+}, where f− is the left-continuous
modification of f+. Since x + f+(x) is strictly increasing in x, there is
for each t ∈ R a unique x ∈ R such that

x + f−(x)

2
≤ t ≤ x + f+(x)

2
.

Let f×(t) = t − x. A metric dD is defined on D by

dD(f, g) = sup
t∈[0,1)

|f×(t) − g×(t)|.

Under this metric, the space (D, dD) is complete and separable. Let
D0 be the set of circle maps whose liftings are in D.

Write I = I1 ⊕ I2 if I1, I2 are disjoint intervals with sup I1 = inf I2

and I = I1 ∪ I2. The set of cadlag weak flows D◦ consists of flows
φ = (φI : I ⊆ [0,∞)), where φI ∈ D0 and I ranges over all non-empty
finite intervals that satisfy

φ−
I2
◦ φ−

I1
≤ φ−

I ≤ φ+
I ≤ φ+

I2
◦ φ+

I1
, I = I1 ⊕ I2

and, for all t ∈ (0,∞),

φ(s,t) → id as s ↑ t, φ(t,u) → id as u ↓ t.

For φ, ψ ∈ D◦ and n ≥ 1, define

d
(n)
D (φ, ψ) = inf

λ

{
γ(λ) ∨ sup

I⊂(0,∞)

‖χn(I)φ×
I − χn(λ(I))ψ×

λ(I)‖

}
,

where the infimum is taken over the set of increasing homeomorphisms
λ of (0,∞), where

γ(λ) = sup
t∈(0,∞)

|λ(t) − t| ∨ sup
s<t

∣∣∣∣log

(
λ(t) − λ(s)

t − s

)∣∣∣∣ ,
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and where χn is the cutoff function given by

χn(I) = 0 ∨ (n + 1 − sup I) ∧ 1.

Define

dD(φ, ψ) =
∞∑

n=1

2−n{d(n)
D (φ, ψ) ∧ 1}.

Then dD is a metric on D◦ under which D◦ is complete and separable.
For e = (s, x) ∈ [0,∞) × R, let De = Dx([s,∞), R) denote the

Skorokhod space of cadlag paths starting from x at time s. Write µe

for the distribution on De of a standard Brownian motion starting from
e. For a sequence E = (ek : k ∈ N) in [0,∞) × R, where ek = (sk, xk)
say, let DE =

∏∞
k=1 Dek

, be the complete separable metric space with
metric dE on DE defined by

dE(ξ, ξ′) =
∞∑

k=1

2−k{d(ξk, ξ′
k
) ∧ 1},

where d denotes appropriate instances of the Skorokhod metric. There
exists a unique probability measure µE on DE under which the co-
ordinate processes on DE are coalescing Brownian motions. Define a
measurable map Ze,+ : D◦ → De by setting

Ze,+(φ) = (φ+
(s,t](x) : t ≥ s),

and a measurable map ZE,+ : D◦ → DE by

ZE,+(φ)ek = Zek,+(φ).

There exists a unique Borel probability measure µA on D◦ such that,
for any finite set F ⊂ [0,∞) × R, we have

µA ◦ (ZF,+)−1 = µF .

We call any D◦-valued random variable with law µA a coalescing Brow-
nian flow on the circle (see Figure 1).

Recall the construction of the Hastings-Levitov clusters from the
Introduction. Let P be a closed, connected, simply connected subset
of D0 with P ∩ K0 = {1}. Write gP for the inverse mapping from
D1 → D0. There exists a unique γP ∈ D such that γP restricts to a
continuous map from the interval (0, 1) to itself, and such that

gP (e2πix) = e2πiγP (x), x ∈ (0, 1).

Set Γn = gPn ◦ · · · ◦ gP1 , where gPn = (f θn
Pn

)−1, so that Γn : Dn → D0.
The extension of Γn to the boundary ∂Kn = ∂Dn, gives a natural
parametrization of the boundary of the nth cluster by the unit circle.
It has the property that, for ξ, η ∈ ∂Kn, the normalized harmonic
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Figure 1. A realisation of the coalescing Brownian flow,
with only paths starting at time 0 shown.

measure ω (from ∞) of the positively oriented boundary segment from
ξ to η is given by Γn(η)/Γn(ξ) = e2πiω. For m, n ∈ N with m < n, set

Γnm = gPn ◦ · · · ◦ gPm+1 |∂K0 .

Set Γnn = id. The circle maps Γnm have the flow property

Γnm ◦ Γmk = Γnk, k ≤ m ≤ n.

The map Γnm expresses how the harmonic measure on ∂Km is trans-
formed by the arrival of new particles up to time n. Suppose 0 <
T1 < T2 < · · · are times of a Poisson process, independent of {θj} and
{dj}, with rate to be specified later. Embed Γ in continuous time by
defining, for an interval I ⊆ [0,∞), ΓI = Γnm where m and n are the
smallest and largest integers i, respectively, for which Ti ∈ I. Then
(ΓI : I ⊆ [0,∞)) is a random variable in D◦. We denote its law by µP

A.
In the paper [21], Norris and Turner showed that for HL(0) clusters

(i.e. clusters where the particles Pj have constant diameters dj = d,
and θj is uniformly distributed on the circle), in the case of symmetric
particles, µP

A → µA weakly on D◦ as d → 0, where the Poisson process
{Ti} has rate ρ(P ) ³ d−3, defined by

ρ(P )

∫ 1

0

(γP (x) − x)2dx = 1.

If P is not symmetric, the same result holds once the definition of ΓI

is modified to
ΓI(e

2πix) = e−2πiβtΓnm(e2πi(x+βs)),

where s = inf I and t = sup I and β = β(P ) is defined by

β(P ) = ρ(P )

∫ 1

0

(γP (x) − x)dx = O(d−1).
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In other words the following result about the evolution of harmonic
measure on the cluster boundary holds.

