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Abstract. Suppose that 1 < p ≤ ∞, (Ω, µ) is a σ-finite measure
space and E is a closed subspace of a Lebesgue–Bochner space
Lp(Ω; X), consisting of functions on Ω that take their values in
some complex Banach space X. Suppose also that −A is invertible
and generates a bounded holomorphic semigroup {Tz} on E. If
0 < α < 1 and f belongs to the domain of Aα then the maximal
function supz ‖Tzf‖X , where the supremum is taken over any given
sector contained in the sector of holomorphy, belongs to Lp. This
extends an earlier result of Blower and Doust [BD].

1. Introduction

Suppose that {Tt}t≥0 is a C0-semigroup of bounded linear operators
on a Banach space E. In the case that E is a space of functions f from
a set Ω to a normed space X, an important tool in the analysis of such
a semigroup is the maximal function Mf where

Mf(ω) = ess-sup
t≥0

‖Ttf(ω)‖X .

The classical theorems of Stein [St] and Cowling [Co] apply to sym-
metric diffusion semigroups on E, where E = Lp(Ω) and 1 < p < ∞,
and show that in this case ‖Mf‖p ≤ c ‖f‖p for all f in Lp(Ω).

Taggart [Ta] extended this to the vector-valued context where E =
Lp(Ω;X) and X satisfies a geometric condition weak enough to include,
for example, many of the classical reflexive function spaces.

Under much weaker hypotheses, Blower and Doust [BD] showed that
in the scalar-valued case, if the semigroup {Tt}t>0 can be extended to a
bounded holomorphic semigroup on sector of the complex plane, then
Mf lies in Lp(Ω) at least for f in a large submanifold of Lp(Ω).
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In this paper we show that result of [BD] may be extended to the
vector-valued case where E is a subspace of Lp(Ω;X) andX is any com-
plex Banach space. Moreover, the result also holds when the supremum
used to define the maximal function is taken over sectors contained in
the sector of holomorphy of the semigroup (c.f., the results of [Co] and
[Ta]). Both these extensions may be easily deduced by modifying the
original argument of [BD].

The paper is organised as follows. In Section 2 we introduce some
notation and state the main theorem of the paper. As with the result of
[BD], the theorem is proved by representing of the semigroup in terms
of fractional powers of its generator and obtaining good Lp bounds
for parts of this representation. Some of the arguments of [BD] which
made use of Yosida approximants to the semigroup’s generator have
been replaced by direct appeals to the functional calculus for sectorial
operators. Salient facts about the functional calculus are presented in
Section 3, while the representation of the semigroup and corresponding
bounds are established in Section 4. In Section 5 we complete the proof
of the theorem. For further discussion on the application of maximal
functions and examples of semigroups to which the theorem applies,
see [BD, Sections 1 and 4].

2. Notation and theorem

We begin by introducing some notation. Given θ in [0, π), let S0
θ and

Sθ denote the open and closed sectors of C given by

S0
θ =

{

ζ ∈ C \ {0} : | arg ζ| < θ
}

and

Sθ =
{

ζ ∈ C \ {0} : | arg ζ| ≤ θ
}

∪ {0},

where arg ζ denotes the principle argument of a nonzero complex num-
ber ζ. Note that S0 = [0,∞).

Throughout, suppose that X is a complex Banach space and that
(Ω, µ) is a positive σ-finite measure space. When 1 ≤ q ≤ ∞, let
Lq(Ω;X) denote the Lebesgue–Bochner space of strongly measurable
functions f : Ω → X whose norm is given by

‖f‖Lq(Ω;X) =

(
∫

Ω

‖f(ω)‖q
X dµ(ω)

)1/q

if q < ∞ and ‖f‖Lq(Ω;X) = ess-supω∈Ω ‖f(ω)‖X if q = ∞. We write

Lq(Ω) for Lq(Ω; C).
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The setting for our main result is as follows. Suppose that E is a
closed subspace of Lp(Ω;X), where 1 < p ≤ ∞, and suppose that
{Tz : z ∈ S0

θ} is a bounded holomorphic semigroup acting on E for
some θ where 0 < θ < π/2. Let −A denote the infinitesimal generator
of this semigroup. (See [RS2, Section X.8] or [Da] for definitions of
these terms.) When 0 < α < 1 we can define the fractional powers
Aα and A−α of A (see Remark 3.3). These have the property that
D(A) ⊆ D(Aα) and A−α is bounded on E whenever A has a bounded
inverse (see [Tan, Theorem 2.3.1]). Given f in D(Aα)∩D(A−α), define
‖f‖p,α by

‖f‖p,α = ‖Aαf‖Lp(Ω;X) +
∥

∥A−αf
∥

∥

Lp(Ω;X)
.