Let x1, . . . , xn be a positively oriented set of points in R/Z and set
x0 = xn. Set Kt = Kbρ(P )tc. For k = 1, . . . , n, write ωk

t for the harmonic
measure in Kt of the boundary segment of all fingers in Kt attached
between xk−1 and xk. Let (B1

t , . . . , B
n
t )t≥0 be a family of coalescing

Brownian motions in R/Z starting from (x1, . . . , xn). Then, in the
limit d → 0, (ω1

t , . . . , ω
n
t )t≥0 converges weakly in D([0,∞), [0, 1]n) to

(B1
t − B0

t , . . . , B
n
t − Bn−1

t )t≥0.
In this paper, we extend the study of Norris and Turner to cover ran-

dom arrival points θj with law ν, as well as random particle diameters
dj with law σ. As we shall see, the results of [21] go through more or
less unchanged in the case when ν is the uniform measure, for all laws
σ with finite third moments that tend to zero. However, in the case
of non-uniform measures ν, the evolution of harmonic measure on the
boundary is dominated by a non-trivial deterministic drift of order d2,
and the stochastic behaviour is seen only as fluctuations about this of
order d3.

2.3. Some examples. We give two examples of anisotropic growth
to illustrate our results. We consider the case of slit mappings with
deterministic length d for convenience.

2.3.1. Angles chosen in an interval. For η ∈ (0, 1], let θj be chosen
uniformly in [0, η]. We build clusters Kn as before, at each step setting
dj = d for j = 1, . . . , n. For fixed t ∈ (0,∞), if n = blcap(P )−1tc, the
hull Kn produced by the discrete iteration model then converges (in a
sense to be made precise) as d → 0, to the hulls obtained by solving
the Loewner equation at time t driven by the measure

dν(e2πix) =
χ[0,η](x)dx

η
.

A computation involving the power series expansion of the Schwarz-
Herglotz kernel (z + e2πix)/(z − e2πix) shows that the explicit form of
the Loewner equation in this case is

(9) ∂tft(z) = zf ′
t(z)

(
1 +

2

η
arctan

[
eiπη sin η

z − eiπη cos η

])
.

Construct the flow Γ ∈ D◦ that describes the evolution of harmonic
measure on the cluster boundary, with rate lcap(P )−1 ³ d−2. Then,
as d → 0, Γ → φ in (D◦, dD), where φ(s,t](x) is the solution to the
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(a) AHL(ν) cluster (left) and the corresponding Loewner hull (right).

(b) Evolution of harmonic measure on the boundary of AHL(ν) (left) and the
solution to the corresponding deterministic ODE (right).

Figure 2. Simulations of AHL(ν) and associated limits,
for d = 0.02 after 25000 repetitions, corresponding to
dν(x) = 2χ[0,1/2]dx.

ordinary differential equation

φ̇(s,t](x) =
1

π2
log

∣∣∣∣ sin(πφ[s,t)(x))

sin(π(φ(s,t](x) − η))

∣∣∣∣
with φ(s,s](x) = x. In the special case η = 1/2, we obtain the equation

φ̇(s,t] =
1

π2
log | tan(πφ(s,t](x))|.

Note the absence of random fluctuations in the region (1/2, 1) in the
simulation in the figure; this phenomenon will be discussed in Section
4.
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(a) AHL(ν) cluster (left) and the corresponding Loewner hull (right).

(b) Evolution of harmonic measure on the boundary of AHL(ν) (left) and the
solution to the corresponding deterministic ODE (right).

Figure 3. Simulations of AHL(ν) and associated limits,
for d = 0.02 after 25000 repetitions, corresponding to
dν(x) = 2 sin2(3πx)dx.

2.3.2. Angles chosen from a density with m-fold symmetry. For fixed
m ∈ N, choose θj distributed according to the density

dν(e2πix) = 2 sin2(mπx)dx.

This type of density with m-fold symmetry is considered in [22] as
an example of a choice of angular distribution that introduces certain
preferred directions in the cluster growth. The clusters converge, under
the same scaling limits as above, to the hulls of the Loewner chain
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described by the equation

∂tft(z) = zf ′
t(z)

(
1 − 1

zm

)
.

In the limit in this case, the evolution of harmonic measure on the
cluster boundary is determined by the solutions to the ODE

φ̇(s,t](x) = − 1

2π
sin(2πmφ(s,t](x)), φ(s,s](x) = x.

3. A shape theorem

In this section, we consider a scaling limit where the particle sizes
converge to zero. The goal is to describe the macroscopic shape of the
limiting cluster, that is, to prove a shape theorem. This generalizes a
result we first learned about from Rohde [23], see also [20]: simulations
of standard HL(0) clusters show that if the basic slit length d is chosen
to be small, and the number of compositions is large, then the clusters
Kn look rounded. In fact, if we let d → 0 and n ³ d−2, then the laws
of resulting HL(0) clusters do indeed converge to that of a closed disk
cK0.

Similarly, comparing the AHL(ν) clusters with the hulls generated
by the Loewner equation driven by the time-independent measure ν,
we see that, as the particle diameters d tend to zero and the number
of compositions increases at a rate proportional to d−2, the shapes
converge (even for random particle sizes). Indeed, in Theorem 2 we
prove that the discrete clusters converge to the Loewner hulls. We
begin with a technical result about solutions to the Loewner-Kufarev
equation.

3.1. Continuity properties of the Loewner equation. In this sec-
tion, we show that solutions to the Loewner-Kufarev equation (3) are
“close” at time T if the driving measures are “close” in some suitable
sense. For conformal mappings, the notion of closeness is to be un-
derstood in the sense of uniform convergence on compact subsets of
D0.

Let Σ denote the space of conformal mappings f : D0 → C with
expansions at infinity of the form

f(z) = c1z + c0 + c/z + · · · , c1 > 0,

equipped with the topology induced by uniform convergence on com-
pact subsets of D0. Denote by Π(Σ) the space of probability measures
on Σ.



14 JOHANSSON, SOLA, AND TURNER

In [2], it is shown that if the Loewner equation is driven by continuous
functions that are close in the uniform metric, then the corresponding
solutions are close as conformal mappings. This was extended to cover
Skorokhod space functions in [14].

The following proposition deals with the case of general driving mea-
sures.

Proposition 1. Let 0 < T < ∞. Let µn = {µn
t }t≥0, n = 1, 2, . . . ,

and µ = {µt}t≥0 be families of measures in P. Let m denote Lebesgue
measure on [0,∞), and suppose that the measures µn

t × m converge
weakly on S = T × [0, T ] to the measure µt × m as n → ∞.

Then the solutions {fn
T } to (3) corresponding to the sequence {µn}

converge to fT , the solution corresponding to µ, uniformly on compact
subsets of D0.

Proof. The proof is similar to the continuity lemmas of [14] and [2].
Fix a compact set K ⊂ D0, and let ε > 0 be given. For t ∈ [0, T ],

consider the backward Loewner flow

(10) ḣt(z) = −ht(z)

∫
T

ht(z) + ζ

ht(z) − ζ
dµT−t(ζ), h0(z) = z.

We then have hT (z) = fT (z) (see [18, Chapter 4]); and a similar state-
ment holds for the solutions corresponding to the measures µn. We
shall use the convenient shorthand notations

(11) v(s, ν, z) = −z

∫
T

z + ζ

z − ζ
dνT−s(ζ)

and

(12) w(x, z) = z
z + x

z − x
.

For z ∈ K fixed, set u(t) = ht(z) and un(t) = hn
t (z). Integrating

(10) with respect to t and using u(0) = un(0), we obtain, for t ∈ [0, T ],

|u(t) − un(t)| ≤
∣∣∣∣u(t) − u(0) −

∫ t

0

v(s, µn, u(s))ds

∣∣∣∣
+

∣∣∣∣∫ t

0

v(s, µn, u(s))ds − un(t) + un(0)

∣∣∣∣
=

∣∣∣∣∫ t

0

v(s, µ, u(s))ds −
∫ t

0

v(s, µn, u(s))ds

∣∣∣∣
+

∣∣∣∣∫ t

0

v(s, µn, u(s))ds −
∫ t

0

v(s, µn, un(s))ds

∣∣∣∣ .
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The first term may be written out as∣∣∣∣∫ t

0

v(s, µ, u(s))ds −
∫ t

0

v(s, µn, u(s))ds

∣∣∣∣
=

∣∣∣∣∫ t

0

∫
T
u(s)

u(s) + x

u(s) − x
dµT−s(x)ds −

∫ t

0

∫
T
u(s)

u(s) + x

u(s) − x
dµn

T−s(x)ds

∣∣∣∣ ,
and since the integrand is a continuous function on T × [0, T ], our
assumption of weak convergence implies, in particular, that the right-
hand side is smaller than ε for all n ≥ N for some N (which depends
on the point z).

We estimate the second term by∣∣∣∣∫ t

0

v(s, µn, u(s))ds −
∫ t

0

v(s, µn, un(s))ds

∣∣∣∣
≤

∫ t

0

∫
T
|w(x, u(s)) − w(x, un(s))|dµn

T−s(x)ds.

We now use the inequality

|w(x, z) − w(x, z′)| ≤ (sup |∂zw(x, z)|)|z − z′|
together with standard growth estimates on conformal mappings of D0

to obtain that

|w(x, u(s)) − w(x, un(s))| ≤ C(T,K)|u(s) − un(s)|
for some constant C(T,K) that does not depend on n (the lack of
normalization of the mappings accounts for the dependence on T ).
This in turn leads to the estimate∫ t

0

∫
T
|w(x, u(s)) − w(x, un(s))|dµn

T−s(x)ds

≤ C(T,K)

∫ t

0

‖µn
T−s‖|u(s) − un(s)|ds

= C(T,K)

∫ t

0

|u(s) − un(s)|ds.

Putting everything together, we find that

|u(t) − un(t)| ≤ ε + C(T,K)

∫ t

0

|u(s) − un(s)|ds.

We are now in a position to apply Grönwall’s lemma, and we obtain

|u(t) − un(t)| ≤ C ′(T,K)ε, t ∈ [0, T ].

Thus |u(T )−un(T )| < C ′(T,K)ε for n ≥ N , and this means that fn
T (z)

converges to fT (z).
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We have thus established the pointwise convergence of {fn} to f
on the compact set K. Since the sequence {fn} is locally bounded
by distortion-type estimates, it follows from Vitali’s theorem that the
convergence is in fact uniform on K, and the proof is complete. ¤

Let T be the unit circle and set S = T× [0,∞). Let M = M(S) be
the set of locally bounded Borel measures on S. A sequence µ, µn ∈ M
is said to converge vaguely if∫

ϕdµn →
∫

ϕdµ, ∀ϕ ∈ Cc(S),

where Cc(S) is the set of continuous functions in S with compact sup-
port. Weak convergence is defined the same way with compactly sup-
ported continuous ϕ replaced by bounded continuous ϕ. A random
measure on S is a measurable mapping from some probability space
into M. In the next section we shall need the following lemma con-
tained in [16, Theorem 15.7.6].

Lemma 1. Let µ, µn, n = 1, 2, . . ., be bounded measures on S. The
sequence µn → µ with respect to the weak topology as n → ∞ if and
only if µn → µ in the vague topology and µn(S) → µ(S).

3.2. Statement and proof of the shape theorem. In this section,
we prove the convergence of the random measures generating AHL(ν)
to the desired deterministic measure when the particle diameter d tends
to zero and the number of compositions tends to infinity at a rate
proportional to d−2. In view of the continuity result of the previous
section, the weak convergence of the AHL(ν) mappings then follows.

Let P1, P2, . . . be chosen to be identical with diam(P ) = d. Assume
additionally that the particle shape is chosen with capacity lcap(P ) of
order d2 (see (7)). Note that our results can be shown to hold when
the Pj are random, under additional conditions that are given in the
remark at the end of this subsection. Let θ1, θ2, . . . be T-valued random
variables with law ν.