Whenever 0 ≤ θ′ < θ and f ∈ E, define the maximal function Mθ′f by

Mθ′f = sup {‖Tzf‖X : z ∈ Sθ′} .

Theorem 2.1. Suppose E, A and {Tz : z ∈ S0
θ} are as above, that A

is invertible and that 0 < α < 1. If f ∈ D(Aα) and 0 ≤ θ′ < θ then
Mθ′f ∈ Lp(Ω) and there is a constant C(A,α, θ′) such that

‖Mθ′f‖Lp(Ω) ≤ C(A,α, θ′) ‖f‖p,α .

Remark 2.2. As in [BD], we note that if −A generates a bounded
holomorphic semigroup then, for each positive number s, the operator
−(sI + A) is invertible and also generates a holomorphic semigroup.
Thus the invertibility hypothesis of Theorem 2.1 does not restrict the
usefulness of the result.

Remark 2.3. The constant C(A,α, θ′) is bounded by

Cη sec(θ′ + η) sec(απ/2)

πα
for any η such that π/2−θ < η < π/2−θ′ and where Cη is the constant
appearing in the resolvent bound (3.1) for A on Lp(Ω;X). Note that if
the semigroup acts on a range of Lp spaces then these quantities may
vary with p.

3. Functional calculus calculus for sectorial operators

In this section we summarise for use in Section 4 a few pertinent
facts about the holomorphic functional calculus for sectorial operators.

Definition 3.1. Suppose that 0 ≤ ϑ < π and that E is any Banach
space. We say that an operator A in E is sectorial of type ϑ if A is
closed, σ(A) ⊆ Sϑ and for each η in (ϑ, π) there exists a constant Cη

such that

(3.1)
∥

∥(ζI − A)−1
∥

∥ ≤ Cη|ζ|
−1 ∀ζ ∈ C \ Sη.
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We recall the following important characterisation of generators of
holomorphic semigroup. Details may be found in [Da] or [RS2].

Theorem 3.2. Suppose that E is a Banach space. A closed operator
−A in E generates a bounded holomorphic semigroup {Tz : z ∈ S0

θ}
on E for some θ in (0, π/2) if and only if A is densely defined and
sectorial of type π/2 − θ.

We now describe a holomorphic functional calculus for sectorial oper-
ators. Suppose that 0 < ϑ < ν < π. Let ψ denote the complex-valued
function defined on C by

ψ(ζ) = ζ/(1 + ζ)2 ∀ζ ∈ C.

Denote by H(S0
ν) the space of all holomorphic functions on S0

ν . Fol-
lowing the notation of [CDMY], we define the following subspaces of
H(S0

ν):

H∞(S0
ν) =

{

f ∈ H(S0
ν) : sup

ζ∈S0
ν

|f(ζ)| <∞
}

,

Ψ(S0
ν) =

{

f ∈ H(S0
ν) : fψ−s ∈ H∞(S0

ν) for some s > 0
}

and

F (S0
ν) =

{

f ∈ H(S0
ν) : fψs ∈ H∞(S0

ν) for some s > 0
}

.

Note that

Ψ(S0
ν) ⊂ H∞(S0

ν) ⊂ F (S0
ν) ⊂ H(S0

ν).

It is well known (see [CDMY, Section 2]) that if A is a one-to-one
sectorial operator of type ϑ on a Banach space E with dense domain
and dense range, then A has an F (S0

ν) functional calculus. Moreover,
if f ∈ Ψ(S0

ν) then f(A), defined by the contour integral

(3.2) f(A) =
1

2πi

∫

γ

(ζI − A)−1f(ζ) dζ,

is a bounded operator on E. Here the integral converges absolutely in
the uniform topology and the contour γ is given by

γ(t) =

{

−te−iη if −∞ < t ≤ 0

teiη if 0 < t <∞,

where η is any angle strictly between ϑ and ν. It can be shown that
the definition of f(A) is independent of the choice of angle η in this
range.
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Remark 3.3. The functional calculus defined above allows one to define
fractional powers for sectorial operators, and in particular for genera-
tors of holomorphic semigroups. If 0 < |α| < 1 and ζ ∈ Sν , then we
define the fractional power ζα by

ζα = exp(α ln |ζ| + iα arg ζ).