Theorem 2. Let Φ denote the solution to the Loewner-Kufarev equa-
tion driven by the measures {νt}t≥0 = {ν}t≥0 and evaluated at time T ,
for some fixed T ∈ (0,∞).

Set n = blcap(P )−1T c, and define the conformal map

Φn = f θ1
P1

◦ · · · ◦ f θn
Pn

.

Then Φn converges to Φ uniformly on compacts almost surely as d → 0.

Proof. Let ε > 0 be given. For k = 1, . . . , n, set

Tk = k lcap(P ),
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and

Ξn(t) =
n∑

k=1

χ[Tk−1,Tk)(t) ξk(t),

where ξk(t), t ∈ [Tk−1, Tk), is the (rotated) driving function for the
particle Pk. We set ξn(t) = exp(iΞn(t)). Then δξn(t) is the measure
that drives the evolution of the AHL clusters. That is, the mapping
Φn is the solution to the Loewner-Kufarev equation

(13) ∂tft(z) = zf ′
t(z)

∫
T

z + ζ

z − ζ
δξn(t)(ζ)

with f0(z) = z, evaluated at time t = Tn. Integrating with respect to
Lebesgue measure in time, m, we see that we need to show that the
random measures

µP = δξn(t) × m[0,Tn] ∈ M(S)

converge almost surely to µ = ν × m[0,T ] as d → 0 with respect to the
weak topology. Note that µP (S) = Tn → T = µ(S). By Lemma 1 it
remains to prove convergence of the random variables 〈µP , ϕ〉 to 〈µ, ϕ〉,
as d → 0, for ϕ ∈ Cc(S).

As before, we identify the circle with the interval [0, 1), that is, S =
[0, 1) × [0,∞). For ϕ ∈ Cc(S),

|〈µ, ϕ〉 − 〈µP , ϕ〉| =

∣∣∣∣∣
∫ T

0

∫
T
ϕ(θ, t)dµ −

n∑
k=1

∫ Tk

Tk−1

ϕ(ξk(t), t)dm(t)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
T
ϕ(θ, t)dµ − lcap(P )

n∑
k=1

ϕ(θk, Tk)

∣∣∣∣∣
+

∣∣∣∣∣lcap(P )
n∑

k=1

ϕ(θk, Tk) −
n∑

k=1

∫ Tk

Tk−1

ϕ(ξk(t), t)dm(t)

∣∣∣∣∣ .(14)

The second term on the right hand side can be bounded by
n∑

k=1

∫ Tk

Tk−1

|ϕ(θk, Tk) − ϕ(ξk(t), t)|dm(t).

Note that Tk − Tk−1 = lcap(P ) and by (7),

sup
Tk−1≤t<Tk

|ξk(t) − e2πiθk | ≤ Cdiam(P ).

Hence

max
1≤k≤n

sup
Tk−1≤t≤Tk

|ξk(t) − e2πiθk | → 0
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almost surely as d → 0. Since ϕ is compactly supported, and hence
uniformly continuous on S, we have

max
1≤k≤n

sup
Tk−1≤t≤Tk

|ϕ(θk, Tk) − ϕ(ξk(t), t)| < ε,

for d sufficiently small. It follows that, almost surely,
n∑

k=1

∫ Tk

Tk−1

|ϕ(ξk(t), t) − ϕ(θk, Tk)|dm(t) < ε

n∑
k=1

∫ Tk

Tk−1

dm(t) ≤ c ε

as soon as d is sufficiently small.
We turn to the first term on the right hand side in (14). We apply

the strong law of large numbers for independent random variables (see

for instance [17, Corollary 4.22]) to Xk = ϕ(θk, Tk) −
∫ 1

0
ϕ(θ, Tk)dν to

obtain

lcap(P )
n∑

k=1

Xk → 0

almost surely. As lcap(P ) = Tk − Tk−1, it follows that

lcap(P )
n∑

k=1

(∫ 1

0

ϕ(θ, Tk)dν

)
→

∫ T

0

∫ 1

0

ϕ(θ, t)dµ,

almost surely, by continuity of ϕ.
Hence the sequence of random variables 〈µP , ϕ〉 converges almost

surely to 〈µ, ϕ〉 for each fixed ϕ ∈ Cc(S). Note that Cc(S) is separable.
Thus, for ϕ in a countable dense subset of Cc(S), we may take the
intersection of the corresponding sets of full measure to obtain a set of
full measure on which 〈µP , ϕ〉 converges to 〈µ, ϕ〉 for every ϕ ∈ Cc(S).
Hence, we have almost sure convergence of µP to µ with respect to the
vague topology. Consequently, by Lemma 1 the random measures µP

converge almost surely to µ with respect to the weak topology.
In view of Proposition 1, the corresponding conformal mappings con-

verge uniformly on compact sets, and the proof is complete. ¤

Remark 1. The setup in the theorem can easily be adapted to allow
for random particle sizes tending to zero in probability. For example,
we could take lcap(P n

k ) = λk/n for bounded i.i.d. random variables
λk and obtain almost sure convergence of the corresponding conformal
mappings. The proof is essentially the same, except that we apply an
ergodic theorem [4, Theorem 1] instead of the law of large numbers. We
can also relax the condition on the sequence λk to square-integrability,
and then obtain convergence in law of the conformal mappings, by
adapting the proof in [4] appropriately.
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Remark 2. Instead of choosing θj as i.i.d. random variables, one could
also take {θj}j to be a Markov chain satisfying some natural conditions.
By examining our proof, and applying a stronger version of [4, Theorem
1], we obtain a result similar to Theorem 2, with the limiting ν uniform
on T. This is a consequence of the fact that the invariant measure on
T under rotation is Lebesgue measure.

4. The evolution of harmonic measure on the cluster
boundary

In this section we establish a scaling limit for the evolution of har-
monic measure on the cluster boundary. We show that it can be approx-
imated by the solution to a deterministic ordinary differential equation
related to the Loewner equation and we also characterise the stochastic
fluctuations around the deterministic limit flow.

For notational simplicity, we assume that the diameters {dj} of the
particles are constant and equal to some d > 0 which tends to zero to
obtain limit results. All the proofs can be directly adapted for {dj} with
laws σ with finite third moment σ3 → 0. We also assume that ν has
density hν on R, periodic with period 1, which is twice differentiable.
This restriction is purely for technical reasons and, through smoothing,
any non-atomic Borel measure can be sufficiently well approximated by
a measure with a twice differentiable density.

Recall the construction of the map γP and the flow (ΓI : I ⊆ [0,∞))
from Subsection 2.2. Define the function βν and the constant ρ(P ) by

βν(x) =

∫ 1

0

γ̃P (x − z)hν(z)dz,

1 = ρ(P )

∫ 1

0

γ̃P (z)2dz,

where γ̃±
P (x) = γ±

P (x) − x. It is shown in [21] that ρ(P ) ³ d−3.
Suppose that the Poisson process {Ti}, used in the construction of

ΓI , has rate lcap(P )−1 and let X ∈ D◦ be a lifting of Γ onto the real
line. Then for fixed e = (s, x) ∈ [0,∞) × R, Xe,±

t = X±
(s,t](x) satisfies

the integral equation

Xe,±
t = x +

∫
(s,t]×[0,1)

γ̃±
P (Xe,±

r − z)µ(dr, dz)

= x + M±
ts + lcap(P )−1

∫
(s,t]

βν(X
e,±
r )dr, t ≥ s

where µ is a Poisson random measure (see [25]) on [0,∞) × [0, 1),
equipped with the Borel σ-algebra, with intensity lcap(P )−1hν(z)dzdr,
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and where M±
ts is a martingale satisfying

M±
ts =

∫
(s,t]×[0,1)

γ̃±
P (Xe,±

r − z)(µ(dr, dz) − lcap(P )−1hν(z)dzdr).

In what follows, we suppress the superscripts e,±.
Recall (see Section 2.1) that there are natural sequences of particles

P for which lcap(P ) ³ d2. We assume that this holds in what follows.
It is also shown in [21] that there exists some universal constant 0 <
C3 < ∞ such that ∣∣∣∣∫ 1

0

γ̃P (z)dz

∣∣∣∣ ≤ C3d
2,

and so, by restricting to a subsequence if necessary, we assume that

lcap(P )−1

∫ 1

0

γ̃P (z)dz → c0

for some c0 ∈ R. Note that for symmetric particles,
∫ 1

0
γ̃P (z)dz = 0 in

which case c0 = 0.

Proposition 2. As d → 0, |lcap(P )−1βν(x) − b(x)| → 0, uniformly in
x, where

b(x) = c0hν(x) +
1

2π

∫ 1

0

cot(πz)(hν(x − z) − hν(x))dz.

Furthermore, if P is chosen so that

d−1/2

∣∣∣∣lcap(P )−1

∫ 1

0

γ̃P (z)dz − c0

∣∣∣∣ → 0,

as d → 0, then d−1/2 |lcap(P )−1βν(x) − b(x)| → 0, uniformly in x, as
d → 0.

Proof. It is shown in Section 3.5 of Lawler [18] that there exists some
universal constant c < ∞ such that if cd ≤ z ≤ 1 − cd, then∣∣∣∣γ̃P (z) − lcap(P )

2π
cot(πz)

∣∣∣∣ ≤ cd lcap(P )

2π sin2(πz)
.

From this is can be deduced that there exists some c′ > 0, such that
‖γ̃P‖∞ < c′d.

Let us write C(P ) = lcap(P ). Now,

βν(x) = hν(x)

∫ 1

0

γ̃P (z)dz +

∫ 1

0

γ̃P (z) (hν(x − z) − hν(x)) dz,
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and so, if d is sufficiently small that cd < 1 then∣∣∣∣βν(x)

C(P )
− b(x)

∣∣∣∣
≤

∣∣∣∣C(P )−1

∫ 1

0

γ̃P (z)dz − c0

∣∣∣∣ |hν(x)|

+ C(P )−1

∫ cd

−cd

|γ̃P (z)||hν(x − z) − hν(x)|dz

+ C(P )−1

∫ 1−cd

cd

∣∣∣∣γ̃P (z) − C(P )

2π
cot(πz)

∣∣∣∣ |hν(x − z) − hν(x)|dz

+ C(P )−1

∫ cd

−cd

C(P )

2π
| cot(πz)||hν(x − z) − hν(x)|dz

≤‖hν‖∞
∣∣∣∣C(P )−1

∫ 1

0

γ̃P (z)dz − c0

∣∣∣∣ + ‖h′
ν‖∞c′dC(P )−12(cd)2

+
cd‖h′

ν‖∞ log sin(πcd)

π2
+

cd‖h′
ν‖∞

π
sup

z∈(−cd,cd)

|z cot(πz)|.

¤

Note that
∫ 1

0
cot(πz)(hν(x − z) − hν(x))dz is the Hilbert transform

of hν , as defined in Section 2.1. In particular, this implies that b(x) is
constant only when hν is the uniform density on the circle. It is for
this reason that the behaviour in the uniform case is very different to
the non-uniform case.

Define φ ∈ D◦ to be the solution to the ordinary differential equation

(15) φ̇(s,t](x) = b(φ(s,t](x)) for t ≥ s, φ(s,s](x) = x.

We shall prove that the boundary flow converges to the flow determined
by (15). Note that away from the support of hν , this equation coincides
with the lifted Loewner ODE

∂tγt(x) =
1

2π

∫ 1

0

cot(π(γt(x) − z))hν(z)dz.

However, on the support of ν, where we have to interpret the integral
as a principal value, we get an additional drift term c0hν(γt) in the
right hand side. In the case of symmetric particles, the drift vanishes
everywhere, and the resulting flow is governed by the extended Loewner
flow given by

∂tγt(x) = H[ν](γt(x)).
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Proposition 3. For all T > s,

E
(

( sup
s<t<T

|Mts|)2

)
≤ 4‖hν‖∞ lcap(P )−1ρ(P )−1(T − s).