Note that the function ζ 7→ ζα belongs to F (S0
ν). Thus if A has an

F (S0
ν) functional calculus then the operator Aα may be defined by

Aα = g(A), where g(ζ) = ζα.

4. A representation for the semigroup

Suppose that t ∈ R, 0 < α < 1, ϕ ∈ R, ζ ∈ C and | arg(eiϕζ)| < π/2.
By Fourier inversion,

e−|t|eiϕζ =
1

π

∫

R

eiϕζ

(eiϕζ)2 + u2
eitu du

=
eiϕ

π

(
∫

|u|<1

eituFu,ϕ(ζ) ζ−α du+

∫

|u|>1

eituGu,ϕ(ζ) ζα du

)

where 0 < α < 1,

Fu,ϕ(ζ) =
ζ1+α

(eiϕζ)2 + u2
and Gu,ϕ(ζ) =

ζ1−α

(eiϕζ)2 + u2
.

This observation and the F (S0
ν) functional calculus leads to the fol-

lowing lemma.

Lemma 4.1. Suppose that A and θ are as in the hypothesis of Theorem
2.1. If 0 < α < 1, f ∈ D(Aα) and z ∈ Sθ then

Tzf =
eiϕ

π

∫

|u|<1

eituFu,ϕ(A)A−αf du+
eiϕ

π

∫

|u|>1

eituGu,ϕ(A)Aαf du,

where t = |z| and ϕ = arg(z).

The proofs of both lemmata in this section make frequent use of the
following fact. If |φ| < π/2 then

sup

{

t2 + u2

|(teiφ)2 + u2|
: t > 0, u > 0

}

= secφ.

This may be deduced using planar trigonometry. We turn now to the
proof of Lemma 4.1.
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Proof. Suppose that z = teiϕ ∈ S0
θ and choose ν such that π/2 − θ <

ν < π/2 − |ϕ|. By the hypotheses on A and Theorem 3.2, A has an
F (S0

ν) functional calculus. If ζ ∈ S0
ν then

|Fu,ϕ(ζ)| ≤ sec(ϕ+ ν)
|ζ|1+α

|ζ|2 + u2

and hence Fu,ϕ ∈ Ψ(S0
ν) for all nonzero u in R. In fact, if

F̃z,ε(ζ) =

∫

ε<|u|<1

eituFu,ϕ(ζ) du and F̃z(ζ) =

∫

|u|<1

eituFu,ϕ(ζ) du

whenever 0 < ε < 1 then

|F̃z,ε(ζ)| ≤ 2 sec(ϕ+ ν)

∫ 1

ε

|ζ|1+α

|ζ|2 + u2
du

= 2 sec(ϕ+ ν) |ζ|α
(

arctan(1/|ζ|) − arctan(ε/|ζ|)
)

.

Hence F̃z,ε ∈ Ψ(S0
ν) and F̃z,ε converges to F̃z uniformly on compact

subsets of Sν as ε→ 0+. This convergence implies that F̃z is holomor-
phic in Sν and, combining this with the bounds on F̃z,ǫ, one concludes

that F̃z ∈ Ψ(S0
ν).

One can similarly show that Gu,ϕ and G̃z, where

G̃z(ζ) =

∫

|u|>1

eituGu,ϕ(ζ) du,

both belong to Ψ(S0
ν).