Hence, for all ε > 0,

P
(

sup
s<t<T

|Mts| > ε

)
→ 0

as d → 0.

Proof. Since, for any fixed (s, x) ∈ [0,∞) × R, the processes Mts are
martingales, by Doob’s L2 inequality, for all T > s,

E
(

( sup
s<t<T

|Mts|)2

)
≤ 4E(|MTs|2)

= 4

∫ T

s

∫ 1

0

E(γ̃P (Xr − z)2) lcap(P )−1hν(z)dzdr

≤ 4 lcap(P )−1‖hν‖∞(T − s)

∫ 1

0

γ̃P (z)2dz

= 4‖hν‖∞ lcap(P )−1ρ(P )−1(T − s).

The second result follows from Markov’s inequality and the assymp-
totic behaviour of ρ(P ) and lcap(P ). ¤

Recall the definition of φ as the solution of (15).

Theorem 3. As d → 0,

dD(X,φ) → 0,

in probability.

Proof. Given ε > 0, for fixed e = (s, x) ∈ [0,∞)×R and T > s, choose
d0 > 0 sufficiently small that ‖ lcap(P )−1βν −b‖∞ < εe−‖b′‖∞T /2(T −s)
for all d ≤ d0, and set

ΩT,d =

{
sup

s<t≤T
|Mts| ≤ εe−‖b′‖∞T /2

}
.
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Then if d ≤ d0, on the set ΩT,d,

sup
s<t≤T

|Xt − φ(s,t](x)|

≤ sup
s<t≤T

|Mts|

+ sup
s<t≤T

∫ t

s

| lcap(P )−1βν(Xr) − b(Xr)|dr

+ sup
s<t≤T

∫ t

s

|b(Xr) − b(φ(s,r](x))|dr

≤εe−‖b′‖∞T + ‖b′‖∞
∫ T

s

sup
s<t≤r

|Xt − φ(s,t](x)|dr.

Hence, by Grönwall’s Lemma,

sup
s<t≤T

|Xt − φ(s,t](x)| ≤ ε.

Therefore, by Proposition 3,

lim sup
d→0

P( sup
s<t≤T

|Xt − φ(s,t](x)| > ε) ≤ lim sup
d→0

P(ΩT,d
c) = 0.

For any countable dense set E ⊂ [0,∞) × R, Xt → φ(s,t](x) uniformly
on compacts in probability as d → 0, for all (s, x) = e ∈ E. Therefore,
by the proof of Proposition 10.11 in [21], dD(X,φ) → 0 in probability
as d → 0. ¤
Corollary 4. Let x1, . . . , xn be a positively oriented set of points in
R/Z and set x0 = xn. Set Kt = Kblcap(P )−1tc. For k = 1, . . . , n, write
ωk

t for the harmonic measure in Kt of the boundary segment of all
fingers in Kt attached between xk−1 and xk. Then, in the limit d →
0, (ω1

t , . . . , ω
n
t )t≥0 converges weakly in D([0,∞), [0, 1]n) to (φ(0,t](x1) −

φ(0,t](x0), . . . , φ(0,t](xn) − φ(0,t](xn−1))t≥0.

A geometric consequence of this result is that the number of infi-
nite fingers of the cluster converges to the number of stable equilibria
of the ordinary differential equation ẋt = b(xt), and the positions at
which these fingers are rooted to the unit disk converge to the unstable
equilibria of the ODE.

4.1. Fluctuations. In this section, suppose that P is chosen so that

d−1/2

∣∣∣∣lcap(P )−1

∫ 1

0

γ̃P (z)dz − c0

∣∣∣∣ → 0,

as d → 0. For fixed (s, x) ∈ [0,∞) × R, define

ZP
t = (lcap(P )ρ(P ))1/2(X(s,t](x) − φ(s,t](x))
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and let Zt be the solution to the linear stochastic differential equation

dZt =
√

hν(φ(s,t](x))dBt + b′(φ(s,t](x))Ztdt, t ≥ s,

starting from Zs = 0, where Bt is a standard Brownian motion.
Note that if x is off the support of hν , then Zt = 0 for all t ≥ s.

Also observe that in the case where ν is the uniform measure on the
unit circle, (lcap(P )ρ(P ))1/2(X(s,t](x) − x − c0(t − s))t≥s converges to
standard Brownian motion, starting from 0 at time s.

Lemma 5. For fixed x and s < T < ∞ there exists some constant C,
dependent only on T , hν and b such that

E
(

sup
s≤t≤T

|ZP
t |2

)
≤ C

and, for all s ≤ t1 < t2 ≤ T ,

E
(

sup
t1≤t≤t2

|ZP
t − ZP

t1
|2

)
≤ C(t2 − t1).

Therefore the family of processes (ZP
t )t≥s is tight with respect to pa-

rameter d.

Proof. Since lcap(P )ρ(P ) ³ d−1 there exists C ′ > 0 such that

(lcap(P )ρ(P ))
1
2

∣∣lcap(P )−1βν(x) − b(x)
∣∣ < C ′.

Then,

E
(

sup
s≤t≤T

|ZP
t |2

)
≤3 lcap(P )ρ(P )E( sup

s≤t≤T
|Mts|2)

+ 3 lcap(P )ρ(P )

∫ T

s

E(| lcap(P )−1βν(Xr) − b(Xr)|2)dr

+ 3 lcap(P )ρ(P )

∫ T

s

E( sup
s≤t≤r

|b(Xt) − b(φ(s,t](x))|2)dr

≤(12‖hν‖∞ + 3C ′)(T − s) + 3‖b′‖∞
∫ T

s

E
(

sup
s≤t≤r

|ZP
t |2

)
dr.
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The result follows by Grönwall’s Lemma. Similarly

E
(

sup
t1≤t≤t2

|ZP
t − ZP

t1
|2

)
≤(12‖hν‖∞ + 3C ′)(t2 − t1)

+ 3‖b′‖∞
∫ t2

t1

E(|ZP
t1
|2)dr

+ 3‖b′‖∞
∫ t2

t1

E
(

sup
t1≤t≤r

|ZP
t − ZP

t1
|2

)
dr

≤(12‖hν‖∞ + 3C ′ + 3‖b′‖∞E(|ZP
t1
|2))(t2 − t1)

+ 3‖b′‖∞
∫ t2

t1

E
(

sup
t1≤t≤r

|ZP
t − ZP

t1
|2

)
dr.