Finally, since Tzf = e−zAf for all f in E and

e−zζ =
eiϕ

π

(

F̃z(ζ) ζ
−α + G̃z(ζ) ζ

α
)

∀ζ ∈ Sν

by Fourier inversion, the lemma follows from the F (S0
ν) functional

calculus for A. �

For the proof of Theorem 2.1 we require good bounds for Fu,ϕ(A) and
Gu,ϕ(A), which will be expressed in terms of two operators introduced
below. If f ∈ Lp(Ω;X), u is a nonzero real number and π/2−θ < η < π,
then we define the scalar-valued functions Γu,ηf and ∆u,ηf by

Γu,ηf =
1

2π

∫ ∞

0

Fu,0(t)
(
∥

∥(teiηI − A)−1f
∥

∥

X
+

∥

∥(te−iηI − A)−1f
∥

∥

X

)

dt

and

∆u,ηf =
1

2π

∫ ∞

0

Gu,0(t)
(
∥

∥(teiηI − A)−1f
∥

∥

X
+

∥

∥(te−iηI − A)−1f
∥

∥

X

)

dt,

where convergence of both improper integrals takes place in Lp(Ω).
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Lemma 4.2. Suppose that 0 < θ′ < π/2 − η < θ, f ∈ Lp(µ;X) and u
is a nonzero real number. Then

‖(Fu,ϕ(A)f)(ω)‖X ≤ sec(θ′ + η)(Γu,ηf)(ω)

and

‖(Gu,ϕ(A)f)(ω)‖X ≤ sec(θ′ + η)(∆u,ηf)(ω)

for µ-almost every ω in Ω and for all ϕ in [−θ′, θ′]. Moreover,

‖Γu,ηf‖Lp(Ω) ≤
Cη

2
sec(απ/2)|u|−1+α

and

‖∆u,ηf‖Lp(Ω) ≤
Cη

2
sec(απ/2)|u|−1−α,

where Cη is the constant appearing in the resolvent bound (3.1) for A.

Proof. If ν is chosen such that π/2 − θ < η < ν < π/2 − θ′ then
Fu,ϕ ∈ Ψ(S0

ν). Hence operator Fu,ϕ(A) has an integral representation
of the form (3.2). Now if {gε} is a convergent net in Lp(Ω;X), then

∥

∥

∥
lim

ε
gε

∥

∥

∥

X
= lim

ε
‖gε‖X ,

where convergence on the left is in Lp(Ω;X) while convergence on the
right in is Lp(Ω). So we may move the X-norm through the improper
integral representing Fu,ϕ(A)f to obtain

‖Fu,ϕ(A)f‖X ≤
1

2π

∫ ∞

0

|Fu,ϕ(teiη)|
∥

∥(teiηI − A)−1f
∥

∥

X
dt

+
1

2π

∫ ∞

0

|Fu,ϕ(te−iη)|
∥

∥(te−iηI − A)−1f
∥

∥

X
dt

≤ sec(ϕ+ η)Γu,ηf

≤ sec(θ′ + η)Γu,ηf.

By resolvent bounds for A, we also have

‖Γu,ηf‖Lp(Ω) ≤
Cη

π
‖f‖Lp(Ω)

∫ ∞

0

t1−α

t2 + u2

dt

t

≤
Cη

2
sec(απ/2)|u|1−α ‖f‖Lp(Ω) .

The bounds for ‖Gu,ϕ(A)f‖X and ‖∆u,ηf‖Lp(Ω) are verified in a sim-

ilar fashion. �
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5. Proof of the maximal theorem

Assume the setting and hypotheses of Theorem 2.1.
Suppose that f ∈ D(Aα) and define v : Ω × Sθ′ → X by

v(ω, z) = Tzf(ω) ∀ (ω, z) ∈ Ω × Sθ′ .

Note that Mθ′f ∈ Lp(Ω) if and only if v ∈ Lp(Ω;L∞(Sθ′ ;X)), where

‖v‖Lp(L∞) =

(

∫

Ω

ess-sup
z∈Sθ′

‖v(ω, z)‖p
X dµ(ω)

)1/p

and where we have written Lp(L∞) for Lp(Ω;L∞(Sθ′ ;X)).
Our aim now is to embed Lp(L∞) inside the dual of a suitable Banach

space Z and to then show that

(5.1) ‖v‖Lp(L∞) = sup
{

|〈g, v〉| : ‖g‖Z ≤ 1
}

is finite.
Each operator Tz of the semigroup acts on the closed subspace E of

Lp(Ω;X). Thus in particular v(ω, z) can be considered as an element
of X∗∗ for each ω and z. Writing Y for X∗, we note that the standard
duality theory for Lebesgue-Bochner spaces (see [DU, Chapter IV])
says that L∞(Sθ′ ;Y

∗) ⊆ L1(Sθ′ ;Y )∗ isometrically, and so

Lp(Ω;L∞(Sθ′ ;Y
∗)) ⊆ Lp(Ω;L1(Sθ′ ;Y )∗).

But if 1
p

+ 1
q

= 1, then

Lp(Ω;L1(Sθ′ ;Y )∗) ⊆ Lq(Ω;L1(Sθ′ ;Y ))∗

isometrically, and hence

(5.2) Lp(Ω;L∞(Sθ′ ;X)) ⊆ Lp(Ω;L∞(Sθ′ ;X
∗∗)) ⊆ Lq(Ω;L1(Sθ′ ;Y ))∗.

As above we shall write Lq(L1) for Lq(Ω;L1(Sθ′ ;Y )). From (5.1) and
(5.2) it follows that

‖v‖Lp(L∞)

= sup

{

∣

∣

∣

∫

Ω

〈g(ω, ·), v(ω, ·)〉 dµ(ω)
∣

∣

∣
: ‖g‖Lq(L1) ≤ 1

}

.

= sup

{

∣

∣

∣

∫

Ω

∫

Sθ′

〈g(ω, z), v(ω, z)〉〈Y,X〉 dz dµ(ω)
∣

∣

∣
: ‖g‖Lq(L1) ≤ 1

}

.
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Suppose then that g ∈ Lq(Ω;L1(Sθ′ ;Y )) and ‖g‖Lq(L1) ≤ 1. Writing

z as teiϕ and using Lemma 4.1, we find that

〈g, v〉 =

∫

Ω

∫

Sθ′

〈g(ω, z), Tzf(ω)〉〈Y,X〉 dz dµ(ω)

=
1

π

∫

|u|<1

∫

Ω

∫

Sθ′

〈g(ω, z), eiϕeituFu,ϕ(A)A−αf(ω)〉〈Y,X〉 dz dµ(ω) du

+
1

π

∫

|u|>1

∫

Ω

∫

Sθ′

〈g(ω, z), eiϕeituGu,ϕ(A)Aαf(ω)〉〈Y,X〉 dz dµ(ω) du,

where the use of Fubini’s theorem is justified by estimates in Section 4.
The modulus of the first of these terms may be estimated using Hölder’s
inequality and Lemma 4.2 so that

∣

∣

∣

∫

|u|<1

∫

Ω

∫

Sθ′

〈g(ω, z), eiϕeituFu,ϕ(A)A−αf(ω)〉〈Y,X〉 dz dµ(ω) du
∣

∣

∣

≤

∫ 1

−1

∫

Ω

∫

Sθ′

‖g(ω, z)‖Y

∥

∥Fu,ϕ(A)A−αf(ω)
∥

∥

X
dz dµ(ω) du

≤ sec(θ′ + η)

∫ 1

−1

∫

Ω

∫

Sθ′

‖g(ω, z)‖Y (Γu,ηA
−αf)(ω) dz dµ(ω) du

≤ sec(θ′ + η)

∫ 1

−1

∫

Ω

‖g(ω, · )‖L1(Sθ′ ;Y ) (Γu,ηA
−αf)(ω) dµ(ω) du

≤ sec(θ′ + η)

∫ 1

−1

‖g‖Lq(L1)

∥

∥Γu,ηA
−αf

∥

∥

Lp(Ω;X)
du

≤
Cη

2
sec(θ′ + η) sec(απ/2)

∥

∥A−αf
∥

∥

Lp(Ω;X)

∫ 1

−1

|u|−1+α du

≤ Cη sec(θ′ + η) sec(απ/2)α−1
∥

∥A−αf
∥

∥

Lp(Ω;X)
,

where θ′ < π/2 − η < θ. A similar calculation shows that
∣

∣

∣

∫

|u|>1

∫

Ω

∫

Sθ′

〈g(ω, z), eiϕeituGu,ϕ(A)Aαf(ω)〉〈Y,X〉 dz dµ(ω) du
∣

∣

∣

≤ Cη sec(θ′ + η) sec(απ/2)α−1 ‖Aαf‖Lp(Ω;X) .

It follows therefore that

|〈g, v〉| ≤
Cη sec(θ′ + η) sec(απ/2)

πα
‖f‖p,α

and hence

‖Mθ′f‖Lp(Ω) ≤
Cη sec(θ′ + η) sec(απ/2)

πα
‖f‖p,α
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as required.
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