Again, the result follows by Grönwall’s Lemma. ¤
Theorem 6. As d → 0, the processes ZP

t → Zt in distribution.

Proof. Since the processes (ZP
t )t≥s are tight, and since both ZP

t and Zt

have independent increments (see, for example, [17]), it is sufficient to
show that, for fixed t ≥ s, ZP

t → Zt in distribution.
For simplicity, let s = 0, and xt = φ(0,t](x).
Define ψt to be the solution to the linear ordinary differential equa-

tion
ψ̇t = −b′(xt)ψt, ψ0 = 1.

By Itô’s formula,

ψtZt =

∫ t

0

ψs

√
hν(xs)dBs ∼ N

(
0,

∫ t

0

ψ2
shν(xs)ds

)
.

Hence Zt is a Gaussian process. Similarly

ψtZ
P
t = (lcap(P )ρ(P ))1/2

∫ t

0

ψsdMs +

∫ t

0

RP
s ds,

where

RP
t = (lcap(P )ρ(P ))1/2ψt(lcap(P )−1βν(Xt) − b(xt) − b′(xt)(Xt − xt)).

Using the bounds on ZP
t established above, it is straightforward to

show that ∫ t

0

RP
s ds → 0

in probability. Therefore it suffices to show that

(lcap(P )ρ(P ))1/2

∫ t

0

ψsdMs → N

(
0,

∫ t

0

ψ2
shν(xs)ds

)
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in distribution.
The characteristic function

χ(η) = E
(

exp

(
iη(lcap(P )ρ(P ))1/2

∫ t

0

ψsdMs

))
= E

(
exp

∫ t

0

ζ(η(lcap(P )ρ(P ))1/2ψs, Xs)ds

)
,

where

ζ(θ, x) =

∫ 1

0

(
eiθγ̃P (x−z) − 1 − iθγ̃P (x − z)

)
hν(z) lcap(P )−1dz

= − θ2

lcap(P )

∫ 1

0

∫ 1

0

γ̃P (x − z)2(1 − r)eirθγ̃P (x−z)hν(z)drdz

= − θ2

2 lcap(P )ρ(P )
ρ(P )

∫ 1

0

γ̃P (x − z)2hν(z)dz

− θ2

lcap(P )

∫ 1

0

(1 − r)

∫ 1

0

γ̃P (x − z)2(eirθγ̃P (x−z) − 1)hν(z)dzdr.

Here we have used the fact that by Itô’s formula (see, for example,
[17]), the process(

exp

(
iθ

∫ t

0

ψsdMs −
∫ t

0

ζ(θψs, Xs)ds

))
t≥s

is a martingale. Now∣∣∣∣ρ(P )

∫ 1

0

γ̃P (x − z)2hν(z)dz − hν(x)

∣∣∣∣
≤ ρ(P )

∫ 1

0

γ̃P (x − z)2|hν(z) − hν(x)|dz

≤ ‖h′
ν‖∞ρ(P )

∫ 1

0

γ̃P (x − z)2|x − z|dz

= ‖h′
ν‖∞ρ(P )

(∫ cd

−cd

γ̃P (z)2|z|dz +

∫ 1−cd

cd

γ̃P (z)2zdz

)
≤ ‖h′

ν‖∞ρ(P )

(
2(cd)4 +

9 lcap(P )2

8π4
log sin(πcd)

)
→ 0,
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as d → 0, and ∣∣∣∣∫ 1

0

γ̃P (x − z)2(eirθγ̃P (x−z) − 1)hν(z)dz

∣∣∣∣
≤ ‖hν‖∞|θ|‖γ̃P‖∞ρ(P )−1

≤ ‖hν‖∞|θ|c′dρ(P )−1.

Hence
ζ(θ(lcap(P )ρ(P ))1/2ψs, Xs) → −θ2ψshν(xs)

in probability as d → 0. Therefore

χ(η) → exp

(
−η2

∫ t

0

ψ2
shν(xs)ds

)
and so

(lcap(P )ρ(P ))1/2

∫ t

0

ψsdMs → N

(
0,

∫ t

0

ψ2
shν(xs)ds

)
in distribution, as required. ¤

4.2. The uniform case. In the case of non-uniform ν, the behaviour
of the boundary flow (Xt)t≥s is dominated by non-trivial deterministic
drift behaviour, and the random fluctuations only contribute as lower
order perturbations. In the case when ν is the uniform measure on
[0, 1), however, the drift vanishes and the random fluctations describe
the highest order behaviour. This case is explored in detail in [21],
where it is shown that under suitable scaling, the boundary flow con-
verges to the coalescing Brownian flow described in Section 2.2.

The key result shows that the joint distribution of flows starting
from a finite collection of points in spacetime, converges to that of
coalescing Brownian motions. In this subsection we give an adaptation
of this proof to HL(0) clusters constructed with random diameters.
We give this partly for completeness and to highlight the difference in
behaviour between the uniform case and anisotropic case, but also to
illustrate how all of the proofs in this section can be easily adapted to
hold in the case of random diameters.

For law σ with finite third moment σ3, define ρ(σ) by

ρ(σ)

∫ ∞

0

∫ 1

0

γ̃P (d)(x)2dxdσ(d) = 1.

Note that ρ(σ) is well defined and ρ(σ) ³ σ−1
3 .

Recall the construction of the flow (ΓI : I ⊆ [0,∞)) from Subsection
2.2 (with the drift compensated for), but constructed from particles
with random diameters with law σ, and with rate ρ(P ) replaced by
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ρ(σ). Let X ∈ D◦ be a lifting of Γ onto the real line. Then for fixed
e = (s, x) ∈ [0,∞) × R, Xt = X(s,t](x) satisfies the integral equation

Xt = x +

∫
(s,t]×(0,∞)×[0,1)

γ̃P (d)(Xr− − z)µ(dr, dd, dz), t ≥ s,

where µ is a Poisson random measure of intensity ρ(σ)hν(z)dzdσ(d)dr.
Write µσ

e for the distribution of (Xt)t≥s on the Skorokhod space De =
Dx([s,∞), R) of cadlag paths starting from x at time s. Write µe for
the distribution on De of a standard Brownian motion starting from e.

By a straightforward adaptation of Theorem 6, µσ
e → µe weakly on

De as σ3 → 0.
Recall the definitions of E, DE, µE from Subsection 2.2.

Proposition 4. We have µσ
E → µE weakly on DE as σ3 → 0.

Proof. The families of marginal laws (µσ
ek

) can be shown to be tight,
with respect to parameter σ with σ3 < ∞, by a similar argument to
that in Lemma 5. Hence the family of laws (µσ

E) is also tight. Let µ be
any weak limit law for the limit σ3 → 0 and let (Zek

t )t≥sk
, k ∈ N, be a

sequence of limit processes. For j, k distinct, the process

X
ej

t Xek
t −

∫ t

sj∨sk

b(Xej
s , Xek

s )ds, t ≥ sj ∨ sk,

is a martingale, where

b(x, x′) = ρ(σ)

∫ ∞

0

∫ 1

0

γ̃P (d)(x − z)γ̃P (d)(x
′ − z)dzdσ(d).

Let λ be the smallest constant λ = λ(σ) ∈ (0, 1] such that

ρ(σ)

∫ ∞

0

∫ 1

0

|γ̃P (d)(x + a)γ̃P (d)(x)|dxdσ(d) ≤ λ, a ∈ [λ, 1 − λ].

It is shown in [21] that, for d sufficiently small, if a ∈ [d1/4, 1 − d1/4]
then

ρ(σ)

∫ 1

0

|γ̃P (d)(x + a)γ̃P (d)(x)|dx ≤ d1/4.

For all other values of a, by Cauchy-Schwarz,

ρ(σ)

∫ 1

0

|γ̃P (d)(x + a)γ̃P (d)(x)|dx ≤ 1.
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Hence if a ∈ [σ
1/24
3 , 1 − σ

1/24
3 ], then for σ3 sufficiently small,

ρ(σ)

∫ ∞

0

∫ 1

0

|γ̃P (d)(x + a)γ̃P (d)(x)|dxdσ(d) ≤
∫ σ

1/6
3

0

d1/4dσ(d)

+ P(d > σ
1/6
3 )

≤E(d1/4) + σ3/σ
1/2
3

≤σ
1/24
3 .

Hence λ ≤ Cσ
1/24
3 → 0.

We have |b(x, x′)| ≤ λ whenever λ ≤ |x − x′| ≤ 1 − λ. Hence, by
standard arguments, under µ, the process (Z

ej

t Zek
t : sj∨sk ≤ t < T jk) is

a local martingale, where T jk = inf{t ≥ sj∨sk : |Zej

t −Zek
t | /∈ [λ, 1−λ]}.

We know from the proof of the proposition above that, under µ, the
processes (Z

ej

t : t ≥ sj), ((Z
ej

t )2 − t : t ≥ sj) and (Zek
t : t ≥ sk)

are continuous local martingales. But µ inherits from the laws µσ
E

the property that, almost surely, for all n ∈ Z, the process (Z
ej

t −
Zek

t + n : t ≥ sj ∨ sk) does not change sign. Hence, by an optional
stopping argument, Z

ej

t − Zek
t is constant for t ≥ T jk. It follows that

(Z
ej

t Zek
t − (t − T jk)+)t≥sj∨sk

is a continuous local martingale. Hence
µ = µE. ¤

As observed above, X is a D◦-valued random variable. Let µσ
A denote

the law of X on the Borel σ-algebra of D◦. The following result follows
immediately from the corresponding theorem in [21].

Theorem 7. We have µσ
A → µA weakly on D◦ as σ3 → 0.

Corollary 8. Let x1, . . . , xn be a positively oriented set of points in
R/Z and set x0 = xn. Set Kt = Kbρ(σ)tc. For k = 1, . . . , n, write ωk

t for
the harmonic measure in Kt of the boundary segment of all fingers in
Kt attached between xk−1 and xk. Let (B1

t , . . . , B
n
t )t≥0 be a family of co-

alescing Brownian motions in R/Z starting from (x1, . . . , xn). Then, in
the limit σ3 → 0, (ω1

t , . . . , ω
n
t )t≥0 converges weakly in D([0,∞), [0, 1]n)

to (B1
t − B0

t , . . . , B
n
t − Bn−1

t )t≥0.
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[2] R.O. Bauer, Discrete Löwner evolution, Ann. Fac. Sci. Toulouse Math. (6) 12
(2003), no.4, 433–451.

[3] P. Billingsley, Convergence of probability measures, John Wiley & Sons, Inc.,
New York 1999.

[4] M. Björklund, Ergodic theorems for random clusters, preprint 2009.
[5] L. Carleson, N. Makarov, Aggregation in the plane and Loewner’s equation,

Comm. Math. Phys. (216) (2001), 583-607.
[6] L. Carleson, N. Makarov, Laplacian path models. Dedicated to the memory of

Thomas H. Wolff, J. Anal. Math. (87) (2002), 103-150.
[7] B. Davidovitch, H.G.E. Hentschel, Z. Olami, I. Procaccia, L.M. Sander,

E.Somfai, Diffusion limited aggregation and iterated conformal maps, Phys.
Rev. E. (87) (1999), 1368.
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